跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李孟容
研究生(外文):Meng-Jung Lee
論文名稱:利用表面增強拉曼光譜技術偵測腸道沙門氏菌: 以亞種第一類中常見血清型為例
論文名稱(外文):Detection of Salmonella enterica by surface enhanced raman spectroscopy- the common serotypes in subspecies Ⅰ
指導教授:劉宏仁劉宏仁引用關係楊程堯
口試委員:李滋泰李晏忠
口試日期:2018-07-09
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學院碩士在職專班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:83
中文關鍵詞:表面增強拉曼光譜腸道沙門氏菌特徵波峰
外文關鍵詞:Surface enhanced raman spectroscopySalmonella entericacharacteristic peaks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
沙門氏菌為全球常見之人畜共通傳染病之一。因沙門氏菌所引起之食物中毒,造成嚴重之嘔吐及下痢等症狀,甚至引發其他併發症而導致死亡。在畜牧場,沙門氏菌造成嚴重之經濟損失主要病原之一。因此,快速且準確之診斷沙門氏菌顯得格外重要。由於沙門氏菌之血清型種類繁多,根據ISO 6579:2002分離沙門氏菌之檢測標準方法,檢驗流程耗時約6天,且操作步驟繁瑣。因此,本研究擬藉由表面增強拉曼光譜(Surface enhanced spectroscopy)技術,建立一快速且準確之檢測方法,達到偵測及區分沙門氏菌之目的。本次試驗選用之8種不同血清型沙門氏菌 (S. choleraesuis、S. enteritidis、S. typhi、S. typhimurium、S. dublin、S. newport、S. paratyphi A、S. paratyphi B),以表面增強拉曼光譜檢測方法與傳統的分子生物學及細菌培養方法,比較檢測沙門氏菌血清型別之特異性及靈敏度。由本研究結果得知,以表面增強拉曼光譜波數(wavenumber) 500~1600 cm-1位置,可見不同的血清型之沙門氏菌株,不同血清型在波數位置558 cm-1、726~735 cm-1、950 cm-1、1043~1051 cm-1、1272~1293 cm-1具有獨特的特徵波峰。依不同血清型沙門氏菌特徵波峰的相似程度,可將這8種沙門氏菌歸類為3組:S. paratyphi A及S. paratyphi B;S. enteritidis、S. typhi、S. typhimurium及S. newport;S. choleraesuis 及S. dublin。選擇取不同血清型的特徵波峰作為變數依據,輔以主成份統計方法分析,可有效提升本方法之特異性,可將這8種血清型之沙門氏菌由歸類為3組提升到至少可區分6個血清型別。此外,在鑑定沙門氏菌所需的時間,不計算預增菌培養步驟所需時間,可縮短至1小時完成。本研究證實,表面增強拉曼光譜檢測方法應用於偵測沙門氏菌,其操作方法簡單、有效地縮短檢測時間且具檢測專一性的特性。如以不同血清型沙門氏菌之特徵波峰,建立更完整之沙門氏菌拉曼光譜參考資料庫,未來適合應用於食品加工廠或畜產品加工廠之品質管制、畜牧場沙氏桿菌環境監測,沙氏桿菌監測等,具在特定檢測領域具有取代傳統檢測方法之潛力。
Salmonella spp. is one of the common zoonosis in the worldwide. However, food poison caused by Salmonella spp., causes severe vomiting, diarrhea and other symptoms, and lead to other complications leading to death. In livestock ranches, it is one of the main reasons of serious economic losses. Therefore, to diagnose rapidly and accurately Salmonella become particularly important. There are many kind of serotypes of Salmonella spp. and the classification are very complicated. According to ISO 6579:2002 standards, detection methods need to identify of Salmonella isolates, it often takes a lot of examination time. In this study, we would like to develop a rapid and accurate detection method surface enhanced raman spectroscopy, to detect and identify different serotypes of Salmonella. The results of this study, surface enhanced raman spectroscopy (SERS) spectra of the eight Salmonella serotypes, namely S. choleraesuis, S. enteritidis, S. typhi, S. 到B, several wavenumbers including 558 cm-1, 726-735 cm-1,950 cm-1 , 1043-1051 cm-1, and 1272-1293 cm-1 were observed. According to resemblances between characteristic peaks, Salmonella samples can be seperated to 3 groups: S. paratyphi A and S. paratyphi B; S. enteritidis, S. typhi, S. typhimurium and S. Newport; S. choleraesuis and S. dublin. Additional analytic process followed the principal component analysis (PCA) method, the specificity of SERS can be improved to achieve the purpose of distinguishing at least about six Salmonella serotypes. In addition, the detection time for distinguishing Salmonella serotypes can be shortened to 1 hour after the pre-incubation culture.We demonstrated that SERS is a simplely, specificity and effectively method for detecting Salmonella serotypes. After developing SERS wavenumber reference databank of Salmonella serotypes, which can be applied to quality control for food processing plants, meat processing factories, environmental monitoring of Salmonella serotypes. In specific target detection, SERS has the potential to replace traditional detection methods.
中文摘要 i
Abstract ii
表目次 vi
圖目次 vii
第一章、緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 實驗設計 1
第二章、文獻回顧 3
2.1 引發消化道疾病之沙門氏菌症事件回顧 3
2.2 消化道型沙門氏菌 3
2.3 拉曼散射(Raman scattering)介紹 4
2.4 表面增強拉曼光譜原理(Surface enhanced Raman spectroscopy) 4
2.5 表面增強拉曼光譜檢測法發展沿革 4
2.6 表面增強拉曼光譜在細菌偵測上之應用 5
2.7 沙門氏菌多重基因之引用及應用 5
第三章、材料與方法 6
3.1 生物材料及來源 6
3.1.1 菌種活化及保存 6
3.1.2 測試樣本製備 6
3.1.3 沙門氏菌血清型分析─多重聚合酶連鎖反應法 7
3.1.4 沙門氏菌血清型分析─選擇性培養基法 9
3.1.5 聚合酶鏈連鎖反應之檢測靈敏度 10
3.1.6 沙門氏菌測試濃度 11
3.2 表面增強拉曼光譜測定 11
3.2.1 表面增強拉曼活性基板(SERS-chip) 11
3.2.2 表面增強拉曼光譜儀偵測條件及結果分析 11
第四章、結果 12
4.1 沙門氏菌分型及增菌 12
4.1.1 多重聚合酶鏈連鎖反應檢測不同血清型之沙門氏菌 12
4.1.2 選擇性培養基鑑別不同血清型之沙門氏菌 12
4.1.3 利用invA 基因獲得PCR檢測極限 13
4.1.4 沙門氏菌濃度計數 13
4.2 表面增強拉曼光譜技術於沙門氏菌血清鑑別測定 13
4.2.1 不同血清型之沙門氏菌特徵波峰決定 13
4.2.2 特徵波峰再現性 14
4.2.3 拉曼光譜技術偵測靈敏度分析 14
4.2.4 主成份分析結果(Principle component analysis) 15
第五章、討論 16
第六章、結論 19
第七章、參考文獻 62
附錄一、菌瓶開封與活化 66
附錄二、PCR產物之序列比對結果 67
附錄三、作者簡介 83
Abdeldaim, G.M., Stralin, K., Olcen, P., Blomberg, J., and Herrmann, B. (2008). Toward a quantitative DNA-based definition of pneumococcal pneumonia: a comparison of Streptococcus pneumoniae target genes, with special reference to the Spn9802 fragment. Diagn Microbiol Infect Dis 60, 143-150.

Chousalkar, K., Gast, R., Martelli, F., and Pande, V. (2018). Review of egg-related salmonellosis and reduction strategies in United States, Australia, United Kingdom and New Zealand. Crit Rev Microbiol 44, 290-303.

Coburn, B., Grassl, G.A., and Finlay, B.B. (2007). Salmonella, the host and disease: a brief review. Immunol Cell Biol 85, 112-118.

Desai, P.T., Porwollik, S., Long, F., Cheng, P., Wollam, A., Bhonagiri-Palsikar, V., Hallsworth-Pepin, K., Clifton, S.W., Weinstock, G.M., and McClelland, M. (2013). Evolutionary Genomics of Salmonella enterica Subspecies. mBio 4.

Efrima, S., and Bronk, B.V. (1998). Silver Colloids Impregnating or Coating Bacteria. J Phys Chem B 102, 5947–5950.

Fleischmann, M., Hendra, P.J., and McQuillan, A.J. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 26, 163-166.

Gast, R.K., Guraya, R., and Guard, J. (2013). Salmonella enteritidis deposition in eggs after experimental infection of laying hens with different oral doses. J Food Prot 76, 108-113.

Gould, L.H., Walsh, K.A., Vieira, A.R., Herman, K., Williams, I.T., Hall, A.J., Cole, D., Centers for Disease, C., and Prevention (2013). Surveillance for foodborne disease outbreaks - United States, 1998-2008. MMWR Surveill Summ 62, 1-34.

Guzelian, A.A., Sylvia, J.M., Janni, J.A., Clauson, S.L., and Kevin, M. (2002). SERS of whole cell bacteria and trace levels of biological molecules. Vibrational Spectroscopy-based Sensor Systems 4577, 182-192.

Harvey, R.R., Heiman Marshall, K.E., Burnworth, L., Hamel, M., Tataryn, J., Cutler, J., Meghnath, K., Wellman, A., Irvin, K., Isaac, L., et al. (2017). International outbreak of multiple Salmonella serotype infections linked to sprouted chia seed powder - USA and Canada, 2013-2014. Epidemiol Infect 145, 1535-1544.

Ho, Y.N., Tsai, H.C., Hsu, B.M., and Chiou, C.S. (2018). The association of Salmonella enterica from aquatic environmental and clinical samples in Taiwan. Sci Total Environ 624, 106-113.

Jarvis, R.M., Brooker, A., and Goodacre, R. (2006). Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discuss 132, 281-292

Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., and Feld, M.S. (1997). Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys Rev Lett 78, 1667-1670.

Lee, K.-M., Runyon, M., Herrman, T.J., Phillips, R., and Hsieh, J. (2015). Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food Control 47, 264-276.

Lesser-Rojas, L., Sriram, K.K., Liao, K.T., Lai, S.C., Kuo, P.C., Chu, M.L., and Chou, C.F. (2014). Tandem array of nanoelectronic readers embedded coplanar to a fluidic nanochannel for correlated single biopolymer analysis. Biomicrofluidics 8, 016501.

Lim, J.Y., Nam, J.S., Yang, S.E., Shin, H., Jang, Y.H., Bae, G.U., Kang, T., Lim, K.I., and Choi, Y. (2015). Identification of Newly Emerging Influenza Viruses by Surface-Enhanced Raman Spectroscopy. Anal Chem 87, 11652-11659.

Liu, T.Y., Chen, Y., Wang, H.H., Huang, Y.L., Chao, Y.C., Tsai, K.T., Cheng, W.C., Chuang, C.Y., Tsai, Y.H., Huang, C.Y., et al. (2012). Differentiation of bacteria cell wall using Raman scattering enhanced by nanoparticle array. J Nanosci Nanotechnol 12, 5004-5008.

Mallinson, E.T., Miller, R.G., de Rezende, C.E., Ferris, K.E., deGraft-Hanson, J., and Joseph, S.W. (2000). Improved plating media for the detection of Salmonella species with typical and atypical hydrogen sulfide production. J Vet Diagn Invest 12, 83-87.

Moganedi, K.L.M., Goyvaerts, E.M.A., Venter3, S.N. and Sibara, M.M. (2007). Optimisation of the PCR-invA primers for the detection of Salmonella in drinking and surface waters following a pre-cultivation step. Water SA 13, 195-202.

Mosier-Boss, P.A. (2017). Review on SERS of Bacteria. Biosensors 7, 1-26.

Negri, P., and Dluhy, R.A. (2013). Detection of genetic markers related to high pathogenicity in influenza by SERS. Analyst 138, 4877-4884.

Nie, S., and Emory, S.R. (1997). Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 275, 1102-1106.

Noble, R.T., and Weisberg, S.B. (2005). A review of technologies for rapid detection of bacteria in recreational waters. J Water Health 3, 381-392.

Park, S.H., Kim, H.J., Cho, W.H., Kim, J.H., Oh, M.H., Kim, S.H., Lee, B.K., Ricke, S.C., and Kim, H.Y. (2009). Identification of Salmonella enterica subspecies I, Salmonella enterica serovars Typhimurium, Enteritidis and Typhi using multiplex PCR. FEMS Microbiol Lett 301, 137-146.

Petry, R., Schmitt, M., and Popp, J. (2003). Raman spectroscopy--a prospective tool in the life sciences. Chemphyschem 4, 14-30.

Premasiri, W.R., Moir, D.T., Klempner, M.S., Krieger, N., Jones, G., and Ziegler, L.D. (2005). Characterization of the surface enhanced raman scattering (SERS) of bacteria. J Phys Chem B 109, 312-320.

Rahn, K., De Grandis, S.A., Clarke, R.C., McEwen, S.A., Galan, J.E., Ginocchio, C., Curtiss III , R., and Gyles, C.L. (1992). Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6, 271-279.

Rambach, A. (1990). New plate medium for facilitated differentiation of Salmonella spp. from Proteus spp. and other enteric bacteria. Appl Environ Microbiol 56, 301-303.

Ruiz, J., Nunez, M.L., Diaz, J., Sempere, M.A., Gomez, J., and Usera, M.A. (1996). Note: comparison of media for the isolation of lactose-positive Salmonella. J Appl Bacteriol 81, 571-574.

Soderqvist, K. (2017). Is your lunch salad safe to eat? Occurrence of bacterial pathogens and potential for pathogen growth in pre-packed ready-to-eat mixed-ingredient salads. Infect Ecol Epidemiol 7, 1407216.
Sun, Y., Xu, L., Zhang, F., Song, Z., Hu, Y., Ji, Y., Shen, J., Li, B., Lu, H., and Yang, H. (2017). A promising magnetic SERS immunosensor for sensitive detection of avian influenza virus. Biosens Bioelectron 89, 906-912.

Tien, N., Chen, H.C., Gau, S.L., Lin, T.H., Lin, H.S., You, B.J., Tsai, P.C., Chen, I.R., Tsai, M.F., Wang, I.K., et al. (2016). Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy. Clin Chim Acta 461, 69-75.

Turner, R.D., Vollmer, W., and Foster, S.J. (2014). Different walls for rods and balls: the diversity of peptidoglycan. Mol Microbiol 91, 862-874.

Way, J.S., Josephson, K.L., Pillai, S.D., Abbaszadegan, M., Gerba, C.P., and Pepper, I.L. (1993). Specific detection of Salmonella spp. by multiplex polymerase chain reaction. Appl Environ Microbiol 59, 1473-1479.

Witkowska, E., Korsak, D., Kowalska, A., Ksiezopolska-Gocalska, M., Niedziolka-Jonsson, J., Rozniecka, E., Michalowicz, W., Albrycht, P., Podrazka, M., Holyst, R., et al. (2017). Surface-enhanced Raman spectroscopy introduced into the International Standard Organization (ISO) regulations as an alternative method for detection and identification of pathogens in the food industry. Anal Bioanal Chem 409, 1555-1567.

Wu, X., Xu, C., Tripp, R.A., Huang, Y.W., and Zhao, Y. (2013). Detection and differentiation of foodborne pathogenic bacteria in mung bean sprouts using field deployable label-free SERS devices. Analyst 138, 3005-3012.

Zhai, L., Kong, X., Lu, Z., Lv, F., Zhang, C., and Bie, X. (2014). Detection of Salmonella enterica serovar Dublin by polymerase chain reaction in multiplex format. J Microbiol Methods 100, 52-57.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top