跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林禹彤
研究生(外文):Yu-Tung Lin
論文名稱:簡潔合成 Stellettoside 之三醣體醣苷骨架
論文名稱(外文):Concise Synthesis of Stellettoside Glycosides
指導教授:梁健夫
指導教授(外文):Chien-Fu Liang
口試委員:林俊成游景晴
口試委員(外文):Chun-Cheng LinChing-Ching Yu
口試日期:2018-07-05
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:137
中文關鍵詞:L-阿拉伯糖鑭系金屬正交性保護基位置選擇性保護
外文關鍵詞:StellettosidesL-arabinoselanthanide triflatesorthogonal protecting groupregioselective protection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於 Stellettoside B1-B4 混合物對於子宮頸癌的海拉細胞 (HeLa cells) 表現出中等的細胞毒殺活性 (cytotoxic activity),其 IC50 值為 9 μM,然而文獻報導並沒有分別針對這四種化合物進行活性測試,所以並不知道這四種化合物對於海拉細胞是否具有甚麼樣的生物活性,而此化合物目前也尚未成功合成。因此,為了合成非還原端之全乙醯基醣體 Stellettoside 的三醣體骨架,本篇論文將說明我們如何利用本實驗室開發之正交性保護基策略應用在以L-阿拉伯糖為起始物來合成建構組元,與解決在合成過程中前人所沒有說明的問題,進而去合成 Stellettoside 三醣體。
在合成醣體建構組元的部分,其合成策略面臨的挑戰是如何選擇性在三號或四號位置上保護和探討選擇去保護後將非還原端之乙醯基保留下來的方法開發。本論文中,我們開發出兩種不同方法,一種是在鑭系金屬催化下選擇性在三號位置引入 ASMB 保護基,而另一種是在硫代硫酸鈉的催化下選擇性在四號位置引入 ASMB 保護基。而在其醣基化反應的部分,則是目前利用 NIS 和鑭系金屬的催化下經由醣基化反應將 PMB 成功接於醣苷予體,我們期望未來也可將其應用於建構組元與三醣體的醣基化反應。
We report a highly efficient strategy to synthesize the building blocks of stellettosides B, of use for biological and medicinal structure activity studies. The synthesis of Stellettoside glycosides is a challenge due to the need of multiple synthetic steps including regioselective protection and deprotection, which is used for the keeping peracetylated sugar unit of the non-reducing end after complete deprotection. By our retrosynthetic strategy, compound 1 served as a glycosyl donor starting from L-arabinose was synthesized by our recent report,9 We developed two methods for regioselective installation of orthogonal protecting group, namely ASMB, to prepare the building blocks of 10 and 11 served as glycosyl acceptors for glycosylation. We used lanthanide triflates as catalyst to get the compound 10, and used sodium thiosulfate as catalyst to get the compound 11. Model study of glycosylation between thioglycoside 5a and PMBOH was successfully achieved to obtain the desired product. Based on our experimental results, the installation of PMB group on anomeric center can be prevented the occurrence of aglycone transfer in glycosylation. Consequently, this work is still under process.
第一章、前言 1
1.1 Stellettosides 系列天然物的來源、結構組成與生物活性 1
1.2 阿拉伯糖的介紹 2
1.2.1 含五員環阿拉伯糖的天然物及其醣基化方法 3
1.2.2 含 L-Arap 的天然物 5
1.3 L-arap 醣基化方法和位向選擇性上保護之文獻回顧 7
1.3.1 L-arap 之醣基化方法 7
1.3.1.1 在 L-Arap 一號及二號碳進行醣基化的方法 7
1.3.1.2 在 L-Arap 之三號碳上進行醣基化反應的方法 9
1.3.1.3 含 L-Arap 雙醣片段之醣基化反應方法 11
1.3.2 L-Arabinose building block設計策略之文獻回顧 13
1.3.2.1 露出二號碳上羥基之方法 13
1.3.2.2 露出三號碳上羥基之方法 13
1.4 研究動機 16
第二章、結果與討論 17
2.1 三醣體的設計 17
2.1.1 影響醣基化立體位向的因素 17
2.1.1.1 變旋異構效應 17
2.1.1.2 鄰基效應 18
2.1.2 逆合成分析 18
2.1.3 非還原端化合物 4 的合成 20
2.1.4 選擇性保護二號位之 building block 化合物 9 的合成 22
2.1.5 選擇性在三號或是四號位置上保護的方法 27
2.1.5.1 在三號或是四號位選擇性上三甲基矽保護基的方法 27
2.1.5.2 利用實驗室開發的 ASMB 做選擇性上保護和去保護 28
2.1.5.2.1 ASMBOH 的製備方法 28
2.1.5.2.2 利用耦合方法進行選擇性上 ASMB 保護基 30
2.1.5.2.3 (ASMB)2O 的製備方法 32
2.1.5.2.4 利用鑭系金屬進行選擇性上 ASMB 保護基 33
2.1.5.2.5 選擇性去 ASMB 保護 37
2.1.5.2.6 利用硫代硫酸鈉進行選擇性上 ASMB 保護基 40
2.1.6 醣基化反應 41
第三章、結論 50
第四章、未來展望 52
第五章、實驗步驟與光譜數據 53
第六章、參考文獻 77
第七章、附錄 83
[1] Peddie, V.; Takada, K.; Okuda, S.; Ise, Y.; Morii, Y.; Yamawaki, N.; Takatani, T.; Arakawa, O.; Okada, S.; Matsunaga, S., Cytotoxic glycosylated fatty acid amides from a Stelletta sp. Marine Sponge. J. Nat. Prod. 2015, 78, 2808–2813.
[2] (a) Houseknecht, J. B.; Lowary, T. L., Chemistry and biology of arabinofuranosyl- and galactofuranosyl-containing polysaccharides. Curr. Opin. Chem. Biol, 2001, 5, 677–682. (b) Crich, D.; Pedersen, C. M.; Bowers, A .A.; Wink, D. J., On the use of 3,5-O-benzylidene and 3,5-O-(di-tert-butylsilylene)-2-O-benzylarabinothiofuranosides and Their Sulfoxides as glycosyl donors for the synthesis of β-arabinofuranosides: importance of the activation method. J. Org. Chem. 2007, 72, 1553–1565. (c) Konishi, T.; Ishii, T., The origin and functions of arabinofuranosyl residues in plant cell walls. Trends in Glycoscience and Glycotechnology. 2012, 24, 13–23. (d) Kotake, T.; Yamanashi, Y.; Imaizumi, C, Tsumuraya, Y., Metabolism of L-arabinose in plants. J. Plant. Res. 2016, 129, 781–792. (e) Shinohara, H.;Matsubayashi, Y., Chemical synthesis of Arabidopsis CLV3 glycopeptide reveals the impact of hydroxyproline arabinosylation on peptide conformation and activity. Plant and Cell Physiol. 2013, 54, 369–374. (f) Wu, Y.; Xiong, D.-C.; Chen, S.-C.; Wang, Y.-S.; Ye, X.-S., Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units. Nat. Commun. 2017, 8, 14851. (g) Kinnaert, C.; Daugaard, M.; Nami, F.; Clausen, M. H., Chemical synthesis of oligosaccharides related to the cell walls of plants and algae. Chem. Rev. 2017, 117, 11337–11405.
[3] (a) Fusetani, N.; Sata, N.; Asai, N.; Matsunaga S., Isolation and Sstructure elucidation of Erylusamine B, a new class of Marine natural products, which blocked an IL-6 receptor, from the Marine sponge Erylus placenta thielet. Tetrahedron Lett. 1993, 34, 4067–4070. (b) Zheng, D.; Zhou, L.; Guan, Y.; Chen, X.-Z.; Zhou, W.-Q.; Chen, X.-G.; Lei, P.-S., Synthesis of cholestane glycosides bearing OSW-1 disaccharide or its 1→4-linked analogue and their antitumor activities. Bioorg. Med. Chem. Lett. 2010, 20, 5439–5442. (c) Rao, Y.; Buskas, T.; Albert, A.; O’Neill, M. A.; Hahn, M. G.; Boons, G.-J. Synthesis and immunological properties of a tetrasaccharide portion of the B side chain of rhamnogalacturonan II (RG-II). Chem. BioChem. 2008, 9, 381–388. (d) Sun, J.; Han, X.; Yub, B., Synthesis of a typical N-acetylglucosamine-containing saponin, oleanolic acid 3-yl α-L-arabinopyranosyl-(1→2)-β-L-arabinopyranosyl-(1→6)-2-acetamido-2-deoxy-β-D-glucopyranoside. Carbohydr.Res. 2003, 338, 827–833. (e) Mandal, S.; Das, R.; Mukhopadhyay, B., Synthesis of two trisaccharides related to the triterpenoid saponineryloside isolated from the sponge Erylus nobilis. Tetrahedron: Asymm. 2011, 22, 1108–1113.
[4] (a) Valiullina, Z. R.; Khasanova, L. S.; Gimalova, F. A.; Selezneva, N. K.; Spirikhin, L. V.; Miftakhov, M. S., Synthesis of vespertilin conjugates with OSW-1 disaccharide blocks. Russ. J. Org. Chem. 2014, 10, 1538–1543. (b) Liu, Q.-C.; Guo, T.-T.; Zhao, C.; Sun, J.; Li, W.-H., synthesis of a trisaccharide related to the cytotoxic triterpenoid saponins isolated from the bark of Albizia procera. Helv. Chim. Acta. 2014, 97, 361–368.
[5] (a) Yu, W.-S.; Jin, Z.-D., A new strategy for the stereoselective introduction of steroid side chain via α-alkoxy vinyl cuprates: total synthesis of a highly potent antitumor natural product OSW-1. J. Am. Chem. Soc. 2001, 123, 3369–3370. (b) Xue, J.; Liu, P.; Pan, Y.-B.; Guo, Z.-W., A total synthesis of OSW-1. J. Org. Chem. 2008, 73, 157–161. (c) Rao, Y.; Boons, G.-J., A highly convergent chemical synthesis of conformational epitopes of rhamnogalacturonan II. Angew. Chem. Int. Ed. 2007, 46, 6148–6151. (d) Khasanova, L. S.; Gimalova, F. A.; Valiullina, Z. R.; Selezneva, N. K.; Ganieva, R. M.; Spirikhin, L. V.; Miftakhov, M. S., New disaccharide blocks for OSW-1 and its analogs. Russ. J. Org. Chem. 2012, 48, 1238–1244. (e) Kongkathip, B.; Kongkathip, N.; Rujirawanich, J., New srategy for synthesis of the disaccaride moiety of the highly Potent anticancer natural product OSW-1. Synth. Commun. 2014, 44, 2248–2255. (f) Mancini, R. S.; McClary, C. A.; Anthonipillai, S.; Taylor, M. S., Organoboron-promoted regioselective glycosylations in the synthesis of a saponin-derived pentasaccharide from Spergularia ramose. J. Org. Chem. 2015, 80, 8501–8510.
[6] (a) Wang, P.; Li, C.-X.; Zang, J.; Song, N.; Zhang, X.; Li, Y.-X., Synthesis of two bidesmosidic ursolic acid saponins bearing a 2,3-branched trisaccharide residue. Carbohydr. Res. 2005, 340, 2086–2096. (b) Wang, P.; Li, C.-X.; Wang, G.-F.; Li, Y.-X., Synthesis of an ursolic acid saponin with N-acetylglucosamine-containing trisaccharide Residue. Chin. J. Chem. 2006, 24, 1421–1426.
[7] Miljkovic, M., Carbohydrides: synthesis, mechanisms, and stereoelectronic effects; Springer Science + Business Media, LLC, 2009.
[8] 顏翊凌 《利用三價鑭系金屬催化醣類分子正交性保護基之設計》,2017 年。(國立中興大學化學研究所,碩士學位論文)
[9] Yan, Y.-L.; Guo, J.-R.; Liang, C.-F., Sequential Dy(OTf)3-catalyzed solvent-free per-O-acetylation and regioselective anomer de-O-acetylation of carbohydrates. Chem. Asian. J. 2017, 12, 2471–2479.
[10] Mukhopadhyay, B.; Kartha, K. P. R.; Russel, D. A.; Field, R. A., Streamlined synthesis of per-O-acetylated sugar, glycosyl iodides, or thio glycosides from unprotected reducing sugars. J. Org. Chem. 2004, 69, 7758 –7760.
[11] (a) Khan, K. M.; Hayat, S.; Zia-Ullah; Atta-ur-Rahman; Choudhary, M. I.; Mafarvi, G. M.; Bayer, E., An alternative method for the synthesis of γ-lactones by using cesium fluoride-celite/acetonitrile combination. Synth. Commun. 2003, 33, 3435–3453. (b) Hughes, T. V.; Emanuel, S. L.; Grady, H. R. O’; Connolly, P. J.; Rugg, C.; Fuentes-Pesquera, A. R.; Karnachi, P.; Alexander, R.; Middleton, S. A., 7-[1H-Indol-2-yl]-2,3-dihydro-isoindol-1-ones as dual Aurora-A/VEGF-R2 kinase inhibitors: design, synthesis, and biological activity. Bioorg. Med. Chem. Lett. 2008, 18, 5130–5133. (c) Malwal, S. R.; Chakrapani, H., Benzosulfones as photochemically activated sulfur dioxide (SO2) donors. Org. Biomol. Chem. 2015, 13, 2399–2406.
[12] McNulty, J.; Keskar, K., Phthalide: a direct building-block toward P,O and P,N hemilabile ligands. Application in the palladium-catalysed Suzuki-Miyaura cross-coupling of aryl chlorides. Org. Biomol. Chem. 2013, 11, 2404–2407.
[13] Daskiewicz, J.-B.; Depeint, F.; Viornery, L.; Bayet, C.; Comte-Sarrazin, G.; Comte, G.; Gee, J. M.; Johnson, I. T.; Ndjoko, K.; Hostettmann, K.; Barron, D., Effects of flavonoids on cell proliferation and caspase activation in a human colonic cell line HT29: an SAR study. J. Med. Chem. 2005, 48, 2790–2804.
[14] Huang, H.-Y.; Liang, C.-F., Sequential Ytterbium(III) triflate catalyzed one-pot three-component thia-michael addition. Asian J. Org. Chem. 2018, 7, 955–963.
[15] 郭峻榕 《利用三價鑭系金屬催化醣類分子正交性保護基之設計》,2017 年。(國立中興大學化學研究所,碩士學位論文)
[16] Codée, J. D. C.; Litjens, R. E. J. N.; Bos, L. J. V. D.; Overkleeft, H. S.; Marel, G. A. V. D. Thiglycosides in sequential glycosylation strategies. Chem. Soc. Rev. 2005, 34, 769–782.
[17] (a) Timmons, S. C.; Jakeman, D. L., Stereospecific synthesis of sugar-1-phosphates and their conversion to sugar nucleotides. Carbohy. Res. 2008, 343, 865–874. (b) Zhang, J.-B.; Zhou, J.-F.; Li, J.; Shi, C.-J.; Huang, T.; Wang, Z.-F.; Tang, J., H2SO4-SiO2: Highly efficient and reusable catalyst for per-O-acetylation of carbohydrates under solvent-free conditions. J. Carbohydr. Chem. 2011, 30, 165–177.
[18] Morotii, A. L. M.; Lang, K. L.; Carvalho, I.; Schenkel, E. P.; Bemardes. L. S. C., Semi-synthesis of new glycosidic triazole derivatives of dihydrocucurbitacin B. Tetrahedron Lett. 2015, 56, 303–307.
[19] Murakami, T.; Matsuda, H.; Inadzuki, M.; Hirano, K.; Yoshikawa, M., Medicinal Foodstuffs. XVI. Sugar Beet. (3): Absolute Stereostructures of Betavulgarosides II and IV, Hypoglycemic Saponins Having a Unique Substituent, from the Roots of Beta vulgaris L. Chem. Pharm. Bull. 1999, 47, 1717–1721.
[20] Liu, C.; Wang, A.-P.; Jin, L.-L.; Guo, Y.-S.; Li, Y.; Zhao, Z.-H.; Lei, P.-S., Synthesis, conformational analysis and SAR research of OSW-1 analogues. Tetrahedron 2016, 72, 4091–4102.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. (1)利用硫代硫酸鈉作為硫的取代物在無過渡金屬的一鍋化條件下進行硫酯的合成(2)利用六甲基二矽氮烷透過硫酯來建立碳氮鍵:合成苯甲醯胺及二甲基甲脒
2. (1)利用三氟甲磺酸鐿催化進行一鍋化之硫-麥克爾加成反應(2)利用對甲苯磺酸於水相催化N-甲醯亞胺和胺類進行甲醯化之反應
3. 1.銅催化以硫粉進行分子內硫醚化反應的研究2.鈀金屬催化脫羰基之碳硫鍵耦合反應
4. 綠色化學法合成銀奈米粒子及其自組裝聚合體於抗菌材料之應用
5. 1. 碘化亞銅搭配草醯胺配體催化芳香基氯化物與硫醇之交互耦合反應2. 碳-硫鍵的形成在合成Vortioxetine之應用
6. 發展(E)-1-(3-pentyloxy)-1,3-butadiene的有效合成方法並探索(–)-Oseltamivir的合成
7. (1) 簡潔合成神經鞘氨醇(2) 合成對於冠狀病毒核殼蛋白N端功能區之二聚體交界面具有別構調節效果的配體(3) 合成脂質A前驅物
8. 1.藍色發光二極體促進二硫縮醛合成之研究2.藍色發光二極體促進芳香胺與硫醇生成碳—硫鍵之研究
9. QuEChERS萃取技術結合液相層析串聯質譜術於蔬果中農藥殘留之分析
10. 利用鈀催化分子內脫氫耦合反應合成具吲哚與苯并咪唑結構衍生物
11. 貯存時間與鎳層對電鍍銅/錫界面反應的影響
12. 應用STS、翻轉教室及ARCS理論在化工科技課程學習之探討
13. 水熱法製備釩酸銀於二氧化鈦奈米線Z-scheme觸媒系統及其光催化二氧化碳還原成甲醇之應用
14. UBE3C透過對VPS34進行K29/48支鏈型泛素化進而調控細胞自噬
15. 利用硫代硫酸鈉催化醣類分子之乙醯化及促進醣基雙硫鍵形成之開發