跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐啟桄
研究生(外文):Chi-Kuang Hsu
論文名稱:挖仔尾紅樹林與七股紅樹林食物網模式之比較分析
論文名稱(外文):Comparison of mangrove trophic models in Wazihwei and Qigu
指導教授:林幸助林幸助引用關係
口試委員:劉弼仁仁秀慧
口試日期:2018-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學院碩士在職專班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:61
中文關鍵詞:Ecopath營養結構網絡分析生態系Lindeman食物鏈物質傳輸模式
外文關鍵詞:EcopathTrophic structureNetwork analysisecosystemLindeman Spine
相關次數:
  • 被引用被引用:2
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
生態系是由生物因數與非生物因數透過彼此間的交互作用而組成。許多研究中常以特定生物或因數進行研究,卻未將因數間的交互作用考慮進來。臺灣至今仍缺乏紅樹林食物網模式,因此本研究利用Ecopath with Ecosim軟體,建構挖仔尾紅樹林及七股紅樹林兩地不同樹種的食物網模式,嘗試將生物間複雜的食性關係簡化,探討整個紅樹林生態系結構與功能,並且進一步嘗試釐清影響兩地紅樹林生態系結構的主要因數,以期未來可以針對紅樹林的保育提出建言。使用食物網模式進行研究的主要原因為相較於其他研究生態系方法,食物網模式較不受時、空尺度限制,亦能節省成本,並可對龐大且複雜的生態系統進行全方面性的研究。由Lindeman食物鏈物質傳輸模式結果顯示,挖仔尾紅樹林系統中總系統流量主要集中於營養階層I(59.15%);七股紅樹林系統中總系統流量亦集中於營養階層I(87.41%)。在挖仔尾紅樹林及七股紅樹林中,能量流都主要集中在初級生產者以及碎屑,且較高階的消費者都因為其生物量過低而造成能量平均傳輸效率低。在挖仔尾紅樹林系統中,關鍵生物指數較高的功能群為甲殼類、食魚性鳥類以及浮游動物;七股紅樹林系統中較高關鍵生物指數的類群則為大型肉食性鳥類、軟體動物及肉食性軟體動物。由生態系指數中可以發現,兩個紅樹林都處於發展中的生態系,再由基礎生產量及總呼吸量比值(P:R)中可以發現,挖仔尾紅樹林成熟度較高。挖仔尾紅樹林生態系的Finn’s cycling index較七股紅樹林高,顯示物質循環在挖仔尾紅樹林比例較高,其單位能量流支持的Finn’s mean path也比較高。透過A/C值與O/C值比較發現,挖子尾紅樹林相比七股紅樹林,結構雖比較不穩定,但其受到擾動後的回復力卻比七股紅樹林較高一些。台灣與國際間紅樹林相比,面積相對小,但論系統成熟度及整體活力和國際間紅樹林相比各有高低,顯示紅樹林面積大小並非影響紅樹林結構的主因。位於台灣的挖仔尾紅樹林以及七股紅樹林,構成紅樹林的樹種不同,不同樹種對食物網結構確實造成差異,但樹種差異所造成之影響程度仍須後續探討。
The ecosystem is constituted through the interactions between biological factors and abiotic factors. Many studies were often conducted on specific organisms or factors, but failed to take into account the interactions between these factors. At present, there is still a lack of the trophic model of a mangrove ecosystem in Taiwan. Therefore, this study applies the software system of Ecopath with Ecosim to construct trophic models of mangrove ecosystems of two different mangrove species in Wazihwei and Qigu, respecitively. The structure and functioning of the entire mangrove ecosystems will be investigated to further clarify the main factors affecting the structures and energy flows of the mangrove ecosystems at the two places, with a hope to provide constructive advices for the conservation of mangroves in the future. The main reason for using the trophic model is that comparing to other methods, the trophic model is less subject to the time and space scales. It can also save costs, and be feasible for a full-scale study on a whole ecosystem. The results of the Lindeman Spine show that the overall system flow in the Wazihwei mangroves was mainly concentrated in Trophic Level I (59.15%), and the overall system flow in the Qigu mangroves was also mainly concentrated in Trophic Level I (87.41%). In the Wazihwei and Qigu mangroves, the energy flow was mainly concentrated in the primary producers and detritus, and the higher-order consumers have the lower transfer efficiency on average owing to the overly low biomass. In the Wazihwei mangroves , the functional groups with higher keystone indices were crustaceans, fish-eating birds and zooplanktons. Meanwhile, in the Qigu mangroves, the functional groups with higher keystone indices were large carnivorous birds, molluscs and carnivorous molluscs. It can be found based on ecosystem indices that both mangroves were in the developmental phase. It can also be found from the ratio of the primary production to the total respiration (P:R) that the mangroves in Qigu were more mature. The Finn's cycling index of the Wazihwei mangroves was higher than that of the Qigu mangroves, indicating that the proportion of cycling matter was higher in the Wazihwei mangroves, and the Finn's mean path length was also higher. Comparing the A/C value and the O/C value, it is found that though the Wazihwei mangroves had a more unstable structure than the Qigu mangroves, the recovery capacity of the Wazihwei mangroves after disturbance was higher than that of the Qigu mangroves. Compared with the mangroves at other location, Taiwan’s mangroves had a relatively small area. However, the system maturity and overall vitality are comparable to those of other mangroves, indicating that the area of mangroves did not matter with mangrove structure. The Wazihwei mangrovea and the Qigu mangroves in Taiwan were constituted of different mangrove species. Different tree species did make a difference in the structure of food web, but the influence of location cannot be excluded. The extent of influence caused by the differences in tree species still needs further study.
中文摘要.............................................................i
英文摘要.............................................................ii
目錄.................................................................iv
圖目錄...............................................................vi
表目錄..............................................................vii
第一章、 前言........................................................1
一、 濕地與沿海濕地的定義及其重要性.......................1
二、 生態系........................................................1
三、 紅樹林的種類與功能............................................2
四、 食物網模式....................................................2
五、 研究動機與目標................................................3
第二章、 材料與方法..................................................4
一、 研究地點簡介.................................................4
二、 食物網模式...................................................4
1. 食物網模式原理與假設.......................................4
2. 功能群設定與參數輸入..........................................6
(1) 浮游藻.....................................................6
(2) 底棲藻.....................................................6
(3) 紅樹林.....................................................7
(4) 浮游動物...................................................7
(5) 甲殼類.....................................................7
(6) 環節動物...................................................7
(7) 軟體動物...................................................7
(8) 肉食性軟體動物.............................................8
(9) 雜食性魚類.................................................8
(10) 濾食性魚類...............................................8
(11) 肉食性魚類...............................................8
(12) 雜食性鳥類...............................................8
(13) 小型肉食鳥類.............................................9
(14) 大型肉食鳥類.............................................9
(15) 食魚性鳥類...............................................9
(16) 外來肉食性鳥類...........................................9
(17) 猛禽.....................................................9
(18) 有機碎屑.................................................9
3. 食物網模式驗証與平衡......................................15
4. 模式輸出與網絡分析........................................16
(1) 有效營養階層、傳輸效率、Lindeman 食物鏈物質傳輸模式.....16
(2) 綜合營養衝擊及關鍵生物指數...............................16
(3) 生態系指數...............................................17
① 能量流與生物量指數......................................18
② 碎屑食物鏈與植食性食物鏈流量比值(D:H ratio)..............18
(4) 食物網複雜度.............................................19
(5) 循環分析指數.............................................19
(6) 訊息理論指數.............................................19
第三章、 結果.......................................................21
一、 模式平衡與驗證...............................................21
二、 營養結構與能量流分析.........................................21
三、 綜合營養衝擊與關鍵生物指數...................................31
四、 生態系指數...................................................36
第四章、 討論.......................................................38
一、 挖仔尾紅樹林與七股紅樹林生態系食物網模式之探討...............38
二、 生態系指數...................................................40
三、 挖仔尾與七股紅樹林與台灣其他生態系之比較.....................41
四、 挖仔尾與七股紅樹林和國際間其他紅樹林生態系之比較.............44
五、 挖仔尾紅樹林與七股紅樹林生態系特性...........................45
六、 研究限制與未來展望...........................................46
1. 七股紅樹林環節動物生物量.....................................46
2. 未納入昆蟲功能群.............................................46
3. 生物分佈均勻度...............................................47
4. 功能群生理特性..............................................47
5. 缺乏漁獲及遷出入資料........................................47
6. 樹種差異....................................................47
7. 模式範圍小..................................................47
第五章、 結論.......................................................53
第六章、 參考文獻...................................................54
丑慶川、徐華林、劉軍、史秀華。2014。福田紅樹林濕地生態系統 EWE 模型構建。生態學雜誌 33:1413-1419。
牛志遠、沈小雪、柴民偉、徐華林、李瑞利、邱國玉。2018。深圳灣福田紅樹林區水環境品質時空變化特徵。北京大學學報 (自然科學版) 54:137-145。
王瑁、王文卿。2006。紅樹林對養殖水體淨化作用的研究。第九屆全國河口海岸學術研討會論文。
王剛、張秋平、管東生。2016。紅樹林植物生物量沿緯度分佈特徵。濕地科學 14:259-270。
吳忠信。1992。新竹市海山罟紅樹林生物相之調查研究。師大生物學報27:97-111。
李世博。2015。台南七股紅樹林碳收支模式。國立中興大學生命科學系碩士論文。
李承錄。2015。熱帶海草床生態系對魚類資源的生態功能。國立中興大學生命科學系博士論文。
李晨華。2013。淡水河沿岸退潮後底棲生物群集生產量與呼吸量。國立中興大學生命科學系碩士論文。
林幸助、李麗華、邵廣昭、邱郁文、張原謀、許皓捷、陳宣汶、陳添水、劉弼仁、薛美莉、謝宗欣、謝蕙蓮、羅文增。2011。台江國家公園及周緣地區重要生物類群分佈及海岸濕地河口生態系變遷。PG10003-0819。國立中興大學、台江國家公園管理處。
林幸助、薛美莉、陳添水、何東輯。2009。濕地生態系生物多樣性監測系統標準作業程式。行政院農業委員會特有生物研究保育中心。
施上粟、黃國文、黃守忠、何一先。2017。105年新北市挖子尾自然保留區生態資源監測及社經資料收集工作。國立台灣大學,新北市政府農業局委託。
侯清賢、呂學榮、林幸助、潘靖汶、嚴國維。2014。氣候變遷及濕地生態系統變動對周邊漁產之影響。氣候變遷調適科技整合研究計畫-跨領域脆弱度評估組工作報告。
范孟雯、林瑞興、黃雅倫、林德恩。2006。台灣外來種陸域脊椎動物風險評估系統。特有生物研究 8:7-22。
範貴珠。2011。臺灣紅樹林之人工復育。林業研究專訊 18(4):25-30。
徐金柱、楊華、秦長生、揭育澤。2010。星天牛在紅樹植物海桑上的發生規律初步研究。第三屆中國森林保護學術大會論文摘要集。
張禾玫。2012。淡水河沿岸汙水處理型人工濕地生態系食物網模式之建構與比較分析。中興大學生命科學系所學位論文。
張國華、曹文宣、陳宜瑜。1997。湖泊放養漁業對我國湖泊生態系統的影響。水生生物學報:271-280。
陳柏宏。2014。淡水河紅樹林及草澤植物的碳儲存量與碳收支。中興大學生命科學系碩士論文。
黃郅凱。2013。台灣西南部臨海共域鷺科鳥類棲地利用與成群行為。國立成功大學生命科學系碩士論文
葉念慈。2007。鹽寮灣魚類群聚結構、同功群及生態系模式初步建構。國立臺灣海洋大學海洋生物研究所碩士論文。
劉光明、金建邦。2012。漁業管理新思維—以生態系為基礎。海大漁推:48-56。
潘靖汶。2016。雲林沿海浮游藻類生產力與生態系食物網模式建構。中興大學生命科學系碩士論文。
蔡函霓。2015。苗栗淺山溪流系統代謝暨食物網模式建構。中興大學生命科學系碩士論文。
鄭佾展。2007。蘭陽溪與七家灣溪流域生態系模式之比較分析。中興大學生命科學系碩士論文。
蕭亦婷。2006。台灣西部苗栗沿岸生態系模式建構及漁業政策探討。中興大學生命科學系碩士論文。
謝蕙蓮、陳韻如、林幸助、李培芬、李美惠、邵廣昭、王友慈、陳義雄、張聖琳。 2013。淡水河生態系生態功能及其生態服務價值評估; 子計畫-淡水河生態系統碳通量。行政院國家科學傳播委員會整合性計畫報告。
Abdel, M. 1980. The food and feeding interrelationships of fish in Lake Qarun (Egypt). Journal of Ichthyology 20:62-66.
Aksornkoae, S., G. S. Maxwell, S. Havanond, and S. Panichsuko. 1992. Plants in mangroves. Chalongrat, Bangkok, Thailand.
Albouy, C., D. Mouillot, D. Rocklin, J. M. Culioli, and F. Le Loc’h. 2010. Simulation of the combined effects of artisanal and recreational fisheries on a Mediterranean MPA ecosystem using a trophic model. Marine Ecology Progress Series 412:207-221.
Arias-Gonzalez, J., B. Delesalle, B. Salvat, and R. Galzin. 1997. Trophic functioning of the Tiahura reef sector, Moorea Island, French Polynesia. Coral Reefs 16:231-246.
Authority, E. F. S. 2009. Risk assessment for birds and mammals. EFSA Journal 7:1438.
Baird, D., and H. Milne. 1981. Energy flow in the Ythan estuary, Aberdeenshire, Scotland. Estuarine, Coastal and Shelf Science 13:455-472.
Barbier, E. B. 2000. Valuing the environment as input: review of applications to mangrove-fishery linkages. Ecological Economics 35:47-61.
Bauer, M. 2010. An Ecosystem Model of the Sacramento-San Joaquin Delta and Suisun Bay, California USA. (Master’s thesis, California State University). Retrieved from http://csuchico-dspace.calstate.edu/handle/10211.3/10211.4_254
Braysher, M., and G. Saunders. 2003. PestPlan ToolKit A guide to setting priorities and developing a management plan for pest animals, nd Natural Heritage Trust. Bureau of Rural Sciences, Australia.
Castellanos-Galindo, G., and U. Krumme. 2015. Tides, salinity, and biogeography affect fish assemblage structure and function in macrotidal mangroves of the neotropics. Ecosystems 18:1165-1178.
Castellanos-Galindo, G. A., J. Cantera, N. Valencia, S. Giraldo, E. Peña, L. C. Kluger, and M. Wolff. 2017. Modeling trophic flows in the wettest mangroves of the world: the case of Bahía Málaga in the Colombian Pacific coast. Hydrobiologia 803:13-27.
Christensen, V., and D. Pauly. 1992. ECOPATH II — a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61:169-185.
Christensen, V., C.J. Walters, D. Pauly. 2005. Ecopath with Ecosim: A User's Guide. Fisheries Centre University of British Columbia, Vancouver, Canada.
Colléter, M., D. Gascuel, J.-M. Ecoutin, and L. T. de Morais. 2012. Modelling trophic flows in ecosystems to assess the efficiency of marine protected area (MPA), a case study on the coast of Sénégal. Ecological Modelling 232:1-13.
Costanza, R., and M. Mageau. 1999. What is a healthy ecosystem? Aquatic Ecology 33:105-115.
Cowardin, L.M., V. Carter, F.C. Golet, E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. FWS/OBS-79/31. U.S. Fish and Wildlife Service, Washington, DC.
Dalsgaard, J., A. Jarre-Teichmann, C. Walters, and D. Pauly. 1998. An approach to the modelling of persistent pollutants in marine ecosystems. International Council for the Exploration of the Sea, ICES C.M. 10:72-91.
Dame, J. K., and R. R. Christian. 2006. Uncertainty and the use of network analysis for ecosystem-based fishery management. Fisheries 31:331-341.
Diehl, S. 1992. Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73:1646-1661.
Diele, K., V. Koch, and U. Saint-Paul. 2005. Population structure, catch composition and CPUE of the artisanally harvested mangrove crab Ucides cordatus (Ocypodidae) in the Caeté estuary, North Brazil: Indications for overfishing? Aquatic Living Resources 18:169-178.
Fetahi, T. 2010. Plankton communities and ecology of tropical lakes Hayq and Awasa, Ethiopia. University of Vienna, Austria.
Finn, J. T. 1976. Measures of ecosystem structure and function derived from analysis of flows. Journal of Theoretical Biology 56:363-380.
Finn, J. T. 1980. Flow analysis of models of the Hubbard Brook ecosystem. Ecology 61:562-571.
Forrestal, F., and F. Menard. 2016. Preliminary model examining the effects of the tuna purse-seine fishery on the ecosystem of the gulf of guinea. Collective Volume of Scientific Papers. ICCAT 72:1984-1997.
Fulton, E. A., A. D. Smith, and C. R. Johnson. 2003. Effect of complexity on marine ecosystem models. Marine Ecology Progress Series 253:1-16.
Hamilton, S. E., and D. Casey. 2016. Creation of a high spatio‐temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC‐21). Global Ecology and Biogeography 25:729-738.
Heck, K.L.J., and L.B. Crowder. 1991. Habitat structure and predator-prey interactions in vegetated aquatic systems. pp. 281-299. In S.S. Bell, E.D. Mccoy, H.R. Mushinsky eds. Habitat Structure: The Physical Arrangement of Objects in Space,1st ed. Chapman and Hall, London.
Ho, C.W., Huang, J.S., Lin, H.J. 2017. Effects of tree thinning on carbon sequestration in mangroves. Marine and Freshwater Research 69:741-750.
Holling, C.S. 1986. The resilience of terrestrial ecosystems: local surprise and global change. In C. W.C. and M. R.E., editors. Sustainable development of the biosphere. Cambridge University Press, UK.
Hutchings, P., and P. Saenger. 1987. Ecology of mangroves. Ecology of mangroves. University of Queensland Press, Australia.
Jørgensen, S. E. 1997. Ecological Modelling by ‘Ecological Modelling’. Ecological Modelling 100:5-10.
Jørgensen, S.E., B.D. Fath, S. Bastianoni, J.C. Marques, F. Muller, S.N. Nielsen, B.C. Patten, E. Tiezzi, R.E. Ulanowicz. 2007. A New Ecology: Systems Perspective, 1st ed. Oxford: Elsevier, Amsterdam, The Netherland.
Kay, J.J., L.A. Graham, R.E. Ulanowicz. 1989. A detailed guide to network analysis, pp 15-61. In F. Wulff, J.G. Field, K.H. Mann eds. Network analysis in marine ecology, Methods and Applications. Springer-Verlag, Berlin, Germany.
Knight, R. L. 1992. Ancillary benefits and potential problems with the use of wetlands for nonpoint source pollution control. Ecological Engineering. 1:97-113.
Koch, V. 1999. Epibenthic production and energy flow in the Caeté mangrove estuary, North Brazil. Zentrum für Marine Tropenökologie, Germany.
Krebs, C. J. 1972. Ecology: the experimental analysis of distribution and abundance. Harper and Row, New York.
Kristensen, E., S. Bouillon, T. Dittmar, and C. Marchand. 2008. Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany 89:201-219.
Li, S. B., Chen, P.H., Huang, J.S., Hsueh, M.L., Hsieh, L.Y., Lee, C.L., Lin, H.J. 2018. Factors regulating carbon sinks in mangrove ecosystems. Global Change Biology. 24:4195-4210.
Libralato, S., V. Christensen, and D. Pauly. 2006. A method for identifying keystone species in food web models. Ecological Modelling 195:153-171.
Lin, H.J., Dai, X.X., Shao, K.T., Su, H.M., Lo, W.T., Hsieh, H.L., Fang, L.S., Hung, J.J. 2006. Trophic structure and functioning in a eutrophic and poorly flushed lagoon in southwestern Taiwan. Marine Environmental Research 62:61-82.
Lin, H.J., Peng, T.R., Cheng, I.C., Chen, L.W., Kuo, M.H., Tzeng, C.S., Tsai, S.T., Yang, J.T., Wu, S.H., Sun, Y.H. 2012. Trophic model of the subtropical headwater stream habitat of Formosan landlocked salmon Oncorhynchus formosanus. Aquatic Biology 17:269-283.
Lin, H.J., Shao, K.T., Kuo, S.R., Hsieh, H.L., Wong, S.L., Chen, I.M., Lo, W.T., Hung, J.J. 1999. A trophic model of a sandy barrier lagoon at Qigu in southwestern Taiwan. Estuarine, Coastal and Shelf Science 48, 575-588.
Lin, H.J., Shao, K.T., Hwang, J.S., Lo, W.T., Cheng, I.J., Lee, L.H. 2004. A trophic model for Kuosheng Bay in northern Taiwan. Journal of Marine Science and Technology, 12, 424-432.
Lin, H.J., Shao, K.T., Jan, R.Q., Hsieh, H.L., Chen, C.P., Hsieh, L.Y., Hsiao, Y.T. 2007. A trophic model for the Danshuei River Estuary, a hypoxic estuary in northern Taiwan. Marine Pollution Bulletin, 54, 1789-1800.
Lindeman, R. L. 1942. The trophic‐dynamic aspect of ecology. Ecology 23:399-417.
Liu, P.J., Shao, K.T., Jan, R.Q., Fan, T.Y., Wong, S.L., Hwang, J.S., Chen, J.P., Chen, C.C., Lin, H.J. 2009. A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing. Marine Environmental Research. 68:106-117.
Liu, W.C., Chen, H.W., F. Jordan, Lin, W.H., Liu, C.W.J. 2010. Quantifying the interaction structure and the topological importance of species in food webs: a signed digraph approach. Journal of Theoretical Biology 267:355-362.
Marion, L. 2013. Is the Sacred ibis a real threat to biodiversity? Long-term study of its diet in non-native areas compared to native areas. Comptes Rendus Biologies 336(4):207-220.
McNaughton, S.J. and L.L. Wolf. 1973. General ecology. Holt, Rinehart and Winston, Inc., New York.
Mitsch, W.J. and J.G. Gosselink. 2000. Wetland (3rd). New York: John Wiley & Sons, Inc., Hoboken, N.J.
Molles, M. C., J. F. Cahill, and A. Laursen. 2015. Ecology: concepts and applications. McGraw-Hill Education, New York.
Moreau, J., K. Mavuti, and T. Daufresne. 2001. A synoptic Ecopath model of biomass flows during two different static ecological situations in Lake Nakuru (Kenya). Hydrobiologia 458:63-74.
Morissette, L. 2007. Complexity, cost and quality of ecosystem models and their impact on resilience: a comparative analysis, with emphasis on marine mammals and the Gulf of St. Lawrence.Ph.D. thesis. University of British Columbia, Canada.
Mumby, P. J., A. J. Edwards, J. E. Arias-González, K. C. Lindeman, P. G. Blackwell, A. Gall, M. I. Gorczynska, A. R. Harborne, C. L. Pescod, and H. Renken. 2004. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533.
Munro, J. 1967. The food of a community of East African freshwater fishes. Journal of Zoology 151:389-415.
Nixon, S. W. 1982. Nutrient dynamics, primary production and fisheries yields of lagoons. Oceanologica Acta 4:357-371.
Odum, E. P. 1969. The strategy of ecosystem development. Science 164:262-270.
Odum, W., and E. Helad. 1975. The detritus based food web o fan estuarine mangroves community. Ecological Studies 10:129-136.
Opitz, S. 1996. Trophic interactions in Caribbean coral reefs. WorldFish.
Parsons, T.R., Takahashi, M., Hargrave, B. 1984. Biological Oceanographic Processes (3rd). Pergamon, New York.
Patten, B. C., S. E. Jørgensen, and G. M. Van Dyne. 1994. Complex ecology: the part-whole relation in ecosystems: in memoriam George Mason Van Dyne, 1932-1981. Prentice Hall, New Jersey.
Phong, L.T., A.A. van Dam, H.M.J. Udo, M.E.F. Van Mensvoort, L.Q. Tri, F.A. Steenstra, A.J. Van der Zijpp. 2010. An agro-ecological evaluation of aquaculture integration into farming systems of the Mekong Delta. Agriculture, Ecosystems & Environment. 138(3-4):232-241.
Pimm, S.L. 1982. Food webs. Chapman and Hall, London.
Polovina, J. 1984. Model of coral reef ecosystem. Coral Reefs 3:1-11.
Power, M.E., D. Tilman, J.A. Estes, B.A. Menge, W.J. Bond, L.S. Mills, G. Daily, J.C. Castilla, J. Lubchenco, R.T. Paine. 1996. Challenges in the quest for keystones. BioScience 46(8):609-620.
Raffaelli, D.G. and C.L.J. Frid. 2010. Ecosystem Ecology: A New Synthesis(Ecological Reviews). Cambridge University Press, Cambridge, UK.
Raoux, A., S. Tecchio, J.P. Pezy, G. Lassalle, S. Degraer, D. Wilhelmsson, M. Cachera, B. Ernande, C. Le Guen, and M. Haraldsson. 2017. Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning? Ecological Indicators 72:33-46.
Robertson, A., and S. Blaber. 1992. Plankton, epibenthos and fish communities. Tropical Mangrove Ecosystems, Coastal and Estuarine Studies 41:172-224.
Robertson, A., and P. Daniel. 1989. The influence of crabs on litter processing in high intertidal mangrove forests in tropical Australia. Oecologia 78:191-198.
Rutledge, R. W., B. L. Basore, and R. J. Mulholland. 1976. Ecological stability: an information theory viewpoint. Journal of Theoretical Biology 57:355-371.
Schelske, C. L., and E. P. Odum. 1962. Mechanisms maintaining high productivity in Georgia estuaries. Proceedings of the Gulf and Caribbean Fisheries Institute 14: 75–80
Sheue, C.R. 2003. Comparative morphology and anatomy of the eastern mangrove Rhizophoraceae. Unpublished D. Phil. thesis, National Sun Yatsen University, Kaohsiung, Taiwan.
Shih, S.S., Yang, S.C., Lee, H.Y., Hwang, G.W., Hsu, Y.M. 2011. Development of a salinity-secondary flow-approach model to predict mangrove spreading. Ecological Engineering 37:1174-1183.
Simon, L., and F. Emilien. 2016. A Trophic Structure Model of the Douala-Edea Reserve Mangrove (Cameroon) with Consideration of Sustainable Utilization of its Resources. International Journal of Science and Research. 5:264-271.
Simon, L. N., and D. Raffaelli. 2016. A Trophic Model of The Cameroon Estuary Mangrove With Simulations Of Mangrove Impacts. International Journal of Scientific and Technology Research. 5:137-155.
Smith, T.J., III, K.G. Boto, S.D. Frusher, R. L. Giddins. 1991. Keystone species and mangrove forest dynamics: the influence of burrowing by crabs on soil nutrient status and forest productivity. Estuarine, Coastal and Shelf Science 33:419-432.
Tansley, A. G. 1935. The use and abuse of vegetational concepts and terms. Ecology. 16:284-307.
Turner, J.T. 1998. Feeding ecology of marine copepods: an overview of recent
studies and emerging issues. National Taiwan Museum Special Publication Series 10:37- 57.
Ulanowicz, R. E. 1986. Growth and development: Ecosystems Phenomenology. Springer-Verlag, New York.
Ulanowicz, R. E., and C. Puccia. 1990. Mixed trophic impacts in ecosystems. Coenoses:7-16.
Ulanowicz, R. E. 2001. Information theory in ecology. Computers & Chemistry 25:393-399.
Vancouver, P. M. 2015. Roberts Bank Terminal 2 Project. Vancouver Fraser Port Authority, Canada.
Vermaat, J. E., and U. Thampanya. 2006. Mangroves mitigate tsunami damage: A further response. Estuarine, Coastal and Shelf Science. 69:1-3.
Villasante, S., F. Arreguín-Sánchez, J. Heymans, S. Libralato, C. Piroddi, V. Christensen, and M. Coll. 2016. Modelling marine ecosystems using the Ecopath with Ecosim food web approach: new insights to address complex dynamics after 30 years of developments. Elsevier. 331:1-4.
Walters, C., D. Pauly, and V. Christensen. 1999. Ecospace: prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2:539-554.
Wolff, M., V. Koch, and V. Isaac. 2000. A trophic flow model of the Caeté mangrove estuary (North Brazil) with considerations for the sustainable use of its resources. Estuarine, Coastal and Shelf Science. 50:789-803.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊