|
1.Kern, A.D., et al., Structure of mammalian ornithine decarboxylase at 1.6 A resolution: stereochemical implications of PLP-dependent amino acid decarboxylases. Structure, 1999. 7(5): p. 567-81. 2.Myers, D.P., et al., Long-range interactions in the dimer interface of ornithine decarboxylase are important for enzyme function. Biochemistry, 2001. 40(44): p. 13230-6. 3.Wu, H.Y., et al., Structural basis of antizyme-mediated regulation of polyamine homeostasis. Proc Natl Acad Sci U S A, 2015. 112(36): p. 11229-34. 4.Osterman, A.L., et al., Lysine-69 plays a key role in catalysis by ornithine decarboxylase through acceleration of the Schiff base formation, decarboxylation, and product release steps. Biochemistry, 1999. 38(36): p. 11814-26. 5.Bauer, P.M., et al., Nitric oxide inhibits ornithine decarboxylase via S-nitrosylation of cysteine 360 in the active site of the enzyme. J Biol Chem, 2001. 276(37): p. 34458-64. 6.Wu, H., et al., Structure and mechanism of spermidine synthases. Biochemistry, 2007. 46(28): p. 8331-9. 7.Pegg, A.E., et al., Spermine synthase activity affects the content of decarboxylated S-adenosylmethionine. Biochem J, 2011. 433(1): p. 139-44. 8.Coffino, P., Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol, 2001. 2(3): p. 188-94. 9.Auvinen, M., et al., Ornithine decarboxylase activity is critical for cell transformation. Nature, 1992. 360(6402): p. 355-8. 10.Shantz, L.M., R.H. Hu, and A.E. Pegg, Regulation of ornithine decarboxylase in a transformed cell line that overexpresses translation initiation factor eIF-4E. Cancer Res, 1996. 56(14): p. 3265-9. 11.McCann, P.P. and A.E. Pegg, Ornithine decarboxylase as an enzyme target for therapy. Pharmacol Ther, 1992. 54(2): p. 195-215. 12.Casero, R.A., Jr. and L.J. Marton, Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov, 2007. 6(5): p. 373-90. 13.Heller, J.S., W.F. Fong, and E.S. Canellakis, Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci U S A, 1976. 73(6): p. 1858-62. 14.Childs, A.C., D.J. Mehta, and E.W. Gerner, Polyamine-dependent gene expression. Cell Mol Life Sci, 2003. 60(7): p. 1394-406. 15.Wu, D., et al., Structural basis of Ornithine Decarboxylase inactivation and accelerated degradation by polyamine sensor Antizyme1. Sci Rep, 2015. 5: p. 14738. 16.Murakami, Y., et al., Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature, 1992. 360(6404): p. 597-9. 17.Gandre, S., Z. Bercovich, and C. Kahana, Mitochondrial localization of antizyme is determined by context-dependent alternative utilization of two AUG initiation codons. Mitochondrion, 2003. 2(4): p. 245-56. 18.Matsufuji, S., et al., Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell, 1995. 80(1): p. 51-60. 19.Ivanov, I.P. and J.F. Atkins, Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res, 2007. 35(6): p. 1842-58. 20.Rato, C., et al., Translational recoding as a feedback controller: systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift. Nucleic Acids Res, 2011. 39(11): p. 4587-97. 21.Liu, Y.C., et al., Determinants of the differential antizyme-binding affinity of ornithine decarboxylase. PLoS One, 2011. 6(11): p. e26835. 22.Ghoda, L., et al., Structural elements of ornithine decarboxylase required for intracellular degradation and polyamine-dependent regulation. Mol Cell Biol, 1992. 12(5): p. 2178-85. 23.Zhang, M., C.M. Pickart, and P. Coffino, Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J, 2003. 22(7): p. 1488-96. 24.Daigle, N.D., et al., Molecular characterization of a human cation-Cl- cotransporter (SLC12A8A, CCC9A) that promotes polyamine and amino acid transport. J Cell Physiol, 2009. 220(3): p. 680-9. 25.Ray, R.M., et al., Antizyme (AZ) regulates intestinal cell growth independent of polyamines. Amino Acids, 2014. 46(9): p. 2231-9. 26.Ivanov, I.P., R.F. Gesteland, and J.F. Atkins, A second mammalian antizyme: conservation of programmed ribosomal frameshifting. Genomics, 1998. 52(2): p. 119-29. 27.Ivanov, I.P., et al., Discovery of a spermatogenesis stage-specific ornithine decarboxylase antizyme: antizyme 3. Proc Natl Acad Sci U S A, 2000. 97(9): p. 4808-13. 28.Snapir, Z., et al., Antizyme 3 inhibits polyamine uptake and ornithine decarboxylase (ODC) activity, but does not stimulate ODC degradation. Biochem J, 2009. 419(1): p. 99-103, 1 p following 103. 29.Murai, N., Y. Murakami, and S. Matsufuji, Identification of nuclear export signals in antizyme-1. J Biol Chem, 2003. 278(45): p. 44791-8. 30.Murai, N., et al., Subcellular localization and phosphorylation of antizyme 2. J Cell Biochem, 2009. 108(4): p. 1012-21. 31.Ivanov, I.P., R.F. Gesteland, and J.F. Atkins, Antizyme expression: a subversion of triplet decoding, which is remarkably conserved by evolution, is a sensor for an autoregulatory circuit. Nucleic Acids Res, 2000. 28(17): p. 3185-96. 32.Fujita, K., Y. Murakami, and S. Hayashi, A macromolecular inhibitor of the antizyme to ornithine decarboxylase. Biochem J, 1982. 204(3): p. 647-52. 33.Qiu, S., J. Liu, and F. Xing, Antizyme inhibitor 1: a potential carcinogenic molecule. Cancer Sci, 2017. 108(2): p. 163-169. 34.Albeck, S., et al., Crystallographic and biochemical studies revealing the structural basis for antizyme inhibitor function. Protein Sci, 2008. 17(5): p. 793-802. 35.Hsieh, J.Y., et al., Minimal antizyme peptide fully functioning in the binding and inhibition of ornithine decarboxylase and antizyme inhibitor. PLoS One, 2011. 6(9): p. e24366. 36.Kitani, T. and H. Fujisawa, Purification and some properties of a protein inhibitor (antizyme) of ornithine decarboxylase from rat liver. J Biol Chem, 1984. 259(16): p. 10036-40. 37.Lopez-Contreras, A.J., et al., Mouse ornithine decarboxylase-like gene encodes an antizyme inhibitor devoid of ornithine and arginine decarboxylating activity. J Biol Chem, 2006. 281(41): p. 30896-906. 38.Lopez-Contreras, A.J., et al., Antizyme inhibitor 2 (AZIN2/ODCp) stimulates polyamine uptake in mammalian cells. J Biol Chem, 2008. 283(30): p. 20761-9. 39.Makitie, L.T., et al., Brain neurons express ornithine decarboxylase-activating antizyme inhibitor 2 with accumulation in Alzheimer's disease. Brain Pathol, 2010. 20(3): p. 571-80. 40.Lopez-Contreras, A.J., et al., Antizyme inhibitor 2: molecular, cellular and physiological aspects. Amino Acids, 2010. 38(2): p. 603-11. 41.Gandre, S., Z. Bercovich, and C. Kahana, Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity. Eur J Biochem, 2002. 269(4): p. 1316-22. 42.Newman, R.M., et al., Antizyme targets cyclin D1 for degradation. A novel mechanism for cell growth repression. J Biol Chem, 2004. 279(40): p. 41504-11. 43.Connell-Crowley, L., J.W. Harper, and D.W. Goodrich, Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol Biol Cell, 1997. 8(2): p. 287-301. 44.Liu, Y.C., et al., Multifaceted interactions and regulation between antizyme and its interacting proteins cyclin D1, ornithine decarboxylase and antizyme inhibitor. Oncotarget, 2015. 6(27): p. 23917-29. 45.Cohavi, O., D. Tobi, and G. Schreiber, Docking of antizyme to ornithine decarboxylase and antizyme inhibitor using experimental mutant and double-mutant cycle data. J Mol Biol, 2009. 390(3): p. 503-15. 46.Ben-Nissan, G. and M. Sharon, Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules, 2014. 4(3): p. 862-84. 47.Asher, G., et al., 20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1. Mol Cell, 2005. 17(5): p. 645-55. 48.Beenukumar, R.R., et al., Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome. Microb Cell, 2015. 2(6): p. 197-207. 49.Bercovich, Z. and C. Kahana, Degradation of antizyme inhibitor, an ornithine decarboxylase homologous protein, is ubiquitin-dependent and is inhibited by antizyme. J Biol Chem, 2004. 279(52): p. 54097-102. 50.Mangold, U., Antizyme inhibitor: mysterious modulator of cell proliferation. Cell Mol Life Sci, 2006. 63(18): p. 2095-101. 51.Kim, S.W., et al., Regulation of cell proliferation by the antizyme inhibitor: evidence for an antizyme-independent mechanism. J Cell Sci, 2006. 119(Pt 12): p. 2583-91. 52.Abaandou, L. and J. Shiloach, Knocking out Ornithine Decarboxylase Antizyme 1 (OAZ1) Improves Recombinant Protein Expression in the HEK293 Cell Line. Med Sci (Basel), 2018. 6(2). 53.Zhang, M., et al., Proteasomes begin ornithine decarboxylase digestion at the C terminus. J Biol Chem, 2004. 279(20): p. 20959-65. 54.Kim, W., et al., Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell, 2011. 44(2): p. 325-40. 55.Sun, L. and Z.J. Chen, The novel functions of ubiquitination in signaling. Curr Opin Cell Biol, 2004. 16(2): p. 119-26. 56.Stringer, D.K. and R.C. Piper, Terminating protein ubiquitination: Hasta la vista, ubiquitin. Cell Cycle, 2011. 10(18): p. 3067-71. 57.Scheffner, M., U. Nuber, and J.M. Huibregtse, Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature, 1995. 373(6509): p. 81-3. 58.Koegl, M., et al., A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell, 1999. 96(5): p. 635-44. 59.Yang, Y., et al., Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res, 2007. 67(19): p. 9472-81. 60.Pickart, C.M. and S. Raasi, Controlled synthesis of polyubiquitin chains. Methods Enzymol, 2005. 399: p. 21-36. 61.Amerik, A.Y. and M. Hochstrasser, Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta, 2004. 1695(1-3): p. 189-207. 62.Jacobson, A.D., et al., The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J Biol Chem, 2009. 284(51): p. 35485-94. 63.Krissinel, E. and K. Henrick, Inference of macromolecular assemblies from crystalline state. J Mol Biol, 2007. 372(3): p. 774-97. 64.Tokunaga, F., et al., ATP- and antizyme-dependent endoproteolysis of ornithine decarboxylase to oligopeptides by the 26 S proteasome. J Biol Chem, 1994. 269(26): p. 17382-5. 65.Balbo, P.B., et al., Spectrophotometric and steady-state kinetic analysis of the biosynthetic arginine decarboxylase of Yersinia pestis utilizing arginine analogues as inhibitors and alternative substrates. Biochemistry, 2003. 42(51): p. 15189-96. 66.Ciechanover, A. and R. Ben-Saadon, N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol, 2004. 14(3): p. 103-6. 67.Sadeh, R., et al., The N-terminal domain of MyoD is necessary and sufficient for its nuclear localization-dependent degradation by the ubiquitin system. Proc Natl Acad Sci U S A, 2008. 105(41): p. 15690-5. 68.Hodgins, R.R., K.S. Ellison, and M.J. Ellison, Expression of a ubiquitin derivative that conjugates to protein irreversibly produces phenotypes consistent with a ubiquitin deficiency. J Biol Chem, 1992. 267(13): p. 8807-12. 69.Wilkinson, K.D., et al., Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidase T. Biochemistry, 1995. 34(44): p. 14535-46. 70.Xu, G. and S.R. Jaffrey, Proteomic identification of protein ubiquitination events. Biotechnol Genet Eng Rev, 2013. 29: p. 73-109. 71.Hatakeyama, S., M. Matsumoto, and K.I. Nakayama, Mapping of ubiquitination sites on target proteins. Methods Enzymol, 2005. 399: p. 277-86. 72.van den Ent, F. and J. Lowe, RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods, 2006. 67(1): p. 67-74. 73.Bandyopadhyay, B. and Y. Peleg, Facilitating circular permutation using Restriction Free (RF) cloning. Protein Eng Des Sel, 2018. 31(3): p. 65-68. 74.Kaiser, P. and J. Wohlschlegel, Identification of ubiquitination sites and determination of ubiquitin-chain architectures by mass spectrometry. Methods Enzymol, 2005. 399: p. 266-77. 75.Louche, A., S.P. Salcedo, and S. Bigot, Protein-Protein Interactions: Pull-Down Assays. Methods Mol Biol, 2017. 1615: p. 247-255. 76.Liu, Y.C., et al., Critical factors governing the difference in antizyme-binding affinities between human ornithine decarboxylase and antizyme inhibitor. PLoS One, 2011. 6(4): p. e19253. 77.Murakami, Y., et al., Ornithine Decarboxylase Is Degraded by the 26s-Proteasome without Ubiquitination. Nature, 1992. 360(6404): p. 597-599. 78.Maupin-Furlow, J., Proteasomes and protein conjugation across domains of life. Nat Rev Microbiol, 2011. 10(2): p. 100-11. 79.Pegg, A.E., Regulation of ornithine decarboxylase. J Biol Chem, 2006. 281(21): p. 14529-32.
|