|
[1] Peddie, V.; Takada, K.; Okuda, S.; Ise, Y.; Morii, Y.; Yamawaki, N.; Takatani, T.; Arakawa, O.; Okada, S.; Matsunaga, S., Cytotoxic glycosylated fatty acid amides from a Stelletta sp. Marine Sponge. J. Nat. Prod. 2015, 78, 2808–2813. [2] (a) Houseknecht, J. B.; Lowary, T. L., Chemistry and biology of arabinofuranosyl- and galactofuranosyl-containing polysaccharides. Curr. Opin. Chem. Biol, 2001, 5, 677–682. (b) Crich, D.; Pedersen, C. M.; Bowers, A .A.; Wink, D. J., On the use of 3,5-O-benzylidene and 3,5-O-(di-tert-butylsilylene)-2-O-benzylarabinothiofuranosides and Their Sulfoxides as glycosyl donors for the synthesis of β-arabinofuranosides: importance of the activation method. J. Org. Chem. 2007, 72, 1553–1565. (c) Konishi, T.; Ishii, T., The origin and functions of arabinofuranosyl residues in plant cell walls. Trends in Glycoscience and Glycotechnology. 2012, 24, 13–23. (d) Kotake, T.; Yamanashi, Y.; Imaizumi, C, Tsumuraya, Y., Metabolism of L-arabinose in plants. J. Plant. Res. 2016, 129, 781–792. (e) Shinohara, H.;Matsubayashi, Y., Chemical synthesis of Arabidopsis CLV3 glycopeptide reveals the impact of hydroxyproline arabinosylation on peptide conformation and activity. Plant and Cell Physiol. 2013, 54, 369–374. (f) Wu, Y.; Xiong, D.-C.; Chen, S.-C.; Wang, Y.-S.; Ye, X.-S., Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units. Nat. Commun. 2017, 8, 14851. (g) Kinnaert, C.; Daugaard, M.; Nami, F.; Clausen, M. H., Chemical synthesis of oligosaccharides related to the cell walls of plants and algae. Chem. Rev. 2017, 117, 11337–11405. [3] (a) Fusetani, N.; Sata, N.; Asai, N.; Matsunaga S., Isolation and Sstructure elucidation of Erylusamine B, a new class of Marine natural products, which blocked an IL-6 receptor, from the Marine sponge Erylus placenta thielet. Tetrahedron Lett. 1993, 34, 4067–4070. (b) Zheng, D.; Zhou, L.; Guan, Y.; Chen, X.-Z.; Zhou, W.-Q.; Chen, X.-G.; Lei, P.-S., Synthesis of cholestane glycosides bearing OSW-1 disaccharide or its 1→4-linked analogue and their antitumor activities. Bioorg. Med. Chem. Lett. 2010, 20, 5439–5442. (c) Rao, Y.; Buskas, T.; Albert, A.; O’Neill, M. A.; Hahn, M. G.; Boons, G.-J. Synthesis and immunological properties of a tetrasaccharide portion of the B side chain of rhamnogalacturonan II (RG-II). Chem. BioChem. 2008, 9, 381–388. (d) Sun, J.; Han, X.; Yub, B., Synthesis of a typical N-acetylglucosamine-containing saponin, oleanolic acid 3-yl α-L-arabinopyranosyl-(1→2)-β-L-arabinopyranosyl-(1→6)-2-acetamido-2-deoxy-β-D-glucopyranoside. Carbohydr.Res. 2003, 338, 827–833. (e) Mandal, S.; Das, R.; Mukhopadhyay, B., Synthesis of two trisaccharides related to the triterpenoid saponineryloside isolated from the sponge Erylus nobilis. Tetrahedron: Asymm. 2011, 22, 1108–1113. [4] (a) Valiullina, Z. R.; Khasanova, L. S.; Gimalova, F. A.; Selezneva, N. K.; Spirikhin, L. V.; Miftakhov, M. S., Synthesis of vespertilin conjugates with OSW-1 disaccharide blocks. Russ. J. Org. Chem. 2014, 10, 1538–1543. (b) Liu, Q.-C.; Guo, T.-T.; Zhao, C.; Sun, J.; Li, W.-H., synthesis of a trisaccharide related to the cytotoxic triterpenoid saponins isolated from the bark of Albizia procera. Helv. Chim. Acta. 2014, 97, 361–368. [5] (a) Yu, W.-S.; Jin, Z.-D., A new strategy for the stereoselective introduction of steroid side chain via α-alkoxy vinyl cuprates: total synthesis of a highly potent antitumor natural product OSW-1. J. Am. Chem. Soc. 2001, 123, 3369–3370. (b) Xue, J.; Liu, P.; Pan, Y.-B.; Guo, Z.-W., A total synthesis of OSW-1. J. Org. Chem. 2008, 73, 157–161. (c) Rao, Y.; Boons, G.-J., A highly convergent chemical synthesis of conformational epitopes of rhamnogalacturonan II. Angew. Chem. Int. Ed. 2007, 46, 6148–6151. (d) Khasanova, L. S.; Gimalova, F. A.; Valiullina, Z. R.; Selezneva, N. K.; Ganieva, R. M.; Spirikhin, L. V.; Miftakhov, M. S., New disaccharide blocks for OSW-1 and its analogs. Russ. J. Org. Chem. 2012, 48, 1238–1244. (e) Kongkathip, B.; Kongkathip, N.; Rujirawanich, J., New srategy for synthesis of the disaccaride moiety of the highly Potent anticancer natural product OSW-1. Synth. Commun. 2014, 44, 2248–2255. (f) Mancini, R. S.; McClary, C. A.; Anthonipillai, S.; Taylor, M. S., Organoboron-promoted regioselective glycosylations in the synthesis of a saponin-derived pentasaccharide from Spergularia ramose. J. Org. Chem. 2015, 80, 8501–8510. [6] (a) Wang, P.; Li, C.-X.; Zang, J.; Song, N.; Zhang, X.; Li, Y.-X., Synthesis of two bidesmosidic ursolic acid saponins bearing a 2,3-branched trisaccharide residue. Carbohydr. Res. 2005, 340, 2086–2096. (b) Wang, P.; Li, C.-X.; Wang, G.-F.; Li, Y.-X., Synthesis of an ursolic acid saponin with N-acetylglucosamine-containing trisaccharide Residue. Chin. J. Chem. 2006, 24, 1421–1426. [7] Miljkovic, M., Carbohydrides: synthesis, mechanisms, and stereoelectronic effects; Springer Science + Business Media, LLC, 2009. [8] 顏翊凌 《利用三價鑭系金屬催化醣類分子正交性保護基之設計》,2017 年。(國立中興大學化學研究所,碩士學位論文) [9] Yan, Y.-L.; Guo, J.-R.; Liang, C.-F., Sequential Dy(OTf)3-catalyzed solvent-free per-O-acetylation and regioselective anomer de-O-acetylation of carbohydrates. Chem. Asian. J. 2017, 12, 2471–2479. [10] Mukhopadhyay, B.; Kartha, K. P. R.; Russel, D. A.; Field, R. A., Streamlined synthesis of per-O-acetylated sugar, glycosyl iodides, or thio glycosides from unprotected reducing sugars. J. Org. Chem. 2004, 69, 7758 –7760. [11] (a) Khan, K. M.; Hayat, S.; Zia-Ullah; Atta-ur-Rahman; Choudhary, M. I.; Mafarvi, G. M.; Bayer, E., An alternative method for the synthesis of γ-lactones by using cesium fluoride-celite/acetonitrile combination. Synth. Commun. 2003, 33, 3435–3453. (b) Hughes, T. V.; Emanuel, S. L.; Grady, H. R. O’; Connolly, P. J.; Rugg, C.; Fuentes-Pesquera, A. R.; Karnachi, P.; Alexander, R.; Middleton, S. A., 7-[1H-Indol-2-yl]-2,3-dihydro-isoindol-1-ones as dual Aurora-A/VEGF-R2 kinase inhibitors: design, synthesis, and biological activity. Bioorg. Med. Chem. Lett. 2008, 18, 5130–5133. (c) Malwal, S. R.; Chakrapani, H., Benzosulfones as photochemically activated sulfur dioxide (SO2) donors. Org. Biomol. Chem. 2015, 13, 2399–2406. [12] McNulty, J.; Keskar, K., Phthalide: a direct building-block toward P,O and P,N hemilabile ligands. Application in the palladium-catalysed Suzuki-Miyaura cross-coupling of aryl chlorides. Org. Biomol. Chem. 2013, 11, 2404–2407. [13] Daskiewicz, J.-B.; Depeint, F.; Viornery, L.; Bayet, C.; Comte-Sarrazin, G.; Comte, G.; Gee, J. M.; Johnson, I. T.; Ndjoko, K.; Hostettmann, K.; Barron, D., Effects of flavonoids on cell proliferation and caspase activation in a human colonic cell line HT29: an SAR study. J. Med. Chem. 2005, 48, 2790–2804. [14] Huang, H.-Y.; Liang, C.-F., Sequential Ytterbium(III) triflate catalyzed one-pot three-component thia-michael addition. Asian J. Org. Chem. 2018, 7, 955–963. [15] 郭峻榕 《利用三價鑭系金屬催化醣類分子正交性保護基之設計》,2017 年。(國立中興大學化學研究所,碩士學位論文) [16] Codée, J. D. C.; Litjens, R. E. J. N.; Bos, L. J. V. D.; Overkleeft, H. S.; Marel, G. A. V. D. Thiglycosides in sequential glycosylation strategies. Chem. Soc. Rev. 2005, 34, 769–782. [17] (a) Timmons, S. C.; Jakeman, D. L., Stereospecific synthesis of sugar-1-phosphates and their conversion to sugar nucleotides. Carbohy. Res. 2008, 343, 865–874. (b) Zhang, J.-B.; Zhou, J.-F.; Li, J.; Shi, C.-J.; Huang, T.; Wang, Z.-F.; Tang, J., H2SO4-SiO2: Highly efficient and reusable catalyst for per-O-acetylation of carbohydrates under solvent-free conditions. J. Carbohydr. Chem. 2011, 30, 165–177. [18] Morotii, A. L. M.; Lang, K. L.; Carvalho, I.; Schenkel, E. P.; Bemardes. L. S. C., Semi-synthesis of new glycosidic triazole derivatives of dihydrocucurbitacin B. Tetrahedron Lett. 2015, 56, 303–307. [19] Murakami, T.; Matsuda, H.; Inadzuki, M.; Hirano, K.; Yoshikawa, M., Medicinal Foodstuffs. XVI. Sugar Beet. (3): Absolute Stereostructures of Betavulgarosides II and IV, Hypoglycemic Saponins Having a Unique Substituent, from the Roots of Beta vulgaris L. Chem. Pharm. Bull. 1999, 47, 1717–1721. [20] Liu, C.; Wang, A.-P.; Jin, L.-L.; Guo, Y.-S.; Li, Y.; Zhao, Z.-H.; Lei, P.-S., Synthesis, conformational analysis and SAR research of OSW-1 analogues. Tetrahedron 2016, 72, 4091–4102.
|