(54.236.58.220) 您好!臺灣時間:2021/03/05 05:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏文心
研究生(外文):Wen-Hsin Wei
論文名稱:台灣西南海域深海底泥甲烷囊菌屬新種及甲烷古菌病毒之純化分類鑑定與病毒基因體解析
論文名稱(外文):Isolation and characterization of genus Methanoculleus species and their viruses from deep sea marine sediment offshore SW of Taiwan
指導教授:賴美津
指導教授(外文):Mei-Chin Lai
口試委員:湯森林黃啟裕
口試委員(外文):Sen-Lin TangChi-Yu Huang
口試日期:2018-01-18
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:111
中文關鍵詞:甲烷古菌甲烷古菌病毒甲烷囊菌屬
外文關鍵詞:MethanogenMethanogen virusMethanoculleus
相關次數:
  • 被引用被引用:3
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
三域生物都可能被病毒感染,許多細菌噬菌體與真核生物病毒都是顯學,但有關古菌病毒的描述卻僅佔少數。好氧極端高鹽古菌因較易培養,其相關噬菌體型態病毒被報導與研究的較早。近年來,泉太古生物門的高溫古菌多樣化病毒形態與病毒離開宿主後於高溫環境下的形態結構變化與適應演化,是目前相當被關注的主題研究。然而在過去二十年間幾乎沒有關於甲烷古菌病毒的研究發表。賴美津教授實驗室執行科技部天然氣水合物計畫,研究生翁杰愔自台灣西南海域變形前緣區取得活塞岩心底泥樣品分離純化出甲烷囊菌屬新種菌株Methanoculleus taiwanensis CYW4T,以穿透式與掃描式電子顯微鏡均觀察到病毒及CYW4T細胞於後對數期被病毒裂解現象。本論文研究進一步測量CYW4T於不同生長期的細胞密度OD、甲烷產量與顯微觀察,確認病毒於後對數期與平穩期間裂解釋出,菌量下降,菌液澄清。甲烷古菌病毒VMta (Virus of Methanoculleus taiwanensis),病毒顆粒為球形,有二十面體衣殼蛋白(capsid protein),外部還有外套膜(envelope)包覆,直徑大小約為100 nm。VMta病毒具雙股DNA含70,262個鹼基對,G+C含量為54.5%,有101個開放讀序框架(ORFs)。VMta基因體序列經BLASTX及HHpred比對,顯示可能利用穿刺蛋白將DNA送入宿主中,並以滾環型複製機制(rolling cycle replication, RCR)複製DNA,經由終端酶將DNA包裝進空的衣殼蛋白,最後由裂解性酵素,例如內溶素(endolysin)破壞宿主而出。
本研究亦自台灣西南海域好景海脊取得岩心樣品純化出新甲烷菌株Methanoculleus sp. CWC-02,經由親緣關係比對,菌株CWC-02與Methanoculleus marisnigri JR1T 有98.4%相似度,而兩株菌的平均核苷酸一致性(ANI)為86.81%;且基因組對基因組距離計算(GGDC)分析結果為32.50%,顯示菌株CWC-02應為Methanoculleus屬下之新 “種” 菌株。菌株CWC-02能利用甲酸及H2/CO2及2-propanol、2-butanol等二級醇為基質行甲烷化作用,最適生長溫度為37℃。菌株CWC-02生長至平穩期於TEM的觀察下,也發現有許多的VPL (virus-like particle)自細胞裂解而出,推測菌株CWC-02也被裂解病毒感染。於天然氣水合物潛力區以甲烷為主的生態系中,碳源與營養的加速循環,對此生態系的影響與可能的甲烷天然氣累積值得進一步探討。
Viruses infect all Three Domains of lifes, however the knowledge of archaeal viruses is limited. Lately, the diverse virus morphology and the independent virus development outside the extreme thermophilic/acidophilic archaeal host attracted the attention on archaeal virus investigations. Currently, over 100 archaeal viruses have been discovered, most related to thermophilic Crenarchaea and extreme halophilic Euryarchaea. However, almost none methanoarchaeal virus was reported for the past two decades. From the core sediment on the top of gas hydrate habitat in the deformation front site offshore south-western Taiwan, Methanoculleus taiwanensis CYW4T was enriched, isolated and characterized. Cell lysis was observed at stationary phase and a lytic virus which caused the lysis of strain CYW4T was observed under TEM. The spherical shape virion, about 100 nm, with the icosahedral capsids and envelope was named as VMta (Virus of Methanoculleus taiwanensis). VMta is a dsDNA virus which contained 70,262 bp with a mol% G+C content of 54.5 and 101 putative open reading frames (ORFs). Base on the VMta genome information and analysis through BLASTX and HHpred, it was suggested that the VMta may injected the DNA into the host by the puncture protein and replicated their genomes through the rolling-circle replication (RCR) mechanism. The viral DNAs were packed into the empty capsid by the terminase enzymes and virons left host cell with the endolysin disruption.
Methanoculleus sp. CWC-02 were enriched from the marine sediment of the Good weather ridge. Phylogenetic analysis revealed that strain CWC-02 was closely related to Methanoculleus marisnigri JR1T (98.4% 16S rRNA gene sequence similarity). Genome relatedness between strain CWC-02 and Methanoculleus marisnigri JR1T was computed using both average nucleotide identity (ANI) and genome-to-genome distance calculator (GGDC) with values of 86.81% and 32.50%, respectively. According to genomic data, it is patent the strain CWC-02 may the novel new species. Strain CWC-02 used H2 plus CO2, formate, 2-propanol and 2-butanol as catabolic substrates. The optimum growth temperature was 37℃. The stationary phase growth of strain CWC-02 cells also observed virus-like particles under TEM. The occurrence of methanoarchaeal viruses at the methane (gas) hydrate ecosystems indicated that viruses may play a role in acceleration of the carbon and nutritional cycling.
摘要 i
Abstract ii
目錄 iii
表目錄 vii
圖目錄 viii
壹、前言 1
貳、前人研究 4
一、甲烷古菌(太古生物) (Methanogen) 4
二、自甲烷天然氣水合物潛力區純化的甲烷古菌發現甲烷古菌病毒 5
三、原核生物病毒 6
(一) 病毒分類 6
(二) 細菌病毒 6
(三) 古菌病毒 7
(四) 好氧極端高鹽古菌病毒 8
1. 雙股DNA (dsDNA)好氧極端高鹽古菌病毒 8
2. 單股DNA好氧極端高鹽古菌病毒 9
(五) 高溫古菌病毒 10
1. 泉太古生物門病毒(Crenarchaeal virus) 10
2. 廣域太古生物門病毒(Euryarchaeal virus) 13
(六) 甲烷古菌病毒 13
四、病毒感染作用及複製過程 14
(一) DNA病毒複製機制 15
(二) 滾環型複製(Rolling-circle replication, RCR) 15
參、材料與方法 17
第一部分-古菌病毒純化及特性分析 17
一、甲烷古菌培養與病毒純化 17
(一)台灣甲烷囊菌(Methanoculleus taiwanensis CYW4T)培養 17
(二) PEG沉澱 17
(三) 蛋白質層析儀(Fast performance liquid chromatography, FPLC) 18
(四) 病毒溶液濃縮 19
二、穿透式電子顯微鏡(Transmission electron microscopy, TEM)觀察 19
三、甲烷古菌病毒DNA萃取 19
四、核酸酶作用 20
五、蛋白質電泳 20
(一) VMta病毒樣品處理 20
(二) SDS-PAGE 20
(三) 銀染色法(Silver stain) 21
六、脂質之萃取及分析 22
(一) 甲烷古菌細胞膜與甲烷古菌病毒脂質萃取 22
七、病毒基因體定序與序列分析比對 23
(一) 核酸與蛋白質序列分析 23
(二) HHpred分析 24
(三) CDD (Conserved domain database)比對分析 24
第二部分-甲烷古菌純化及特性分析 25
一、採樣時間地點與樣品甲烷古菌增殖進度 25
二、藥劑與培養基 25
(一) 除氧操作系統(Hungate station) 25
(二) MB/W與MM/W液態培養基配製 25
(三) 還原劑及碳源配製 26
(四) 抗生素溶液配製 27
(五) TGC (thioglycollate)培養基配製 27
三、甲烷古菌增殖培養與厭氧轉殖接種 28
(一) 接菌 28
(二) 氣相層析儀偵測樣品甲烷氣體 28
(三) 抗生素添加 28
(四) 連續稀釋法(serial dilution) 29
(五) Roll-tube 29
四、微生物形態觀察 30
(一) 位相差顯微鏡觀察細胞 30
(二) 穿透式電子顯微鏡(Transmission electron microscopy, TEM)觀察細胞 30
(三) 場發射掃描式電子顯微鏡(Field-emission scanning electron microscope, FE-SEM)觀察細胞 30
五、生長與生理生化特性分析 31
(一) 碳源利用測試 31
(二) 抗生素抗性測試 32
(三) 生長曲線測量 32
(四) 溫度生長範圍測試 33
六、甲烷古菌染色體DNA萃取 33
七、核酸純度與定量分析 34
八、聚合酶連鎖反應(Polymerase chain reaction, PCR) 34
九、核酸電泳分析 35
十、PCR增幅樣品切膠純化回收 35
十一、質體轉型作用 36
(一) 勝任細胞的製備 36
(二) 質體轉形作用 37
(三) 質體抽取與純化 37
十二、核酸定序與序列分析 38
(一) 16S rRNA基因定序與序列分析 38
(二) 染色體DNA定序與序列分析 38
肆、結果與討論 40
一、病毒VMta 40
(一)病毒VMta與台灣甲烷囊菌CYW4T的關係 40
(二) VMta病毒純化 41
(三) VMta為雙股DNA病毒 41
(四) VMta病毒結構分析 41
(五) VMta病毒脂質組成分析 42
(六) VMta病毒蛋白組成分析 42
(七) 病毒基因體分析 43
1. VMta病毒序列與蛋白功能預測 43
2. 病毒結構相關序列分析 43
3. DNA複製相關序列分析 44
4. 病毒組裝與釋出宿主相關功能序列分析 45
(八) VMta病毒的生命週期 45
二、深海底泥甲烷古菌之增殖培養與純化 47
(一) 自好景海脊(Good weather ridge)純化的Methanoculleus sp. CWC-02之細胞形態、系統演化分類與生理生化特性分析 47
(二) 細胞型態 47
(三) 系統演化分類分析 48
(四) 生理生化與生長特性分析 49
伍、結論與展望 51
陸、表與圖 52
柒、參考文獻 89
捌、附錄 99
朱高鈴。2009。極端高鹽太古生物與甲烷太古生物的滾環型複製質體之特性分析。國立中興大學生命科學所碩士學位論文。
林珀丞。2004。滾環型複製的嗜鹽甲烷古生菌質體pML之rep基因及其表現蛋白質的分析。國立中興大學生命科學所碩士學位論文。
林曉武。2009。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究(2/4)總論。中央地質調查所報告第98-27號,委辦計畫編號(98-5226904000-04-03)。
翁杰愔。2014。台灣西南海域深海底泥Methanoculleus及Methanosarcina之純化與特性分析。國立中興大學生命科學所碩士學位論文。
劉家瑄。2011。台灣西南海域新興能源-天然氣水合物資源調查與評估: 震測及地熱調查 (4/4)。反射震測與海床聲納迴聲剖面調查研究。經濟部中央地質調查所 100 年度委辦計畫。計畫編號(100-5226904000-02-02)。
賴美津。2008。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域地質微生物(細菌與太古生物)多樣性調查與天然氣水合物形成與分解機制探討(1/4)。中央地質調查所報告第98-29-B號,委辦計畫編號(97-5226903000-04-03)。
賴美津。2009。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域地質微生物(細菌與太古生物)多樣性調查與天然氣水合物形成與分解機制探討(2/4)。中央地質調查所報告第98-27-B號,委辦計畫編號(98-5226904000-04-03)。
賴美津。2011。台灣西南海域興新興能源-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域地質微生物(細菌與太古生物)多樣性調查與天然氣水合物形成與分解機制探討(4/4)。中央地質調查所報告第100-25-B號,委辦計畫編號(100-5226904000-02-03)。

Abrescia, N. G., J. J. Cockburn, J. M. Grimes, and G. C. Sutton. (2004) Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432: 68.
Ackermann, H. W. (2007) 5500 Phages examined in the electron microscope. Arch. Virol. 152: 227-243.
Ackermann, H. W., and D. Prangishvili. (2012) Prokaryote viruses studied by electron microscopy. Arch. Virol. 157: 1843-1849.
Alva, V., S. Z. Nam, J. Söding, and A. N. Lupas. (2016) The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res. 44: W410-W415.
Akhmanova, A. S., V. K. Kagramanova, and A. S. Mankin. (1993) Heterogeneity of small plasmids from halophilic archaea. J. Bacteriol. 175: 1081-1086.
Aravalli, R. N., Q. She, and R. A. Garrett. (1998) Archaea and the new age of microorganisms. Trends. Ecol. Evol. 13: 190-194.
Arisaka, F., S. Kanamaru, P. Leiman, and M. G. Rossmann. (2003) The tail lysozyme complex of bacteriophage T4. Int. J. Biochem. Cell. Biol. 35: 16-21.
Arnold, H. P., U. Ziese, and W. Zillig. (2000) SNDV, a novel virus of the extremely thermophilic and acidophilic archaeon Sulfolobus. Virology 272: 409-416.
Artola-Recolons, C., M. Lee, N. Bernardo-García, B. Blázquez, D. Hesek, S. G. Bartual, K. V. Mahasenan, E. Lastochkin, H. Pi, and B. Boggess. (2014) Structure and cell wall cleavage by modular lytic transglycosylase MltC of Escherichia coli. ACS Chem. Biol. 9: 2058-2066.
Atanasova, N. S., E. Roine, A. Oren, D. H. Bamford, and H. M. Oksanen. (2012) Global network of specific virus–host interactions in hypersaline environments. Environ. Microbiol. 14: 426-440.
Atanasova, N. S., H. M. Oksanen, and D. H. Bamford. (2015) Haloviruses of archaea, bacteria, and eukaryotes. Curr. Opin. Microbiol. 25: 40-48.
Atanasova, N. S., D. H. Bamford, and H. M. Oksanen. (2016) Virus‐host interplay in high salt environments. Environ. Microbiol. Rep. 8: 431-444.
Balch, W., G. Fox, L. Magrum, C. Woese, and R. Wolfe. (1979) Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43: 260.
Baresi, L., and G. Bertani. (1984) Isolation of a bacteriophage for a methanogenic bacterium. In: Abstracts of Annual Meeting of the America Society for Microbiology, New Orleans. American Society for Microbiology, Washington, D.C. 174: 133.
Bath, C., and M. L. Dyall-Smith. (1998) His1, an Archaeal Virus of the Fuselloviridae Family That Infects Haloarcula hispanica. J. Virol. 72: 9392-9395.
Bath, C., T. Cukalac, K. Porter, and M. L. Dyall-Smith. (2006) His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus. Virology 350: 228-239.
Bettstetter, M., X. Peng, R. A. Garrett, and D. Prangishvili. (2003) AFV1, a novel virus infecting hyperthermophilic archaea of the genus Acidianus. Virology 315: 68-79.
Borrel, G., J. Colombet, A. Robin, A.-C. Lehours, D. Prangishvili, and T. Sime-Ngando. (2012) Unexpected and novel putative viruses in the sediments of a deep-dark permanently anoxic freshwater habitat. ISME J. 6: 2119.
Callewaert, L., M. Walmagh, C. W. Michiels, and R. Lavigne. (2011) Food applications of bacterial cell wall hydrolases. Curr. Opin. Biotechnol. 22: 164-171.
Carlsson, M., L. Claesson, A. Heijbel, H. Jiang, A. Karlsson, and E. Macedo. (2008) Purification of Vlp-based vaccines using a new prepacked gel filtration column. Protein Sci. 18: 79.
Catalano, C. (2005) Viral genome packaging machines. Viral Genome Packaging Machines: Genetics, Structure, and Mechanism. Spring, Boston, MA. 1-4.
Chaban, Y., R. Lurz, S. Brasilès, C. Cornilleau, M. Karreman, S. Zinn-Justin, P. Tavares, and E. V. Orlova. (2015) Structural rearrangements in the phage head-to-tail interface during assembly and infection. Proc. Natl. Acad. Sci. USA 112: 7009-7014.
Chagot, B., I. Auzat, M. Gallopin, I. Petitpas, B. Gilquin, P. Tavares, and S. Zinn‐Justin. (2012) Solution structure of gp17 from the Siphoviridae bacteriophage SPP1: insights into its role in virion assembly. Proteins: Struct. Funct. Bioinf. 80: 319-326.
Cheepudom, J., C. C. Lee, B. Cai, and M. Meng. (2015) Isolation, characterization, and complete genome analysis of P1312, a thermostable bacteriophage that infects Thermobifida fusca. Front. Microbiol. 6: 959.
Chen, S. C., M. F. Chen, M. C. Lai, C. Y. Weng, S. Y. Wu, S. Lin, T. F. Yang, and P. C. Chen. (2015) Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano. Int. J. Syst. Evol. Microbiol. 65: 2141-2147.
Cheng, L., T. L. Qiu, X. Li, W. D. Wang, Y. Deng, X. B. Yin, and H. Zhang. (2008) Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiol. Lett. 285: 65-71.
Chevallet, M., S. Luche, and T. Rabilloud. (2006) Silver staining of proteins in polyacrylamide gels. Nature protocols 1: 1852.
Court, R., N. Cook, K. Saikrishnan, and D. Wigley. (2007) The crystal structure of λ-Gam protein suggests a model for RecBCD inhibition. J. Mol. Biol. 371: 25-33.
d’Herelle, F. (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. CR Acad. Sci. Paris 165: 373-375.
Dellas, N., C. M. Lawrence, and M. J. Young. (2013) A survey of protein structures from archaeal viruses. Life 3: 118-130.
Dellas, N., J. C. Snyder, B. Bolduc, and M. J. Young. (2014) Archaeal viruses: diversity, replication, and structure. Annu. Rev. Virol. 1: 399-426.
Dianou, D., T. Miyaki, S. Asakawa, H. Morii, K. Nagaoka, H. Oyaizu, and S. Matsumoto. (2001) Methanoculleus chikugoensis sp. nov., a novel methanogenic archaeon isolated from paddy field soil in Japan, and DNA-DNA hybridization among Methanoculleus species. Int. J. Syst. Evol. Microbiol. 51: 1663-1669.
Dridi, B., M. L. Fardeau, B. Ollivier, D. Raoult, and M. Drancourt. (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62: 1902-1907.
Eiserling, F., A. Pushkin, M. Gingery, and G. Bertani. (1999) Bacteriophage-like particles associated with the gene transfer agent of Methanococcus voltae PS. J. Gen. Virol. 80: 3305-3308.
Elkins, J. G., M. Podar, D. E. Graham, K. S. Makarova, Y. Wolf, L. Randau, B. P. Hedlund, C. Brochier-Armanet, V. Kunin, and I. Anderson. (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl. Acad. Sci. USA 105: 8102-8107.
Ferguson, T. J., and R. A. Mah. (1983) Isolation and characterization of an H2-oxidizing thermophilic methanogen. Appl. Environ. Microb. 45: 265-274.
Ferrante, G., I. Ekiel, G. B. Patel, and G. D. Sprott. (1988) Structure of the major polar lipids isolated from the aceticlastic methanogen, Methanothrix concilii GP6. Biochim. biophys. acta, Lipids lipid metab. 963: 162-172.
Firtel, M., and T. Beveridge. (1995) Scanning probe microscopy in microbiology. Micron. 26: 347-362.
Garcia, J.-L., B. K. Patel, and B. Ollivier. (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe. 6: 205-226.
Geslin, C., M. Le Romancer, G. Erauso, M. Gaillard, G. Perrot, and D. Prieur. (2003) PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote,“Pyrococcus abyssi”. J. Bacteriol. 185: 3888-3894.
Geslin, C., M. Gaillard, D. Flament, K. Rouault, M. Le Romancer, D. Prieur, and G. Erauso. (2007) Analysis of the first genome of a hyperthermophilic marine virus-like particle, PAV1, isolated from Pyrococcus abyssi. J. Bacteriol. 189: 4510-4519.
Gorlas, A., E. V. Koonin, N. Bienvenu, D. Prieur, and C. Geslin. (2012) TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. Environ. Microbiol. 14: 503-516.
Häring, M., X. Peng, K. Brügger, R. Rachel, K. O. Stetter, R. A. Garrett, and D. Prangishvili. (2004) Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae. Virology 323: 233-242.
Häring, M., R. Rachel, X. Peng, R. A. Garrett, and D. Prangishvili. (2005) Viral diversity in hot springs of Pozzuoli, Italy, and characterization of a unique archaeal virus, Acidianus bottle-shaped virus, from a new family, the Ampullaviridae. J. Virol. 79: 9904-9911.
Hartwieg, E., C. Bazinet, and J. King. (1986) DNA injection apparatus of phage p22. Biophys. J. 49: 24-26.
Hochstein, R. A., M. J. Amenabar, J. H. Munson-McGee, E. S. Boyd, and M. J. Young. (2016) Acidianus tailed spindle virus: a new archaeal large tailed spindle virus discovered by culture-independent methods. J. Virol. 90: 3458-3468.
Hsieh, Y. H., Y. T. You, P. C. Lin., J. Y. Ding, and M. C. Lai. (2004) Analysis of two new RCR plasmids from Newly Isolated Archaea-Methanocalculus taiwanensis P2F In Abstracts of 104th General Meeting of the Society of Microbiology. American Society for Microbiology, Washington, D.C.
Hulo, C., E. De Castro, P. Masson, L. Bougueleret, A. Bairoch, I. Xenarios, and P. Le Mercier. (2010) ViralZone: a knowledge resource to understand virus diversity. Nucleic acids Res. 39: D576-D582.
Hungate, R. (1969) Chapter IV A roll tube method for cultivation of strict anaerobes. Methods in microbiology 3: 117-132.
Hyman, P., and S. Abedon. (2009) Bacteriophage: Overview. Encyclopedia of Microbiology (Third Edition). 322-338.
Jarrell, K. F., D. Faguy, A. M. Hebert, and M. L. Kalmokoff. (1992) A general method of isolating high molecular weight DNA from methanogenic archaea (archaebacteria). Can. J. Microbiol. 38: 65-68.
Johnson, P. H., and M. Laskowski. (1970) Mung bean nucleaseⅠ. Ⅱ. resistance of double stranded deoxyribonucleic acid and susceptibility of regions rich in adenosine and thymidine to enzymatic hydrolysis. J. Biol. Chem. 245: 891-898.
Katsura, I., and A. Tsugita. (1977) Purification and characterization of the major protein and the terminator protein of the bacteriophage λ tail. Virology 76: 129-145.
Khan, S. A. (1997) Rolling-circle replication of bacterial plasmids. Microbiol. Mol. Biol. Rev. 61: 442-455.
Khan, S. A. (2005) Plasmid rolling-circle replication: highlights of two decades of research. Plasmid 53: 126-136.
Kim, M., H. S. Oh, S. C. Park, and J. Chun. (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346-351.
Knox, M. and J. Harris. (1986) Isolation and characterization of a bacteriophage of Methanobrevibacter smithii. In XIV International Congress on Microbiology.
Kohanski, M. A., D. J. Dwyer, and J. J. Collins. (2010) How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8: 423-435.
Kowalczykowski, S. C. (2000) Initiation of genetic recombination and recombination-dependent replication. Trends. Biochem. Sci. 25: 156-165.
Krupovic, M., D. Prangishvili, R. W. Hendrix, and D. H. Bamford. (2011a) Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol. Mol. Biol. Rev. 75: 610-635.
Krupovic, M., A. Spang, S. Gribaldo, P. Forterre, and C. Schleper. (2011b) A thaumarchaeal provirus testifies for an ancient association of tailed viruses with archaea. Portland Press Limited.
Krupovic, M., B. E. Dutilh, E. M. Adriaenssens, J. Wittmann, F. K. Vogensen, M. B. Sullivan, J. Rumnieks, D. Prangishvili, R. Lavigne, and A. M. Kropinski. (2016) Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses subcommittee. Arch. Virol. 161: 1095-1099.
Kukkaro, P., and D. H. Bamford. (2009) Virus–host interactions in environments with a wide range of ionic strengths. Environ. Microbiol. Rep. 1: 71-77.
Lai, M. C., and S. C. Chen. (2001) Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int. J. Syst. Evol. Microbiol. 51: 1873-1880.
Lai, M. C., S. C. Chen, C. M. Shu, M. S. Chiou, C. C. Wang, M. J. Chuang, T. Y. Hong, C. C. Liu, L. J. Lai, and J. J. Hua. (2002) Methanocalculus taiwanensis sp. nov., isolated from an estuarine environment. Int. J. Syst. Evol. Microbiol. 52: 1799-1806.
Lander, G. C., L. Tang, S. R. Casjens, E. B. Gilcrease, P. Prevelige, A. Poliakov, C. S. Potter, B. Carragher, and J. E. Johnson. (2006) The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312: 1791-1795.
Li, M., R. Wang, D. Zhao, and H. Xiang. (2013) Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic acids Res. 42: 2483-2492.
Liu, C. S., I. L. Huang, and L. S. Teng. (1997) Structural features off southwestern Taiwan. Mar. Geol. 137: 305-319.
Liu, C. S., Y. S. Wang, S. H. Chung, S. C. Chen, and T. H. Hsiuan. (2006) Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terr. Atmos. Ocean. Sci. 17: 615-644.
Liu, Y., J. Wang, Y. Liu, Y. Wang, Z. Zhang, H. M. Oksanen, D. H. Bamford, and X. Chen. (2015) Identification and characterization of SNJ2, the first temperate pleolipovirus integrating into the genome of the SNJ1‐lysogenic archaeal strain. Mol. Microbiol. 98: 1002-1020.
Liu, Y., S. Ishino, Y. Ishino, G. Pehau-Arnaudet, M. Krupovic, and D. Prangishvili. (2017) A novel type of polyhedral viruses infecting hyperthermophilic archaea. J. Virol. 91: e00589-17.
Luo, Y., P. Pfister, T. Leisinger, and A. Wasserfallen. (2001) The Genome of Archaeal Prophage ΨM100 Encodes the Lytic Enzyme Responsible for Autolysis of Methanothermobacter wolfeii. J. Bacteriol. 183: 5788-5792.
Mei, Y., C. He, Y. Huang, Y. Liu, Z. Zhang, X. Chen, and P. Shen. (2015) Salinity regulation of the interaction of halovirus SNJ1 with its host and alteration of the halovirus replication strategy to adapt to the variable ecosystem. PLoS ONE 10: e0123874.
Meier-Kolthoff, J. P., A. F. Auch, H.-P. Klenk, and M. Göker. (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 14: 60.
Meile, L., U. Jenal, D. Studer, M. Jordan, and T. Leisinger. (1989) Characterization of ψM1, a virulent phage of Methanobacterium thermoautotrophicum Marburg. Arch. Microbiol. 152: 105-110.
Mikucki, J. A., Y. Liu, M. Delwiche, F. S. Colwell, and D. R. Boone. (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl. Environ. Microb. 69: 3311-3316.
Mochizuki, T., T. Yoshida, R. Tanaka, P. Forterre, Y. Sako, and D. Prangishvili. (2010) Diversity of viruses of the hyperthermophilic archaeal genus Aeropyrum, and isolation of the Aeropyrum pernix bacilliform virus 1, APBV1, the first representative of the family Clavaviridae. Virology 402: 347-354.
Mochizuki, T., Y. Sako, and D. Prangishvili. (2011) Provirus induction in hyperthermophilic archaea: characterization of Aeropyrum pernix spindle-shaped virus 1 and Aeropyrum pernix ovoid virus 1. J. Bacteriol. 193: 5412-5419.
Mochizuki, T., M. Krupovic, G. Pehau-Arnaudet, Y. Sako, P. Forterre, and D. Prangishvili. (2012) Archaeal virus with exceptional virion architecture and the largest single-stranded DNA genome. Proc. Natl. Acad. Sci. USA 109: 13386-13391.
Nölling, J., A. Groffen, and W. M. de Vos. (1993) ФF1 and ФF3, two novel virulent, archaeal phages infecting different thermophilic strains of the genus Methanobacterium. Microbiology 139: 2511-2516.
Ollivier, B. M., R. A. Mah, J. Garcia, and D. R. Boone. (1986) Isolation and Characterization of Methanogenium bourgense sp. nov. Int. J. Syst. Evol. Microbiol. 36: 297-301.
Orlova, E. V. (2012) Bacteriophages and Their Structural Organisation. In Bacteriophages (Kurtböke, I. Ed., 1st ed., p. 3-30). Croatia, InTech. (ISBN 978-953-51-0272-4)
Park, Y., J. A. Lim, M. Kong, S. Ryu, and S. Rhee. (2014) Structure of bacteriophage SPN1S endolysin reveals an unusual two‐module fold for the peptidoglycan lytic and binding activity. Mol. Microbiol. 92: 316-325.
Paul, K., J. O. Nonoh, L. Mikulski, and A. Brune. (2012) “Methanoplasmatales,” Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl. Environ. Microb. 78: 8245-8253.
Pfister, P., A. Wasserfallen, R. Stettler and T. Leisinger. (1998) Molecular analysis of Methanobacterium phage ΨM2. Mol. Microbiol. 30: 233-244.
Pietilä, M. K., E. Roine, L. Paulin, N. Kalkkinen, and D. H. Bamford. (2009) An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Mol. Microbiol. 72: 307-319.
Pietilä, M. K., N. S. Atanasova, V. Manole, L. Liljeroos, S. J. Butcher, H. M. Oksanen, and D. H. Bamford. (2012) Virion architecture unifies globally distributed pleolipoviruses infecting halophilic archaea. J. Virol. 86: 5067-5079.
Pietilä, M. K., N. S. Atanasova, H. M. Oksanen, and D. H. Bamford. (2013) Modified coat protein forms the flexible spindle‐shaped virion of haloarchaeal virus His1. Environ. Microbiol. 15: 1674-1686.
Pina, M., A. Bize, P. Forterre, and D. Prangishvili. (2011) The archeoviruses. FEMS microbiol. Rev. 35: 1035-1054.
Plisson, C., H. E. White, I. Auzat, A. Zafarani, C. São‐José, S. Lhuillier, P. Tavares, and E. V. Orlova. (2007) Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. EMBO J. 26: 3720-3728.
Porter, K., P. Kukkaro, J. K. Bamford, C. Bath, H. M. Kivelä, M. L. Dyall-Smith, and D. H. Bamford. (2005) SH1: a novel, spherical halovirus isolated from an Australian hypersaline lake. Virology 335: 22-33.
Prangishvili, D., G. Vestergaard, M. Häring, R. Aramayo, T. Basta, R. Rachel, and R. A. Garrett. (2006a) Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle. J. Mol. Biol. 359: 1203-1216.
Prangishvili, D., P. Forterre, and R. A. Garrett. (2006b) Viruses of the Archaea: a unifying view. Nat. Rev. Microbiol. 4: 837-848.
Prangishvili, D., R. A. Garrett, and E. V. Koonin. (2006c) Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life. Virus Res. 117: 52-67.
Prangishvili, D. (2013) The wonderful world of archaeal viruses. Annu. Rev. Microbiol. 67: 565-585.
Reigstad, L. J., S. L. Jorgensen, and C. Schleper. (2010) Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. ISME J. 4: 346.
Rice, G., L. Tang, K. Stedman, F. Roberto, J. Spuhler, E. Gillitzer, J. E. Johnson, T. Douglas, and M. Young. (2004) The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc. Natl. Acad. Sci. USA 101: 7716-7720.
Rivard, C. J., and P. H. Smith. (1982) Isolation and characterization of a thermophilic marine methanogenic bacterium, Methanogenium thermophilicum sp. nov. Int. J. Syst. Evol. Microbiol. 32: 430-436.
Roine, E., P. Kukkaro, L. Paulin, S. Laurinavičius, A. Domanska, P. Somerharju, and D. H. Bamford. (2010) New, closely related haloarchaeal viral elements with different nucleic acid types. J. Virol. 84: 3682-3689.
Romesser, J., R. Wolfe, F. Mayer, E. Spiess, and A. Walther-Mauruschat. (1979) Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch. Microbiol. 121: 147-153.
Sanghamitra, N. J., H. Inaba, F. Arisaka, D. O. Wang, S. Kanamaru, S. Kitagawa, and T. Ueno. (2014) Plasma membrane translocation of a protein needle based on a triple-stranded β-helix motif. Mol. Biosyst. 10: 2677-2683.
Santos, F., P. Yarza, V. Parro, C. Briones, and J. Antón. (2010) The metavirome of a hypersaline environment. Environ. Microbiol. 12: 2965-2976.
Schmid, M., T. Speiseder, T. Dobner, and R. A. Gonzalez. (2014) DNA virus replication compartments. J. Virol. 88: 1404-1420.
Schnabel, H., W. Zillig, M. Pfiffle, R. Schnabel, H. Michel, and H. Delius. (1982) Halobacterium halobium phageФH. EMBO J. 1: 87-92.
Senčilo, A., L. Paulin, S. Kellner, M. Helm, and E. Roine. (2012) Related haloarchaeal pleomorphic viruses contain different genome types. Nucleic acids Res. 40: 5523-5534.
Shimizu, S., A. Ueno, S. Tamamura, T. Naganuma, and K. Kaneko. (2013) Methanoculleus horonobensis sp. nov., a methanogenic archaeon isolated from a deep diatomaceous shale formation. Int. J. Syst. Evol. Microbiol. 63: 4320-4323.
Snyder, J. C., K. Stedman, G. Rice, B. Wiedenheft, J. Spuhler, and M. J. Young. (2003) Viruses of hyperthermophilic Archaea. Res. Microbiol. 154: 474-482.
Snyder, J. C., S. K. Brumfield, K. M. Kerchner, T. E. Quax, D. Prangishvili, and M. J. Young. (2013) Insights into a viral lytic pathway from an archaeal virus-host system. J. Virol. 87: 2186-2192.
Söding, J., A. Biegert, and A. N. Lupas. (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic acids Res. 33: W244-W248.
Sorokin, D. Y., K. S. Makarova, B. Abbas, M. Ferrer, P. N. Golyshin, E. A. Galinski, S. Ciordia, M. C. Mena, A. Y. Merkel, and Y. I. Wolf. (2017) Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2: 17081.
Spang, A., J. H. Saw, S. L. Jørgensen, K. Zaremba-Niedzwiedzka, J. Martijn, A. E. Lind, R. van Eijk, C. Schleper, L. Guy, and T. J. Ettema. (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521: 173-179.
Tamura, K., and M. Nei. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526.
Tian, J., Y. Wang, and X. Dong. (2010) Methanoculleus hydrogenitrophicus sp. nov., a methanogenic archaeon isolated from wetland soil. Int. J. Syst. Evol. Microbiol. 60: 2165-2169.
Twort, F. W. (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 2: 1241-1243.
Uldahl, K. B., S. B. Jensen, Y. Bhoobalan-Chitty, L. Martínez-Álvarez, P. Papathanasiou, and X. Peng. (2016) Life cycle characterization of Sulfolobus monocaudavirus 1, an extremophilic spindle-shaped virus with extracellular tail development. J. Virol. 90: 5693-5699.
Veesler, D., and C. Cambillau. (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol. Mol. Biol. Rev. 75: 423-433.
Ventosa, A., and A. Oren. (1996) Halobacterium salinarum nom. corrig., a name to replace Halobacterium salinarium (Elazari-Volcani) and to include Halobacterium halobium and Halobacterium cutirubrum. Int. J. Syst. Evol. Microbiol. 46: 347.
Weng, C. Y., S. C. Chen, M. C. Lai, S. Y. Wu, S. Lin, T. F. Yang, and P. C. Chen. (2015) Methanoculleus taiwanensis sp. nov., a methanogen isolated from deep marine sediment at the deformation front area near Taiwan. Int. J. Syst. Evol. Microbiol. 65: 1044-1049.
Wilharm, T., M. Thomm, and K. Stetter. (1986) Genetic analysis of plasmid pMP1 from Methanolobus vulcani. Syst. Appl. Microbiol. 7: 401.
Witte, A., U. Baranyi, R. Klein, M. Sulzner, C. Luo, G. Wanner, and W. Lubitz. (1997) Characterization of Natronobacterium magadii phage φCh1, a unique archaeal phage containing DNA and RNA. Mol. Microbiol. 23: 603-616.
Woese, C. R., O. Kandler, and M. L. Wheelis. (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576-4579.
Wolfe, R. (1996) 1776-1996: alessandro volta''s combustible air. ASM News 62: 529-534.
Wolin, E., M. J. Wolin, and R. Wolfe. (1963) Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882-2886.
Wood, A. G., W. B. Whitman, and J. Konisky. (1989) Isolation and characterization of an archaebacterial viruslike particle from Methanococcus voltae A3. J. Bacteriol. 171: 93-98.
Wu, S. Y., and M. C. Lai. (2011) Methanogenic archaea isolated from Taiwan''s Chelungpu fault. Appl. Environ. Microb. 77: 830-838.
Xiang, X., L. Chen, X. Huang, Y. Luo, Q. She, and L. Huang. (2005) Sulfolobus tengchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features. J. Virol. 79: 8677-8686.
Yap, M. L., T. Klose, F. Arisaka, J. A. Speir, D. Veesler, A. Fokine, and M. G. Rossmann. (2016) Role of bacteriophage T4 baseplate in regulating assembly and infection. Proc. Natl. Acad. Sci. USA 113: 2654-2659.
Zellner, G., and J. Winter. (1987) Secondary alcohols as hydrogen donors for CO2‐reduction by methanogens. FEMS Microbiol. Lett. 44: 323-328.
Zellner, G., P. Messner, J. Winter, and E. Stackebrandt. (1998) Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in North-Sumatra, Indonesia. Int. J. Syst. Evol. Microbiol. 48: 1111-1117.
Zhang, Z., Y. Liu, S. Wang, D. Yang, Y. Cheng, J. Hu, J. Chen, Y. Mei, P. Shen, and D. H. Bamford. (2012) Temperate membrane-containing halophilic archaeal virus SNJ1 has a circular dsDNA genome identical to that of plasmid pHH205. Virology 434: 233-241.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔