跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 14:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊宜鈁
研究生(外文):Yi-Fang Yang
論文名稱:決定人類鳥胺酸脫羧酶與抗酶抑制子降解途徑不同之關鍵因素
論文名稱(外文):Key Elements Determining the Different Degradation Pathway between Human Ornithine Decarboxylase and Antizyme Inhibitor.
指導教授:洪慧芝洪慧芝引用關係
指導教授(外文):Hui-Chih Hung
口試委員:劉光耀詹迺立
口試委員(外文):Guang-Yaw LiuNei-Li Chan
口試日期:2018-07-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:89
中文關鍵詞:人類鳥胺酸脫羧酶抗酶抗酶抑制子
外文關鍵詞:human ornithine decarboxylaseantizymeantizyme inhibitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
人類鳥胺酸脫羧酶 (ornithine decarboxylase, ODC) 主要是負責體內多元胺的生合成第一步,此也是速率決定步驟,ODC需形成同源雙聚體 (homodimer) 才具有催化功能,而當細胞中的多元胺過度表現時,會誘發抗酶 (antizyme, AZ) 表現,AZ蛋白能和ODC會結合形成AZ-ODC異源雙聚體 (heterodimer),將ODC帶至26S蛋白酶體 (26S proteasome) 進行不需泛素參與的降解 (ubiquitin-independent degradation),進而抑制ODC來控制體內多元胺的濃度。同時人類抗酶抑制子 (antizyme inhibitor, AZI) 會表現並解救出ODC,因AZI對AZ的親和力強於AZ對ODC的親和力,因此能解開AZ-ODC聚合體,使ODC不被降解。在文獻上,AZI和ODC在結構上或是在胺基酸序列上都有極高的相似度,差別在於AZI沒有ODC的催化活性,在降解方面,AZI是進行泛素參與降解的路徑 (ubiquitin-dependent degradation),跟ODC進行的AZ-dependent降解路徑不太相同,因此本篇研究主旨是在探討什麼因素造成AZI和ODC降解路徑不同。首先針對AZI結構表面上的胺基酸序列來看對AZI降解的影響,從database搜尋出AZI結構表面上幾個可能為ubiquitin結合的位點: K47、K63、K125、K140、K175、K203、K327和K341,利用alanine scanning的方式把Lysine (K) 改為Alanine (A),進行細胞外降解分析 (in vitro degradation assay) 來看野生型AZI (AZI-WT) 以及突變型 (mutant) AZI 的降解程度是否不同。經實驗後發現,把K47、K125、K140、K175這幾個位點改掉後,AZI的降解現象就減緩了,推測這幾個位點可能為AZI的泛素化位點 (ubiquitylation sites)。之後對應到ODC結構上,發現這幾個位點都不是lysine,分別是D47、N125、M140、R175,後續我們將ODC上這幾個位點改回成lysine,探討是否ODC就是缺乏了這幾個lysine,因此才無法進行泛素參與的降解路徑。實驗結果發現,當把這四個位點改回lysine後,ODC就可以進行泛素參與的降解路徑。因此我們推測在演化上有可能是因為ODC缺乏了這幾個lysine,因此才演化出AZ-dependent降解路徑。
Ornithine decarboxylase (ODC) is an important enzyme that can catalyze the ornithine into putrescine, which is the first step of polyamines production. The elevated concentration of polyamines can induce antizyme (AZ) over-expression. Then, AZ can bind with ODC and take it to 26 S proteasome through an ubiquitin-independent degradation pathway. At the same time, there is a protein can rescue ODC, named antizyme inhibitor (AZI). AZI can bind with AZ because AZ-AZI binding affinity is better than AZ-ODC binding affinity, AZI can prevent ODC from 26S proteasome degradation by forming AZ-AZI complex. Therefore, ODC can produce polyamines continually. The elevated polyamines can lead cells to transform, even worse it will become the cancer cells, therefore, the concentration of polyamines needs to be regulated. In previous study, AZI and ODC have many similarities in their structures and sequences, but the degradation pathways of them are completely different. In contrast to ODC degradation, the degradation of AZI is ubiquitin-dependent and does not interact with AZ. In our research, first, we will focus on finding out the ubiquitination sites of AZI. We selected eight lysines on AZI surface by some database and changed these lysines into alanines to check whether it interferes AZI degradation. Finally, we found that the degradation of some AZI mutants seem to be retarded. Therefore, we suggest that K47, K125, K140, and K175 may be the possible ubiquitination sites for AZI. In contrast, these sites on ODC are D47, N125, M140, R175. So, we change these sites back to lysine to check whether ODC can go through an ubiquitin-dependent degradation pathway. After experiments, we found that ODC mutants really can be degradaed by ubiquitylation. Based on the above results, we presumed that ODC lacks these lysine residues for ubiquitylation so it evolves into AZ-dependent degradation pathway in the evolution.
摘要 i
Abstract iii
縮寫表 vi
表目錄 viii
圖目錄 ix
一、前言 1
二、實驗方法及步驟 10
I. Mutagenesis 10
II. 純化 13
III. In vitro degradation assay and immunoblotting 17
IV. ODC酵素活性與受AZ抑制能力分析 21
IV.實驗流程圖 25
三、結果 26
1.資料比對和AZI單點突變 26
2. AZI-WT及8個mutant AZI蛋白質表現與純化 26
3.NaCl濃度提高能提升AZI降解效率 27
4.AZI單點突變後減緩了AZI的降解現象 27
5.AZI多點突變後減緩了AZI的降解現象 28
6.提升rabbit reticulocyte lysate並無法加速 AZI 的降解 29
7.去除AZI的N端區域並不會影響AZI的降解現象 29
8.加入突變型Ubiquitin和MG132後明顯看到AZI ubiquitylation現象 30
9.ODC多點突變後,可以促使ODC進行ubiquitin-dependent降解 30
10.ODC多點突變後,依然能走AZ-dependent降解途徑 31
11.ODC多點突變後,ODC的活性下降且易受AZ抑制 31
12.AZI多點突變後,並無法走AZ-dependent降解途徑 32
四、討論 33
1. rabbit reticulocyte lysate的不穩定性影響到AZI降解 33
2. AZI與AZ降解速率差異 33
3. AZI與ODC降解現象的穩定性 33
4. AZI和ODC的ubiquitylation現象 34
5. AZI與AZ結合後,AZI的ubiquitylation現象不明顯 34
6. AZI與AZ結合後,AZ的降解現象不明顯 35
7. ODC和AZI第125號和第140號胺基酸決定與AZ的結合親和性 35
8.決定ODC與AZI降解途徑的關鍵 36
五、結論 38
六、參考文獻 39
七、表與圖 45
附錄 72
1.Kern, A.D., et al., Structure of mammalian ornithine decarboxylase at 1.6 A resolution: stereochemical implications of PLP-dependent amino acid decarboxylases. Structure, 1999. 7(5): p. 567-81.
2.Myers, D.P., et al., Long-range interactions in the dimer interface of ornithine decarboxylase are important for enzyme function. Biochemistry, 2001. 40(44): p. 13230-6.
3.Wu, H.Y., et al., Structural basis of antizyme-mediated regulation of polyamine homeostasis. Proc Natl Acad Sci U S A, 2015. 112(36): p. 11229-34.
4.Osterman, A.L., et al., Lysine-69 plays a key role in catalysis by ornithine decarboxylase through acceleration of the Schiff base formation, decarboxylation, and product release steps. Biochemistry, 1999. 38(36): p. 11814-26.
5.Bauer, P.M., et al., Nitric oxide inhibits ornithine decarboxylase via S-nitrosylation of cysteine 360 in the active site of the enzyme. J Biol Chem, 2001. 276(37): p. 34458-64.
6.Wu, H., et al., Structure and mechanism of spermidine synthases. Biochemistry, 2007. 46(28): p. 8331-9.
7.Pegg, A.E., et al., Spermine synthase activity affects the content of decarboxylated S-adenosylmethionine. Biochem J, 2011. 433(1): p. 139-44.
8.Coffino, P., Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol, 2001. 2(3): p. 188-94.
9.Auvinen, M., et al., Ornithine decarboxylase activity is critical for cell transformation. Nature, 1992. 360(6402): p. 355-8.
10.Shantz, L.M., R.H. Hu, and A.E. Pegg, Regulation of ornithine decarboxylase in a transformed cell line that overexpresses translation initiation factor eIF-4E. Cancer Res, 1996. 56(14): p. 3265-9.
11.McCann, P.P. and A.E. Pegg, Ornithine decarboxylase as an enzyme target for therapy. Pharmacol Ther, 1992. 54(2): p. 195-215.
12.Casero, R.A., Jr. and L.J. Marton, Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov, 2007. 6(5): p. 373-90.
13.Heller, J.S., W.F. Fong, and E.S. Canellakis, Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci U S A, 1976. 73(6): p. 1858-62.
14.Childs, A.C., D.J. Mehta, and E.W. Gerner, Polyamine-dependent gene expression. Cell Mol Life Sci, 2003. 60(7): p. 1394-406.
15.Wu, D., et al., Structural basis of Ornithine Decarboxylase inactivation and accelerated degradation by polyamine sensor Antizyme1. Sci Rep, 2015. 5: p. 14738.
16.Murakami, Y., et al., Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature, 1992. 360(6404): p. 597-9.
17.Gandre, S., Z. Bercovich, and C. Kahana, Mitochondrial localization of antizyme is determined by context-dependent alternative utilization of two AUG initiation codons. Mitochondrion, 2003. 2(4): p. 245-56.
18.Matsufuji, S., et al., Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell, 1995. 80(1): p. 51-60.
19.Ivanov, I.P. and J.F. Atkins, Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res, 2007. 35(6): p. 1842-58.
20.Rato, C., et al., Translational recoding as a feedback controller: systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift. Nucleic Acids Res, 2011. 39(11): p. 4587-97.
21.Liu, Y.C., et al., Determinants of the differential antizyme-binding affinity of ornithine decarboxylase. PLoS One, 2011. 6(11): p. e26835.
22.Ghoda, L., et al., Structural elements of ornithine decarboxylase required for intracellular degradation and polyamine-dependent regulation. Mol Cell Biol, 1992. 12(5): p. 2178-85.
23.Zhang, M., C.M. Pickart, and P. Coffino, Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J, 2003. 22(7): p. 1488-96.
24.Daigle, N.D., et al., Molecular characterization of a human cation-Cl- cotransporter (SLC12A8A, CCC9A) that promotes polyamine and amino acid transport. J Cell Physiol, 2009. 220(3): p. 680-9.
25.Ray, R.M., et al., Antizyme (AZ) regulates intestinal cell growth independent of polyamines. Amino Acids, 2014. 46(9): p. 2231-9.
26.Ivanov, I.P., R.F. Gesteland, and J.F. Atkins, A second mammalian antizyme: conservation of programmed ribosomal frameshifting. Genomics, 1998. 52(2): p. 119-29.
27.Ivanov, I.P., et al., Discovery of a spermatogenesis stage-specific ornithine decarboxylase antizyme: antizyme 3. Proc Natl Acad Sci U S A, 2000. 97(9): p. 4808-13.
28.Snapir, Z., et al., Antizyme 3 inhibits polyamine uptake and ornithine decarboxylase (ODC) activity, but does not stimulate ODC degradation. Biochem J, 2009. 419(1): p. 99-103, 1 p following 103.
29.Murai, N., Y. Murakami, and S. Matsufuji, Identification of nuclear export signals in antizyme-1. J Biol Chem, 2003. 278(45): p. 44791-8.
30.Murai, N., et al., Subcellular localization and phosphorylation of antizyme 2. J Cell Biochem, 2009. 108(4): p. 1012-21.
31.Ivanov, I.P., R.F. Gesteland, and J.F. Atkins, Antizyme expression: a subversion of triplet decoding, which is remarkably conserved by evolution, is a sensor for an autoregulatory circuit. Nucleic Acids Res, 2000. 28(17): p. 3185-96.
32.Fujita, K., Y. Murakami, and S. Hayashi, A macromolecular inhibitor of the antizyme to ornithine decarboxylase. Biochem J, 1982. 204(3): p. 647-52.
33.Qiu, S., J. Liu, and F. Xing, Antizyme inhibitor 1: a potential carcinogenic molecule. Cancer Sci, 2017. 108(2): p. 163-169.
34.Albeck, S., et al., Crystallographic and biochemical studies revealing the structural basis for antizyme inhibitor function. Protein Sci, 2008. 17(5): p. 793-802.
35.Hsieh, J.Y., et al., Minimal antizyme peptide fully functioning in the binding and inhibition of ornithine decarboxylase and antizyme inhibitor. PLoS One, 2011. 6(9): p. e24366.
36.Kitani, T. and H. Fujisawa, Purification and some properties of a protein inhibitor (antizyme) of ornithine decarboxylase from rat liver. J Biol Chem, 1984. 259(16): p. 10036-40.
37.Lopez-Contreras, A.J., et al., Mouse ornithine decarboxylase-like gene encodes an antizyme inhibitor devoid of ornithine and arginine decarboxylating activity. J Biol Chem, 2006. 281(41): p. 30896-906.
38.Lopez-Contreras, A.J., et al., Antizyme inhibitor 2 (AZIN2/ODCp) stimulates polyamine uptake in mammalian cells. J Biol Chem, 2008. 283(30): p. 20761-9.
39.Makitie, L.T., et al., Brain neurons express ornithine decarboxylase-activating antizyme inhibitor 2 with accumulation in Alzheimer's disease. Brain Pathol, 2010. 20(3): p. 571-80.
40.Lopez-Contreras, A.J., et al., Antizyme inhibitor 2: molecular, cellular and physiological aspects. Amino Acids, 2010. 38(2): p. 603-11.
41.Gandre, S., Z. Bercovich, and C. Kahana, Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity. Eur J Biochem, 2002. 269(4): p. 1316-22.
42.Newman, R.M., et al., Antizyme targets cyclin D1 for degradation. A novel mechanism for cell growth repression. J Biol Chem, 2004. 279(40): p. 41504-11.
43.Connell-Crowley, L., J.W. Harper, and D.W. Goodrich, Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol Biol Cell, 1997. 8(2): p. 287-301.
44.Liu, Y.C., et al., Multifaceted interactions and regulation between antizyme and its interacting proteins cyclin D1, ornithine decarboxylase and antizyme inhibitor. Oncotarget, 2015. 6(27): p. 23917-29.
45.Cohavi, O., D. Tobi, and G. Schreiber, Docking of antizyme to ornithine decarboxylase and antizyme inhibitor using experimental mutant and double-mutant cycle data. J Mol Biol, 2009. 390(3): p. 503-15.
46.Ben-Nissan, G. and M. Sharon, Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules, 2014. 4(3): p. 862-84.
47.Asher, G., et al., 20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1. Mol Cell, 2005. 17(5): p. 645-55.
48.Beenukumar, R.R., et al., Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome. Microb Cell, 2015. 2(6): p. 197-207.
49.Bercovich, Z. and C. Kahana, Degradation of antizyme inhibitor, an ornithine decarboxylase homologous protein, is ubiquitin-dependent and is inhibited by antizyme. J Biol Chem, 2004. 279(52): p. 54097-102.
50.Mangold, U., Antizyme inhibitor: mysterious modulator of cell proliferation. Cell Mol Life Sci, 2006. 63(18): p. 2095-101.
51.Kim, S.W., et al., Regulation of cell proliferation by the antizyme inhibitor: evidence for an antizyme-independent mechanism. J Cell Sci, 2006. 119(Pt 12): p. 2583-91.
52.Abaandou, L. and J. Shiloach, Knocking out Ornithine Decarboxylase Antizyme 1 (OAZ1) Improves Recombinant Protein Expression in the HEK293 Cell Line. Med Sci (Basel), 2018. 6(2).
53.Zhang, M., et al., Proteasomes begin ornithine decarboxylase digestion at the C terminus. J Biol Chem, 2004. 279(20): p. 20959-65.
54.Kim, W., et al., Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell, 2011. 44(2): p. 325-40.
55.Sun, L. and Z.J. Chen, The novel functions of ubiquitination in signaling. Curr Opin Cell Biol, 2004. 16(2): p. 119-26.
56.Stringer, D.K. and R.C. Piper, Terminating protein ubiquitination: Hasta la vista, ubiquitin. Cell Cycle, 2011. 10(18): p. 3067-71.
57.Scheffner, M., U. Nuber, and J.M. Huibregtse, Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature, 1995. 373(6509): p. 81-3.
58.Koegl, M., et al., A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell, 1999. 96(5): p. 635-44.
59.Yang, Y., et al., Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res, 2007. 67(19): p. 9472-81.
60.Pickart, C.M. and S. Raasi, Controlled synthesis of polyubiquitin chains. Methods Enzymol, 2005. 399: p. 21-36.
61.Amerik, A.Y. and M. Hochstrasser, Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta, 2004. 1695(1-3): p. 189-207.
62.Jacobson, A.D., et al., The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J Biol Chem, 2009. 284(51): p. 35485-94.
63.Krissinel, E. and K. Henrick, Inference of macromolecular assemblies from crystalline state. J Mol Biol, 2007. 372(3): p. 774-97.
64.Tokunaga, F., et al., ATP- and antizyme-dependent endoproteolysis of ornithine decarboxylase to oligopeptides by the 26 S proteasome. J Biol Chem, 1994. 269(26): p. 17382-5.
65.Balbo, P.B., et al., Spectrophotometric and steady-state kinetic analysis of the biosynthetic arginine decarboxylase of Yersinia pestis utilizing arginine analogues as inhibitors and alternative substrates. Biochemistry, 2003. 42(51): p. 15189-96.
66.Ciechanover, A. and R. Ben-Saadon, N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol, 2004. 14(3): p. 103-6.
67.Sadeh, R., et al., The N-terminal domain of MyoD is necessary and sufficient for its nuclear localization-dependent degradation by the ubiquitin system. Proc Natl Acad Sci U S A, 2008. 105(41): p. 15690-5.
68.Hodgins, R.R., K.S. Ellison, and M.J. Ellison, Expression of a ubiquitin derivative that conjugates to protein irreversibly produces phenotypes consistent with a ubiquitin deficiency. J Biol Chem, 1992. 267(13): p. 8807-12.
69.Wilkinson, K.D., et al., Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidase T. Biochemistry, 1995. 34(44): p. 14535-46.
70.Xu, G. and S.R. Jaffrey, Proteomic identification of protein ubiquitination events. Biotechnol Genet Eng Rev, 2013. 29: p. 73-109.
71.Hatakeyama, S., M. Matsumoto, and K.I. Nakayama, Mapping of ubiquitination sites on target proteins. Methods Enzymol, 2005. 399: p. 277-86.
72.van den Ent, F. and J. Lowe, RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods, 2006. 67(1): p. 67-74.
73.Bandyopadhyay, B. and Y. Peleg, Facilitating circular permutation using Restriction Free (RF) cloning. Protein Eng Des Sel, 2018. 31(3): p. 65-68.
74.Kaiser, P. and J. Wohlschlegel, Identification of ubiquitination sites and determination of ubiquitin-chain architectures by mass spectrometry. Methods Enzymol, 2005. 399: p. 266-77.
75.Louche, A., S.P. Salcedo, and S. Bigot, Protein-Protein Interactions: Pull-Down Assays. Methods Mol Biol, 2017. 1615: p. 247-255.
76.Liu, Y.C., et al., Critical factors governing the difference in antizyme-binding affinities between human ornithine decarboxylase and antizyme inhibitor. PLoS One, 2011. 6(4): p. e19253.
77.Murakami, Y., et al., Ornithine Decarboxylase Is Degraded by the 26s-Proteasome without Ubiquitination. Nature, 1992. 360(6404): p. 597-599.
78.Maupin-Furlow, J., Proteasomes and protein conjugation across domains of life. Nat Rev Microbiol, 2011. 10(2): p. 100-11.
79.Pegg, A.E., Regulation of ornithine decarboxylase. J Biol Chem, 2006. 281(21): p. 14529-32.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊