跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭晉維
研究生(外文):Chin-Wei Kuo
論文名稱:阿拉伯芥 YPEL 基因 AtYIP1 對抑制細胞分裂調控之功能分析研究
論文名稱(外文):Functional analysis of yippee-like gene AtYIP1 in suppressing cell division in Arabidopsis thaliana.
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chang-Hsien Yang
口試委員:林彩雲呂維茗
口試委員(外文):Tsai-Yun LinWei-Ming Leu
口試日期:2018-07-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:81
中文關鍵詞:阿拉伯芥細胞分裂細胞週期
外文關鍵詞:Arabidopsiscell divisioncell cycleyippeeYPEL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
類yippee基因家族為真核生物細胞中一段保守序列區域,能與鋅離子鍵結並主要表現在細胞核,且與癌細胞複製相關。實驗室前人的研究結果指出,過表達yippee基因家族中的AtYIP1會在植株分生組織以外的各部位中皆有表現。與野生型阿拉伯芥相比,此類轉殖株生長矮小。而強烈性狀的表現株,根細胞與葉細胞可能出現不可逆轉的性狀。另一方面,AtYIP1表達RNA干擾的轉殖株能加快生長速度與提早開花。此外分析阿拉伯芥pAtYIP1::GUS轉殖株GUS之表現,顯示AtYIP1 mRNA的高表現量,但是蛋白質表現量顯著減少。因此推論AtYIP1是藉由持續的蛋白降解來達到精細的轉譯後調控。本研究首先藉由重新轉殖AtYIP1過表達與靜默基因構築載體來重現了擬南芥轉殖株的表現型。進一步的實驗發現在較矮小的35S::AtYIP1轉殖株中,AtYIP1基因的表現量較高。另一方面在不影響其他同源YPEL基因的表現下,藉由RNAi專一性抑制AtYIP1基因表現的植株個體較大。接著由植株葉片長與寬的記錄,作出轉殖植株生長的狀況統計,並估算AtYIP1基因轉殖株之間的相對生長速率。不同於AtYIP1過表達的轉殖株,將AtYIP1靜默只會加速生長速率。在葉片早期可以見到更多的細胞分裂與更大的細胞,但是葉片成熟後,細胞數與細胞大小將與野生型相近。此外在AtYIP1基因過表達與靜默的轉殖株T2子代性狀也有相近的結果。將35S::AtYIP1轉殖入Dr5::GFP的轉殖株,綠色螢光蛋白顯示出生長素在根部表現正常的濃度梯度分布,並顯示清楚的靜止中心位子。這可以證明AtYIP1基因表現量的多寡,只與根尖細胞的層數相關。實驗發現AtYIP1基因靜默與過表達會造成根部分生組織細胞生長加速或減緩的情形。藉由以上實驗確認AtYIP1對於細胞在分裂上的調控功能。有趣的是在過表達AtYIP1的強性狀轉殖株根尖分生組織細胞所觀察到的性狀,與SUMO E3 ligase相關基因研究報告所提到的hpy2突變株性狀相當相似,兩基因之間可能具有上下游的調控關係。
Yippee-like gene (YPEL) family are conserved proteins in all eukaryotic cell, contain a zinc-binding domain and localized in the nucleus, which inhibits cancer cell replication. In the previous study, ectopic expression of Arabidopsis yippee-like gene 1 (AtYIP1) significantly inhibited the growth of the leaf and root in transgenic Arabidopsis. In contrast, AtYIP1 RNA interference line grows faster and blooms earlier than wild-type plants. These results indicated that AtYIP1 prevents cell division and growth rate in Arabidopsis. A promoter::GUS assay indicated that AtYIP1 mRNA was highly expressed in all tissues except meristematic cells. However, the AtYIP1 proteins were constantly degraded in non-dividing cells. This result indicates that AtYIP1 is possibly controlled by post-translational regulation. In this study, further functional analysis confirmed the phenotypes observed in AtYIP1 overexpression and silencing Arabidopsis. We found that a high expression level of AtYIP1 was strongly associated with the small plant size in 35S::AtYIP1 Arabidopsis. In contrast, the more down-regulation of AtYIP1 expression, the larger plant size was produced in AtYIP1-RNAi Arabidopsis. The length and width of the leaves in transgenic plants were measured and the exquisite statistics of different transgenic lines were set up, and draught the relative growth rate between AtYIP1 transgenic plant. The result indicated that the silence of AtYIP1 only speeds up the growth rate. More cell division and larger cell size were observed in AtYIP1-RNAi than in wild-type plants in the early stage of leaf development. However, similar cell number and cell size were observed in mature leave of the both. Besides, AtYIP1 overexpression and silencing of T2 plants showed similar phenotypes to their respective T1 plants. When 35S::AtYIP1 was introduced into Dr5::GFP transgenic plants, green fluorescence protein indicating the normal auxin gradient loop of root and demarcation site of the quiescent center was observed. Silencing or overexpression AtYIP1 will hasten or delay the growth rate of root meristem cell. In conclusion, we have proved the cell division suppressing of AtYIP1. Interestingly, the strong strait of overexpression AtYIP1 transgenic plant shows a similar feature with the hpy2 mutant plant, which is reported to be a SUMO E3 ligase related gene. It may have some association between them.
目次
壹、前言 1
 一、類yippee基因家族研究 1
 二、真核生物的細胞週期 2
(一)細胞週期簡介 2
(二)調控細胞週期的核心蛋白 3
(三)細胞週期的檢查點 4
(四)CDK調控細胞週期的速率與細胞分裂的結果 4
 三、植物分生組織 6
(一)植物的葉片發育 6
(二)植物的根部發育 7
 四、植物生長速率 9
 五、實驗室前人相關研究 10
貳、材料與方法 11
 一、實驗材料 11
 二、阿拉伯芥的種植與篩選 11
 三、菸草的種植 12
 四、阿拉伯芥總體核醣核酸之萃取(total RNA extraction) 12
 五、反轉錄增幅反應(reverse transcription, RT) 13
 六、聚合酶連鎖反應(polymerase chain reaction, PCR) 13
 七、即時定量聚合酵素連鎖反應(real-time PCR) 14
 八、瓊脂糖凝膠膠片之配製(preparation of agarose gel) 14
 九、瓊脂糖凝膠電泳(electrophoresis)與照膠紀錄 14
 十、限制酵素截切(digestion) 15
 十一、DNA片段純化與回收(gel extraction) 15
 十二、接合反應(ligation) 15
 十三、製備大腸桿菌勝任細胞(competent cell) 16
 十四、大腸桿菌勝任細胞轉形作用(transformation)與篩選 16
 十五、轉形細菌菌落聚合酶連鎖反應篩選(colony PCR) 16
 十六、萃取高純度小量質體DNA(extraction of plasmid DNA) 17
 十七、DNA自動定序與序列比對 17
 十八、製備農桿菌勝任細胞(competent cell) 17
 十九、農桿菌快速冷凍轉形(freeze-thaw method) 18
 二十、阿拉伯芥之基因轉殖 18
 二十一、基因轉殖株之篩選 18
 二十二、阿拉伯芥染色體DNA之萃取 18
 二十三、阿拉伯芥植株葉片長寬統計與相對生長速率計算方法 19
 二十四、共軛焦顯微鏡觀察(confocal laser microscopy) 19
 二十五、菸草初生苗基因浸潤轉殖(infiltration transformation) 19
 二十六、菸草基因鑑定葉片的挑選與鑑定方法 19
參、結果 20
 一、阿拉伯芥AtYIP1 cDNA的特性分析 20
 二、AtYIP1過表達與靜默的農桿菌 T1子代轉殖株生長情形的個體大小改變分析 20
 三、AtYIP1過表達與靜默的阿拉伯芥轉殖株對葉片形狀的影響 21
 四、AtYIP1 過表達與靜默的轉殖株對植株生長速率的影響 21
 五、35S::AtYIP1、35S::AtYIP1-GFP 轉殖株T1、T2子代的 AtYIP1 表現量提升 22
 六、AtYIP1 表現量在35S::AtYIP1 RNAi 轉殖株T1、T2子代被專一性的抑制 22
 七、AtYIP1 在 RNAi靜默下,阿拉伯芥葉片生長與細胞分裂速率加快,但不影響最終
的細胞大小與數量 22
 八、Dr5::GFP 阿拉伯芥的35S::AtYIP1與AtYIP1-RNAi轉殖株根部細胞分析 23
 九、本氏菸草Nicotiana benthamiana 過表達阿拉伯芥 AtYIP1之結果 24
 十、藉由CRISPR技術移去除阿拉伯芥植株YPEL基因表現,與假設AtYIP1的上游基
因HPY2之間的作用關係實驗 24
肆、討論 25
 一、AtYIP1表現量對阿拉伯芥植株個體生長情形的影響 25
 二、AtYIP1不影響葉片中央-側邊(medial-lateral)的極性 26
 三、AtYIP1對植株生長速率的影響 26
 四、探討RNAi對AtYIP1的抑制是否出現共抑制(cosuppression)現象 27
 五、AtYIP1對細胞分裂速率的調控 27
 六、觀察QC細胞標定以分析AtYIP1對根部分生組織細胞的影響 28
伍、實驗總結與未來研究方向 30

陸、參考文獻 31
Abrash EB, Bergmann DC.(2009)Asymmetric Cell Divisions: A View from Plant Development. Dev Cell. 16(6):783-96.

Aichinger E, Kornet N, Friedrich T, Laux T.(2012)Plant stem cell niches. Annu Rev Plant Biol. 63:615-36.

Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B.(2004)The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell. 119(1):109-20.

Aida M, Tasaka M.(2006)Genetic control of shoot organ boundaries. Curr Opin Plant Biol. 9(1):72-7.

Andrei N. Lupas, Hongbo Zhu, Mateusz Korycinski.(2015)The Thalidomide-Binding Domain of Cereblon Defines the CULT Domain Family and Is a New Member of the β-Tent Fold. PLoS Comput Biol. 11(1): e1004023.

Bar M, Ori N.(2014)Leaf development and morphogenesis. Development. 141(22):4219-30.

Barnum KJ, O'Connell MJ.(2014)Cell cycle regulation by checkpoints. Methods Mol Biol. 1170:29-40.

Baumann K.(2013)Plant cell biology: the roots of quiescence. Nat Rev Mol Cell Biol. 14(12):754.

Berberich SJ, Todd A, Tuttle R.(2011)Why YPEL3 represents a novel tumor suppressor. Front Biosci(Landmark Ed). 16:1746-51.

Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B.(2005)The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 433(7021):39-44.

Braybrook SA, Kuhlemeier C.(2010)How a Plant Builds Leaves. Plant Cell. 22(4): 1006–18.

Campilho A, Garcia B, Toorn HV, Wijk HV, Campilho A, Scheres B.(2006)Time-lapse analysis of stem-cell divisions in the Arabidopsis thaliana root meristem. Plant J. 48(4):619-27.

Cao L, Wang S, Venglat P, Zhao L, Cheng Y, Ye S, Qin Y, Datla R, Zhou Y, Wang H.(2018)Arabidopsis ICK/KRP cyclin-dependent kinase inhibitors function to ensure the formation of one megaspore mother cell and one functional megaspore per ovule. PLoS Genet. 14(3):e1007230.

Carnero A, Hannon GJ.(1998)The INK4 family of CDK inhibitors. Curr Top Microbiol Immunol. 227:43-55.

Chapman JE and Estelle M.(2009)Cytokinin and auxin intersection in root meristems. Genome Biol. 10(2): 210.

Chen M, Xia X, Zheng H, Yuan Z, Huang H.(2004)The GAOLAOZHUANGREN2 gene is required for normal glucose response and development of Arabidopsis. J Plant Res. 117(6):473-6.

Cheng Y, Cao L, Wang S, Li Y, Shi X, Liu H, Li L, Zhang Z, Fowke LC, Wang H, Zhou Y.(2013)Downregulation of multiple CDK inhibitor ICK/KRP genes upregulates the E2F pathway and increases cell proliferation, and organ and seed sizes in Arabidopsis. Plant J.75(4):642-55.

Cheng Y, Liu H, Cao L, Wang S, Li Y, Zhang Yuanyuan, Jiang W, Zhou Y, Wang H.(2015)Down-regulation of multiple CDK inhibitor ICK/KRP genes promotes cell proliferation, callus induction and plant regeneration in Arabidopsis Front Plant Sci. 6:825.

Chitwood DH, Guo M, Nogueira FT, Timmermans MC.(2007)Establishing leaf polarity: the role of small RNAs and positional signals in the shoot apex. Development. 134(5):813-23.

Cockcroft CE, den Boer BG, Healy JM, Murray JA.(2000)Cyclin D control of growth rate in plants. Nature. 405(6786):575-9.

Dangl JL, Preuss D, Schroeder JI.(1995)Talking through walls: signaling in plant development. Cell. 83(7):1071-7.

Del Bianco M, Kepinski S.(2011)Context, specificity, and self-organization in auxin response. Cold Spring Harb Perspect Biol. 3(1):a001578.

Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S.(2007)Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol. 17(8):678-82.

Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S.(2008)A genetic framework for the control of cell division and differentiation in the root meristem. Science. 322(5906):1380-4.

Dkhar J, Pareek A.(2014)What determines a leaf's shape? Evodevo. 5(1):47.

Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B.(1993)Cellular organisation of the Arabidopsis thaliana root. Development. 119(1):71-84.

Edgar BA, Orr-Weaver TL.(2001)Endoreplication cell cycles: more for less. Cell. 105(3):297-306.

Ercoli MF, Ferela A, Debernardi JM, Perrone AP, Rodriguez RE, Palatnik JF.(2018)GIF Transcriptional Coregulators Control Root Meristem Homeostasis. Plant Cell. 30(2):347-359. doi: 10.1105/tpc.17.00856.

Eshed Y, Baum SF, Perea JV, Bowman JL.(2001)Establishment of polarity in lateral organs of plants. Curr Biol. 11(16):1251-60.

Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL.(2004)Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development. 131(12):2997-3006.

Farlie P, Reid C, Wilcox S, Peeters J, Reed G, Newgreen D.(2001)Ypel1: a novel nuclear protein that induces an epithelial-like morphology in fibroblasts. Genes Cells.6(7):619-29.

Forzani C, Aichinger E, Sornay E, Willemsen V, Laux T, Dewitte W, Murray JA.(2014)WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Curr Biol. 24(16):1939-44.

Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G.(2003)Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426, 147–153.

Furuta KM, Hellmann E, Helariutta Y.(2014)Molecular control of cell specification and cell differentiation during procambial development. Annu Rev Plant Biol. 65:607-38.

Gaillochet C, Lohmann JU.(2015)The never-ending story: from pluripotency to plant developmental plasticity. Development. 142(13):2237-49.

Giono LE, Manfredi JJ.(2006)The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol. 209(1):13–20.

Grieneisen VA, Xu J, Marée AF, Hogeweg P, Scheres B.(2007)Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature. 449(7165):1008-13.

Han ZJ, Feng YH, Gu BH, Li YM, Chen H. (2018)The post-translational modification, SUMOylation, and cancer (Review).Int J Oncol. 52(4):1081-1094.

Hanson J, Smeekens S.(2009)Sugar perception and signaling--an update. Curr Opin Plant Biol. 12(5):562-7.

Hejnowicz Z.(1989)Differential growth resulting in the specification of different types of cellular architecture in root meristems. Environ Exp Bot. 29(1):85-93.

Hengst L, Reed SI.(1998)Inhibitors of the Cip/Kip family. Curr Top Microbiol Immunol. 227: 25-41

Hosono K, Noda S, Shimizu A, Nakanishi N, Ohtsubo M, Shimizu N, Minoshima S.(2010)YPEL5 protein of the YPEL gene family is involved in the cell cycle progression by interacting with two distinct proteins RanBPM and RanBP10. Genomics. 96: 102-111

Hosono K, Sasaki T, Minoshima S, Shimizu N.(2004)Identification and
characterization of a novel gene family YPEL in a wide spectrum of eukaryotic species. Gene. 340: 31-43
Hsu WH.(2012)Functional analysis of genes regulating cell division and gametophyte development in Arabidopsis.NCHU. Ph.D. Dissertation

Irvine KD, Rauskolb C.(2001)Boundaries in development: formation and function. Annu Rev Cell Dev Biol. 17:189-214.

Ishida T, Fujiwara S, Miura K, Stacey N, Yoshimura M, Schneider K, Adachi S, Minamisawa K, Umeda M, Sugimoto K.(2009)SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell. 21(8):2284-97.

Joubès J, Chevalier C, Dudits D, Heberle-Bors E, Inzé D, Umeda M, Renaudin JP.(2000)CDK-related protein kinases in plants. Plant Mol Biol. 43(5-6):607-20.

Juarez MT, Twigg RW, Timmermans MC.(2004)Specification of adaxial cell fate during maize leaf development. Development. 131(18):4533-44.

Kelley KD, Miller KR, Todd A, Kelley AR, Tuttle R, Berberich SJ.(2010)YPEL3, a p53-regulated gene that induces cellular senescence. Cancer Res. 70(9):3566-75.

Killander D, Zetterberg A.(1995)Quantitative cytochemical studies on interphase growth. I. Determination of DNA, RNA and mass content of age determined mouse fibroblasts in vitro and of intercellular variation in generation time. Exp Cell Res. 38:272–284.

Kumar N, Larkin JC. (2017)Why do plants need so many cyclin-dependent kinase inhibitors? Plant Signal Behav. 12(2):e1282021.

Lawrence PA1, Struhl G.(1996)Morphogens, compartments, and pattern: lessons from drosophila? Cell. 85(7):951-61.

León P, Sheen J.(2003)Sugar and hormone connections. Trends Plant Sci. 8(3):110-6.

Liu J, Lin J, Huang LF, Huang B, Xu YM, Li J, Wang Y, Zhang J, Yang WM, Min QH, Wang XZ.(2015)Differential expression and alternative splicing of cell cycle genes in imatinib-treated K562 cells.Tumour Biol. 36(10):8127-36.

Melaragno JE, Mehrotra B, Coleman AW.(1993)Relationship between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis. Plant Cell. 5(11):1661-1668.
Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H, Törjék O, Fiehn O, Eckardt A, Willmitzer L, Selbig J, Altmann T.(2007)The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 104(11): 4759–4764.

Möller B, Weijers D.(2009)Auxin control of embryo patterning. Cold Spring Harb Perspect Biol. 1(5):a001545.

Müller B, Sheen J.(2008)Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature. 453(7198):1094-7.

Nishitani H, Lygerou Z, Nishimoto T.(2004)Proteolysis of DNA replication licensing factor Cdt1 in S-phase is performed independently of geminin through its N-terminal region. J Biol Chem. 279(29):30807-16.

Okumura A, Shimada A, Yamasaki S, Horino T, Iwata Y, Koizumi N, Nishihara M, Mishiba K.(2016)CaMV-35S promoter sequence-specific DNA methylation in lettuce. Plant Cell Rep. 35(1):43-51.

Overvoorde P, Fukaki H, Beeckman T.(2010)Auxin control of root development. Cold Spring Harb Perspect Biol. 2(6):a001537.

Øvrebø, Jan Inge.(2014)Cell cycle regulation of Oikopleura dioica. A study of the cyclin CDK-complement. Bergen PHD

Pacifici E, Polverari L, Sabatini S.(2015)Plant hormone cross-talk: the pivot of root growth. J Exp Bot. 66(4):1113-21.

Pan D, Klare K, Petrovic A, Take A, Walstein K, Singh P, Rondelet A, Bird AW, Musacchio A.(2017)CDK-regulated dimerization of M18BP1 on a Mis18 hexamer is necessary for CENP-A loading. Elife.6. pii: e23352.

Perilli S, Di Mambro R, Sabatini S.(2012)Growth and development of the root apical meristem. Curr Opin Plant Biol. 15(1):17-23.

Peris CI, Rademacher EH, Weijers D.(2010)Green beginnings - pattern formation in the early plant embryo. Curr Top Dev Biol. 91:1-27.

Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K.(2009)An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell. 21(6):1659-68.

Petricka JJ, Winter CM, Benfey PN.(2012)Control of Arabidopsis root development. Annu Rev Plant Biol.63:563-90.

Petsch KA, Mylne J, Botella JR.(2005)Cosuppression of eukaryotic release factor 1-1 in Arabidopsis affects cell elongation and radial cell division. Plant Physiol. 139(1):115-26.

Poethig RS.(2003)Phase change and the regulation of developmental timing in plants. Science. 301(5631):334-6.

Pouteau S, Albertini C.(2009)The significance of bolting and floral transitions as indicators of reproductive phase change in Arabidopsis. J Exp Bot. 60(12):3367-77.

Riou-Khamlichi C, Menges M, Healy JM, Murray JA.(2000)Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol. 20(13):4513-21.

Rolland F, Baena-Gonzalez E, Sheen J.(2006)Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol. 57:675-709.

Roxström-Lindquist K, Faye I.(2001)The Drosophila gene Yippee reveals a novel family of putative zinc binding proteins highly conserved among eukaryotes. Insect Mol Biol. 10: 77-86

Sheen J.(1994)Feedback control of gene expression. Photosynth Res. 39(3):427-38.

Sherr CJ, Roberts JM.(1995)Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9(10):1149-63.

Smeekens S, Ma J, Hanson J, Rolland F.(2010)Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol. 13(3):274-9.

Smolarkiewicz M, Dhonukshe P.(2013)Formative cell divisions: principal determinants of plant morphogenesis. Plant Cell Physiol. 54(3):333-42.
Stack SM, Brown DB, Dewey WC.(1977)Visualization of interphase chromosomes. J Cell Sci. 26:281-99.

Subramanian L, Medina‐Pritchard B, Barton R, Spiller F, Kulasegaran‐Shylini R ,Radaviciute G, Allshire R C, Jeyaprakash A A.(2016)Centromere localization and function of Mis18 requires Yippee‐like domain‐mediated oligomerization. EMBO Rep. 17(4): 496–507.

Sumo ZJ, Feng YH, Gu BH, Li YM, Chen H.(2018)The post-translational modification, SUMOylation, and cancer(Review). Int J Oncol. 52(4):1081-1094.

Sun F, Carrie C, Law S, Murcha MW, Zhang R, Law YS, Suen PK, Whelan J, Lim BL.(2012)AtPAP2 is a tail-anchored protein in the outer membrane of chloroplasts and mitochondria. Plant Signal Behav. 7(8):927-32.

Sun F, Liang C, Whelan J, Yang J, Zhang P, Lim BL.(2013)Global transcriptome analysis of AtPAP2--overexpressing Arabidopsis thaliana with elevated ATP. BMC Genomics. 14:752.

Sun Q, Li J, Cheng W, Guo H, Liu X, Gao H.(2018)AtPAP2, a Unique Member of the PAP Family, Functions in the Plasma Membrane. Genes(Basel). 9(5).

Tarpley L, Duran AL, Kebrom TH, Sumner LW.(2005)Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biol. 5:8.

Truong L, Zheng YM, Song T, Tang Y, Wang YX.(2018)Potential important roles and signaling mechanisms of YPEL4 in pulmonary diseases. Clin Transl Med. 7(1):16.

Tuttle R, Simon M, Hitch DC, Maiorano JN, Hellan M, Ouellette J, Termuhlen P, Berberich SJ.(2011)Senescence-associated gene YPEL3 is downregulated in human colon tumors. Ann Surg Oncol. 18(6):1791-6.

Van Den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B.(1997)Short-range control of cell differentiation in the Arabidopsis root meristem. Nature. 390(6657):287-9.

Vermeulen K, Van Bockstaele DR, Berneman ZN.(2003)The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36(3):131-49.


Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, DePamphilis CW, Ma H.
(2004)Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol. 135(2):1084-99.

Wang H, Zhou Y, Gilmer S, Whitwill S, Fowke LC.(2000)Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology. 24: 613-623

Warburg O.(1958)Photosynthesis. Science. 128(3315):68-73.

Weinhold A, Kallenbach M, Baldwin IT.(2013)Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biol. 13:99.

Weraduwage SM, Kim SJ, Renna L, C Anozie F, D Sharkey T, Brandizzi F.(2016)Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth. Plant Physiol. 171(2):833-48.

Williams GH, Stoeber K.(2012)The cell cycle and cancer. J Pathol. 226(2):352-64.

Yang ZB, Liu G, Liu J, Zhang B, Meng W, Müller B, Hayashi KI, Zhang X, Zhao Z, De Smet I, Ding Z.(2017)Synergistic action of auxin and cytokinin mediates aluminum‐induced root growth inhibition in Arabidopsis.EMBO Rep. 18(7):1213-1230.

Žádníková P, Simon R.(2014)How boundaries control plant development. Curr Opin Plant Biol. 17:116-25.

Zhang J, Wen X, Ren XY, Li YQ, Tang XR, Wang YQ, He QM, Yang XJ, Sun Y, Liu N, Ma J.(2016)YPEL3 suppresses epithelial–mesenchymal transition and metastasis of nasopharyngeal carcinoma cells through the Wnt/β-catenin signaling pathway. J Exp Clin Cancer Res. 35(1):109.

Zhang Y, Dong J.(2018)Cell polarity: compassing cell division and differentiation in plants. Curr Opin Plant Biol. 45(Pt A):127-135.

Zhang Y, Yu L, Yung KF, Leung DY, Sun F, Lim BL.(2012)Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield. Biotechnol Biofuels. 5:19.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top