跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游筑筠
研究生(外文):Jhu-Yun You
論文名稱:新穎一次性樟腦昇華吸附相頂空式固相微萃取技術結合GC-ECD分析環境水樣中三氯沙含量之研究
論文名稱(外文):A novel headspace soild-phase microextraction of triclosan with sublimated camphor sorbent in environmental samples for GC-ECD analysis
指導教授:鄭政峯鄭政峯引用關係
口試委員:李茂榮楊慶成
口試日期:2018-07-04
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:80
中文關鍵詞:固相微萃取樟腦三氯沙GC-ECD
外文關鍵詞:SPMEcamphortriclosanGC-ECD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
固相微萃取為常用的綠色萃取技術,然而市售的固相微萃取纖維有價格昂貴及塗覆吸附相容易脫落之缺點。為了解決這些缺點,本研究利用昇華物質開發一次使用的昇華吸附相塗覆纖維結合GC-ECD,分析水樣中的三氯沙。樟腦加熱後容易昇華,利用此特性,塗覆在纖維上做為昇華吸附相。
本研究將熔融矽纖維 (Fused silica fiber)以浸入方式將樟腦塗覆在纖維上,作為萃取材料。實驗中,配製樟腦甲醇溶液於4 mL樣品瓶;另取5 mL水溶液樣品置入20 mL樣品瓶。將萃取纖維浸入樟腦溶液10秒,快速移入樣品溶液之上空間進行頂空式萃取。為獲得最佳萃取效果,研究中針對樣品溶液的pH值、萃取時間、萃取溫度、萃取轉速、鹽析作用等,進行最佳化測試。
結果顯示以含有20 %氯化鈉、pH 5之磷酸緩衝溶液,在60 ℃條件下,600 rpm之轉速萃取40分鐘後取出,注入GC分析。偵測之線性範圍為0.025 – 20 μg L-1,偵測極限為6.9 ng L-1,線性相關係數達0.9958。此方法無需合成萃取吸附材料,吸附相材料成本低廉,製備快速簡便,可獲得很高的萃取濃縮倍率,無需使用脫附溶劑,亦無殘留 問題,為一項新穎、方便、低成本的綠色樣品前處理方法。
A sublimated camphor sorbent was prepared for solid phase microextraction (SPME) of triclosan in environmental samples prior to gas chromatography-micro-electron capture detection (GC-μECD). The sublimated camphor was coated onto a fused silica fiber as one-time-used SPME sorbent.
Parameters affecting the extraction efficiencies included the coating (solvent for camphor and the temperature), extraction (sample pH, stirring rate, time, and salting out effect). The maximum extraction efficiency was obtained under the conditions as follows: a fused silica fiber was dipped into camphor solution for 10 sec ( at 50℃). Then the coated fiber was moved into the 20-mL vial with 5 mL sample solution for a 40-min headspace extraction with stir rate 800 rpm (at 60℃). After extraction, the fiber was injected into GC-ECD directly. The linear range was 0.025-20 μgL^(-1) with coefficient of determination of 0.9958. Detection limit of triclosan was 6.9 ngL-1 with relative standard deviation (RSD) of 5.4% and quantitation limit was 23.1 ngL-1. The relative recoveries of spiked samples were 84.7 – 101.8% with RSDs of 2.9 – 6.8% in real samples. The proposed sublimation sorbent obtained excellent enrichment factor (848) and provides a simple, rapid, sensitive, and eco-friendly sample preparation method.
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 vii
第一章 緒論 1
1. 1前言 1
1. 2防腐劑簡介 2
1. 3三氯沙之概述 3
1. 4三氯沙之相關技術回顧 5
1.4.1液相-液相萃取技術(LLE) 5
1.4.2固相萃取技術 (SPE) 9
1.4.3分子印模聚合物萃取技術 12
1. 5固相微萃取技術之概述 14
1. 6樟腦之概述 22
1. 7研究目的 24
第二章 研究方法 25
2. 1藥品、實驗器材與儀器設備 25
2.1.1藥品 25
2.1.2器材 26
2.1.3儀器設備 27
2. 2藥品配置 28
2.2.1緩衝溶液之配置 28
2.2.2三氯沙標準品儲存溶液之配製 29
2.2.3三氯沙檢量線範圍濃度溶液配製 30
2.2.4河水之取樣及處理 30
2.2.5添加分析物於河水之配製 31
2.2.6直接檢測牙膏之配製 31
2.2.7添加分析物於牙膏之配製 31
2. 3玻璃裝置之矽烷化 32
2. 4儀器裝置操作之參數 33
2.4.1氣相層析之參數 33
2.4.2昇華吸附相固相微萃取法之最佳化參數 33
2. 5實驗方法及流程 34
2.5.1昇華吸附相製備條件 34
2.5.2昇華吸附相固相微萃取條件 37
2. 6方法可行性之評估 39
2.6.1儀器檢量線製作 39
2.6.2方法檢量線製作 39
2.6.3固相微萃取法昇華吸附相製備之穩定性與再現性比較 40
2. 7真實樣品之分析與回收率 40
2.7.1河水樣品分析 40
2.7.2河水樣品之回收率測定 40
2.7.3牙膏樣品分析 40
2.7.4牙膏樣品之回收率測定 41
第三章 結果與討論 42
3.1固相微萃取之最佳化 45
3.1.1塗覆溶劑之選擇 45
3.1.2塗覆溶劑浸入時間之選擇 47
3.1.3水樣品pH值之選擇 49
3.1.4鹽類對分析物之選擇 51
3.1.5攪拌子轉速之選擇 53
3.1.6萃取溫度之選擇 55
3.1.7萃取時間之選擇 57
3.2方法可行性評估與真實樣品之測定 59
3.2.1直接注入之校正曲線與偵測極限 59
3.2.2經方法之校正曲線與偵測極限 61
3.2.3真實樣品之測定 64
3.2.4樟腦昇華吸附相之穩定性與再現性 70
3.2.5固相微萃取樟腦昇華吸附相之揮發性測試 71
3.2.6 方法濃縮倍率 72
3.2.7 樟腦昇華吸附相固相微萃取與其他萃取方法比較 74
第四章 結論 76
第五章 參考文獻 77
Boyd, G. R.; Reemtsma, H.; Grimm, D. A.; Mitra, S., Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Science of the total Environment 2003, 311 (1-3), 135-149.
2.億光輝,歐明秋,徐照程。化妝品化學。華杏出版股份有限公司:台北市 (2013) 231-242。
3.Bhargava, H.; Leonard, P. A., Triclosan: applications and safety. American journal of infection control 1996, 24 (3), 209-218.
4.Fang, J.-L.; Stingley, R. L.; Beland, F. A.; Harrouk, W.; Lumpkins, D. L.; Howard, P., Occurrence, efficacy, metabolism, and toxicity of triclosan. Journal of Environmental Science and Health, Part C 2010, 28 (3), 147-171.
5.Regos, J.; Hnz, H., Investigations on the mode of action of Triclosan, a broad spectrum antimicrobial agent. Investigations on the mode of action of triclosan, a broad spectrum antimicrobial agent. 1974, 390-401.
6.Regös, J.; Zak, O.; Solf, R.; Vischer, W.; Weirich, E., Antimicrobial spectrum of triclosan, a broad-spectrum antimicrobial agent for topical application. Dermatology 1979, 158 (1), 72-79.
7.Larson, E., Hand washing: it's essential: even when you use gloves: for CE credit. The American journal of nursing 1989, 89 (7), 934-941.
8.European Economic Community Council Directive 76/768 EEC (Appendix VI 81976)
9.Frank, T. S. Reregistration Eligibility Decision (RED) Document for Triclosan 2008
10.European Economic Community Council Directive 76/768 EEC (Appendix VI 81976 )
11.Piccoli, A., Fiori, J., Andrisano, V., & Orioli, M. 2002. Determination of triclosan in personal health care products by liquid chromatography (HPLC). Il Farmaco, 57(5), 369-372.
12.Kawaguchi, M.; Ito, R.; Honda, H.; Endo, N.; Okanouchi, N.; Saito, K.; Seto, Y.; Nakazawa, H., Stir bar sorptive extraction and thermal desorption–gas chromatography–mass spectrometry for trace analysis of triclosan in water sample. Journal of Chromatography A 2008, 1206 (2), 196-199.
13.Zheng, C.; Zhao, J.; Bao, P.; Gao, J.; He, J., Dispersive liquid–liquid microextraction based on solidification of floating organic droplet followed by high-performance liquid chromatography with ultraviolet detection and liquid chromatography–tandem mass spectrometry for the determination of triclosan and 2, 4-dichlorophenol in water samples. Journal of Chromatography A 2011, 1218 (25), 3830-3836.
14.Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D., Room temperature ionic liquids as novel media for ‘clean’liquid–liquid extraction. Chemical Communications 1998, (16), 1765-1766.
15.Handlos, A.; Baron, T., Mass and heat transfer from drops in liquid‐liquid extraction. AIChE Journal 1957, 3 (1), 127-136.
16.Sottofattori, E.; Anzaldi, M.; Balbi, A.; Tonello, G., Simultaneous HPLC determination of multiple components in a commercial cosmetic cream1. Journal of pharmaceutical and biomedical analysis 1998, 18 (1-2), 213-217.
17.Renon, H. "Liquid—liquid equilibrium and extraction: a literature source book: Supplement 1, physical science data 23, by Jaime Wisniak and Abraham Tamir, Elsevier, Amsterdam, part A, (1985).
18.Wisniak, J.; Tamir, A., Liquid-liquid equilibrium and extraction : a literature source book, Elsevier: Amster dam, Netherlands, (1980-1981)
19.Okumura, T.; Nishikawa, Y., Gas chromatography—mass spectrometry determination of triclosans in water, sediment and fish samples via methylation with diazomethane. Analytica Chimica Acta 1996, 325 (3), 175-184.
20.Piccoli, A.; Fiori, J.; Andrisano, V.; Orioli, M., Determination of triclosan in personal health care products by liquid chromatography (HPLC). Il Farmaco 2002, 57 (5), 369-372.
21.J.B. Allen, "Chemical equilibrium", Harper & Row Publishers, New York, (1966)
22.Simpson, N. J., Solid-phase extraction: principles, techniques, and applications. CRC Press: 2000.
23.Caro, E.; Marcé, R. M.; Cormack, P. A.; Sherrington, D. C.; Borrull, F., A new molecularly imprinted polymer for the selective extraction of naproxen from urine samples by solid-phase extraction. Journal of chromatography B 2004, 813 (1-2), 137-143.
24.Jing, X.; Bing, S.; Xiaoyan, W.; Xiaojie, S.; Yongning, W., A study on bisphenol A, nonylphenol, and octylphenol in human urine amples detected by SPE-UPLC-MS. Biomedical and Environmental Sciences 2011, 24 (1), 40-46.
25.Zhang, S.; Zhang, Q.; Darisaw, S.; Ehie, O.; Wang, G., Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA. Chemosphere 2007, 66 (6), 1057-1069.
26.Vlatakis, G.; Andersson, L. I.; Müller, R.; Mosbach, K., Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361 (6413), 645.
27.Andersson, L. I., Molecular imprinting for drug bioanalysis: a review on the application of imprinted polymers to solid-phase extraction and binding assay. Journal of Chromatography B: Biomedical Sciences and Applications 2000, 739 (1), 163-173.
28.Gao, R.; Kong, X.; Su, F.; He, X.; Chen, L.; Zhang, Y., Synthesis and evaluation of molecularly imprinted core–shell carbon nanotubes for the determination of triclosan in environmental water samples. Journal of Chromatography A 2010, 1217 (52), 8095-8102.
29.Arthur, C. L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical chemistry 1990, 62 (19), 2145-2148.
30.Zhang, Z.; Yang, M. J.; Pawliszyn, J., Solid-phase microextraction. A solvent-free alternative for sample preparation. Analytical chemistry 1994, 66 (17), 844A-853A.
31.Eisert, R.; Pawliszyn, J., Automated in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Analytical chemistry 1997, 69 (16), 3140-3147.
32.Sanchez-Prado, L.; Llompart, M.; Lores, M.; García-Jares, C.; Bayona, J. M.; Cela, R., Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction. Chemosphere 2006, 65 (8), 1338-1347.
33.Regueiro, J.; Becerril, E.; Garcia-Jares, C.; Llompart, M., Trace analysis of parabens, triclosan and related chlorophenols in water by headspace solid-phase microextraction with in situ derivatization and gas chromatography–tandem mass spectrometry. Journal of Chromatography A 2009, 1216 (23), 4693-4702.
34.Basheer, C.; Chong, H. G.; Hii, T. M.; Lee, H. K., Application of porous membrane-protected micro-solid-phase extraction combined with HPLC for the analysis of acidic drugs in wastewater. Analytical chemistry 2007, 79 (17), 6845-6850.
35.Kennedy Duncan, Robert (1911), "Camphor: An Industry Revolutionized", Some Chemical Problems of Today, Harper and Brothers, 133-134
36.Rubinstein, M. A. 2015, Taiwan: A New History, London: Routledge
37.The Housekeeper's Almanac, or, the Young Wife's Oracle! for 1840!. No. 134. New-York: Elton, (1840). Print.camphor
38.Silva, A. R. M.; Nogueira, J., New approach on trace analysis of triclosan in personal care products, biological and environmental matrices. Talanta 2008, 74 (5), 1498-1504.
39.Wang, L.; Shao, J.; Liu, X.; Lin, T.; Chen, X.; Wei, M.; Wang, L., Determination of triclosan and triclocarban in fruit by dispersive solid-phase extraction and high performance liquid chromatography. Journal of Food Safety and Quality 2015, 6 (10), 4205-4211.
40.Cabaleiro, N.; Pena-Pereira, F.; de la Calle, I.; Bendicho, C.; Lavilla, I., Determination of triclosan by cuvetteless UV–vis micro-spectrophotometry following simultaneous ultrasound assisted emulsification–microextraction with derivatization: Use of a micellar-ionic liquid as extractant. Microchemical Journal 2011, 99 (2), 246-251.
41.Verma, K. S.; Xia, K., Analysis of triclosan and triclocarban in soil and biosolids using molecularly imprinted solid phase extraction coupled with HPLC-UV. Journal of AOAC International 2010, 93 (4), 1313-1321.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊