|
1.Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108. 2.Su, W.H., et al., OncoDB.HCC: an integrated oncogenomic database of hepatocellular carcinoma revealed aberrant cancer target genes and loci. Nucleic Acids Res, 2007. 35(Database issue): p. D727-31. 3.Sun, W. and R. Cabrera, Systemic Treatment of Patients with Advanced, Unresectable Hepatocellular Carcinoma: Emergence of Therapies. J Gastrointest Cancer, 2018. 49(2): p. 107-115. 4.Minguez, P., et al., Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol, 2012. 8: p. 599. 5.Hubbard, M.J. and P. Cohen, On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci, 1993. 18(5): p. 172-7. 6.Cotan, D., et al., AMPK As A Target in Rare Diseases. Curr Drug Targets, 2016. 17(8): p. 921-31. 7.Eglen, R. and T. Reisine, Drug discovery and the human kinome: recent trends. Pharmacol Ther, 2011. 130(2): p. 144-56. 8.Hsu, C.N., et al., Detection of the inferred interaction network in hepatocellular carcinoma from EHCO (Encyclopedia of Hepatocellular Carcinoma genes Online). BMC Bioinformatics, 2007. 8: p. 66. 9.Lee, L., et al., Liverome: a curated database of liver cancer-related gene signatures with self-contained context information. BMC Genomics, 2011. 12 Suppl 3: p. S3. 10.Ouyang, J., et al., dbPHCC: a database of prognostic biomarkers for hepatocellular carcinoma that provides online prognostic modeling. Biochim Biophys Acta, 2016. 1860(11 Pt B): p. 2688-95. 11.Sung, M.-I., 肝癌與蛋白質磷酸化關聯性資料庫. 中興大學基因體暨生物資訊學研究所學位論文, 2013: p. 1-46. 12.Schuepbach, T., et al., pfsearchV3: a code acceleration and heuristic to search PROSITE profiles. Bioinformatics, 2013. 29(9): p. 1215-7. 13.The UniProt, C., UniProt: the universal protein knowledgebase. Nucleic Acids Res, 2017. 45(D1): p. D158-D169. 14.Hornbeck, P.V., et al., PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res, 2012. 40(Database issue): p. D261-70. 15.Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9. 16.Santos, A., R. Wernersson, and L.J. Jensen, Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res, 2015. 43(Database issue): p. D1140-4. 17.Kanehisa, M., et al., KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res, 2012. 40(Database issue): p. D109-14. 18.Wishart, D.S., et al., DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res, 2018. 46(D1): p. D1074-D1082. 19.Bairoch, A., et al., The Universal Protein Resource (UniProt). Nucleic Acids Res, 2005. 33(Database issue): p. D154-9. 20.Sigrist, C.J., et al., New and continuing developments at PROSITE. Nucleic Acids Res, 2013. 41(Database issue): p. D344-7. 21.Yang, C.Y., et al., PhosphoPOINT: a comprehensive human kinase interactome and phospho-protein database. Bioinformatics, 2008. 24(16): p. i14-20. 22.Dinkel, H., et al., Phospho.ELM: a database of phosphorylation sites--update 2011. Nucleic Acids Res, 2011. 39(Database issue): p. D261-7. 23.Zhang, H., et al., Induction of autophagy in hepatocellular carcinoma cells by SB203580 requires activation of AMPK and DAPK but not p38 MAPK. Apoptosis, 2012. 17(4): p. 325-34. 24.Chi, H.C., et al., Thyroid hormone suppresses hepatocarcinogenesis via DAPK2 and SQSTM1-dependent selective autophagy. Autophagy, 2016. 12(12): p. 2271-2285. 25.Chen, Y. and S.H. Tseng, Targeting tropomyosin-receptor kinase fused gene in cancer. Anticancer Res, 2014. 34(4): p. 1595-600. 26.Dey, S., et al., Matrix metalloproteinase-1 (MMP-1) Promoter polymorphisms are well linked with lower stomach tumor formation in eastern Indian population. PLoS One, 2014. 9(2): p. e88040. 27.Wieczorek, E., et al., Functional polymorphisms in the matrix metalloproteinase genes and their association with bladder cancer risk and recurrence: a mini-review. Int J Urol, 2014. 21(8): p. 744-52. 28.Xuan, J., et al., Matrix metalloproteinase-1 expression in breast cancer and cancer-adjacent tissues by immunohistochemical staining. Biomed Rep, 2015. 3(3): p. 395-397. 29.Li, L., Z. Lou, and L. Wang, The role of FKBP5 in cancer aetiology and chemoresistance. Br J Cancer, 2011. 104(1): p. 19-23. 30.Ni, L., et al., FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol Cell Biol, 2010. 30(5): p. 1243-53. 31.Soman, N.R., et al., The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc Natl Acad Sci U S A, 1991. 88(11): p. 4892-6. 32.Xu, S. and M.A. Powers, Nuclear pore proteins and cancer. Semin Cell Dev Biol, 2009. 20(5): p. 620-30. 33.Takeuchi, K., et al., RET, ROS1 and ALK fusions in lung cancer. Nat Med, 2012. 18(3): p. 378-81. 34.Schwaller, J., et al., H4(D10S170), a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor beta gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22). Blood, 2001. 97(12): p. 3910-8. 35.Sexauer, A.N. and S.K. Tasian, Targeting FLT3 Signaling in Childhood Acute Myeloid Leukemia. Front Pediatr, 2017. 5: p. 248.
|