跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 23:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡依岑
研究生(外文):Yi-Tsen Tsai
論文名稱:不同甲烷/氬氣比例對以反應式濺鍍沉積法製備 非晶質硼碳薄膜特性之效應
論文名稱(外文):Effects of different CH4/Ar ratios on characteristics of amorphous boron carbon films prepared by reactive sputtering deposition
指導教授:薛顯宗
指導教授(外文):Sham-Tsong Shiue
口試委員:蔡健益呂福興
口試日期:2018-04-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:105
中文關鍵詞:非晶質碳膜硼碳薄膜硼碳比反應式濺鍍
外文關鍵詞:amorphous carbon filmborn carbon filmB/C Ratioreactive sputter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文係以反應式濺鍍沉積法利用不同比例之甲烷/氬氣 混和氣體製備非晶質硼碳(a-BC)薄膜,實驗過程中,在總流量 40 sccm 下CH4/(CH4+Ar)流量比例分別為 1 %、25 %、50 %、75 %以及 100 %。射頻功率、工作壓力以及基材溫度為 300 W、 6 Pa 以及 298 K,而碳薄膜厚度固定為 100 nm。本實驗並透過電漿診斷、微觀結構及化學組成分析、光學特性分析以及電學 特性分析等對其進行探討。
透過電漿診斷,可發現 CH4/(CH4+Ar)比例增加則電漿中 活性物種 CH、Hα、Hβ以及 H2 含量增加,推測為致使碳薄膜沉積速率越快的原因。透過微結構及化學組成分析,紅外線光 譜量測可呈現 CH4/(CH4+Ar)比例增加時,sp3 C-Hx 之吸收峰 增加,X 光光電子能譜量測可呈現 CH4/(CH4+Ar)比例增加時, 硼碳薄膜之硼/碳比例減少且 sp2 C=C 鍵結比例也減少,拉曼 散射光譜量測則可呈現CH4/(CH4+Ar)比例增加時硼碳薄膜之ID/IG減少;透過光學特性分析 ,紫外光光譜儀呈現CH4/(CH4+Ar)比例增加時光學能隙值增加;而透過電學特性分析,則可呈現 CH4/(CH4+Ar)比例增加時電阻率增加。
綜上所述,以反應式濺鍍沉積法利用不同比例之甲烷/氬 氣混和氣體製備非晶質硼碳(a-BC)薄膜時,當 CH4/(Ar+CH4) 比例為 1 %時,具有為較高石墨化程度之硼碳薄膜。
In this thesis amorphous boron carbon (a-BC) thin films were prepared by reactive sputter deposition using different ratios of methane/argon mixed gas. During the experiment, the total flow rate was 40 sccm. And CH4/(CH4+Ar) flow rates are 1 %, 25 %, 50 %, 75 % and 100 % respectively. The RF power, working pressure, and substrate temperature were 300 W, 6 Pa, and 298 K, while the carbon film thickness was fixed at 100 nm. The experiment was conducted through plasma diagnostics, microstructure analysis, chemical composition analysis, optical characteristics analysis, and electrical characteristics analysis.
By the plasma diagnosis, the results indicate that as the ratio of CH4/(CH4+Ar) increases, the contents of active species: CH、Hα、Hβand H2 in the plasma also increase. Hence the higher CH4/(CH4+Ar) ratio the faster deposition rate of the carbon thin film is presumed. By microstructure and chemical composition analysis, the higher proportion of CH4/(CH4+Ar), the stronger absorption peak of sp3 C-Hx in fourier transform infrared Spectrometer. X-ray photoelectron spectroscopy measurement result also shows that as the proportion of methane/argon increases, both the boron/carbon ratio of the boron-carbon film and the sp2 C=C bond ratio reduces. Raman scattering spectrum
measurement shows that the ratio of the ID/IG of the boron carbon film decreases when the ratio of CH4/(CH4+Ar) increases. By ultraviolet(UV) spectrometer and electrical characteristics analysis, the results indicate that the optical energy gap value and electrical resistivity both increased when the ratio of CH4/(CH4+Ar) increased.
In summary, when preparing an a-BC film by reactive sputter deposition method with different ratios of methane/ argon mixed gas, as the CH4/(CH4+Ar) ratio was 1 %, the a-BC film is more highly graphitized.
誌謝 i
摘要 ii
Abstract iii
總目次 v
圖目次 viii
表目次 xii
第1章 緒論 1
1-1 理論背景 1
1-1-1 碳元素之介紹 1
1-1-2 碳元素之各種同素異形體特性與應用 2
1-1-3 硼元素之介紹 12
1-1-4 硼元素之各種同素異形體特性與應用 13
1-1-5非晶質硼碳薄膜文獻回顧 14
1-2 非晶質碳薄膜摻雜不同元素改質之特性 15
1-2-1 n型之非晶質碳薄膜性質 16
1-2-2 p型之非晶質碳薄膜性質 16
1-3 非晶質碳薄膜沉積法介紹 17
1-3-1 反應式濺鍍沉積法之簡介 18
1-3-2反應式濺鍍沉積法之沉積機制 19
1-4本研究之動機與目的 23
第2章 實驗步驟及儀器原理 26
2-1 實驗流程圖 26
2-2 樣品製備 28
2-3 實驗參數設定 30
2-4反應式濺鍍沉積系統 34
2-5 電漿診斷 38
2-6 非晶質碳薄膜厚度量測 42
2-7 非晶質碳薄膜微觀結構量測 44
2-7-1 傅立葉轉換紅外光光譜儀(Fourier Transform Infrared Spectrometer, FTIR) 44
2-7-2 X光光電子能譜儀 (X-ray Photoelectron Spectrometer, XPS) 46
2-7-3 拉曼散射光譜儀 (Raman Scattering Spectrometer, RSS) 49
2-8 非晶質碳薄膜光學性質量測 56
2-9 非晶質碳薄膜電性量測 59
第3章 結果與討論 62
3-1電漿診斷分析 62
3-2碳薄膜沉積速率 67
3-3碳薄膜表面形態和膜厚量測 70
3-4微觀結構和化學組成 73
3-4-1 傅立葉轉換紅外光光譜儀分析 73
3-4-2 X光光電子能譜儀分析 75
3-4-3 拉曼散射光譜儀分析 81
3-5光學性質分析 86
3-6電學性質分析 89
3-7 本實驗與先前研究之結果比較 91
第4章 結論 95
參考文獻 97
[1] H. Kroto, Symmetry, space, stars and C60, Reviews of Modern Physics, 69 (1997) 703-722.
[2] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56.
[3] M.I. Katsnelson, Graphene: carbon in two dimensions, Materials Today, 10 (2007) 20-27.
[4] Y.X. Wang, J.B. Pu, J.F. Wang, J.L. Li, J.M. Chen, Q.J. Xue, Interlayer design for the graphite-like carbon film with high load-bearing capacity under sliding-friction condition in water, Applied Surface Science, 311 (2014) 816-824.
[5] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
[6] J. Robertson, Diamond-like amorphous carbon, Materials Science & Engineering R-Reports, 37 (2002) 129-281.
[7] J. Wang, C.H. Wang, Y.S. Liu, L.F. Cheng, W.N. Li, Q. Zhang, X.J. Yang, Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser, Applied Surface Science, 340 (2015) 49-55.
[8] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985) 162-163.
[9] W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Solid C60: a new form of carbon, Nature, 347 (1990) 354.
[10] R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, K.B. Lyons, B. Miller, J.M. Rosamilia, R.M. Fleming, A.R. Kortan, S.H. Glarum, A.V. Makhija, A.J. Muller, R.H. Eick, S.M. Zahurak, R. Tycko, G. Dabbagh, F.A. Thiel, Conducting films of C60 and C70 by alkali-metal doping, Nature, 350 (1991) 320.
[11] A. Astefanei, O. Núñez, M.T. Galceran, Characterisation and determination of fullerenes: A critical review, Analytica Chimica Acta, 882 (2015) 1-21.
[12] N. Arora, N.N. Sharma, Arc discharge synthesis of carbon nanotubes: Comprehensive review, Diamond and Related Materials, 50 (2014) 135-150.
[13] A. Merkoçi, Carbon Nanotubes in Analytical Sciences, Microchimica Acta, 152 (2006) 157-174.
[14] K.M. Liew, Z.X. Lei, L.W. Zhang, Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review, Composite Structures, 120 (2015) 90-97.
[15] V.S. Muralidharan, A. Subramania, Nanoscience and technology, CRC Press, 2009.
[16] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials, 6 (2007) 183.
[17] H. Syed Muhammad, S.K. Chong, N.M. Huang, S. Abdul Rahman, Fabrication of high-quality graphene by hot-filament thermal chemical vapor deposition, Carbon, 86 (2015) 1-11.
[18] G. Venugopal, K. Krishnamoorthy, S.-J. Kim, An investigation on high-temperature electrical transport properties of graphene-oxide nano-thinfilms, Applied Surface Science, 280 (2013) 903-908.
[19] T. Terasawa, K. Saiki, Growth of graphene on Cu by plasma enhanced chemical vapor deposition, Carbon, 50 (2012) 869-874.
[20] Y. Yao, C.P. Wong, Monolayer graphene growth using additional etching process in atmospheric pressure chemical vapor deposition, Carbon, 50 (2012) 5203-5209.
[21] J.H. Lee, E.K. Lee, W.J. Joo, Y. Jang, B.S. Kim, J.Y. Lim, S.H. Choi, S.J. Ahn, J.R. Ahn, M.H. Park, C.W. Yang, B.L. Choi, S.W. Hwang, D. Whang, Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium, Science, 344 (2014) 286-289.
[22] G.P. Veronese, M. Allegrezza, M. Canino, E. Centurioni, L. Ortolani, R. Rizzoli, V. Morandi, C. Summonte, Graphene as transparent conducting layer for high temperature thin film device applications, Solar Energy Materials and Solar Cells, 138 (2015) 35-40.
[23] J.V. Anguita, S.R.P. Silva, W. Young, Photoluminescence from polymer-like hydrogenated and nitrogenated amorphous carbon films, Journal of Applied Physics, 88 (2000) 5175-5179.
[24] R.C. Barklie, Characterisation of defects in amorphous carbon by electron paramagnetic resonance, Diamond and Related Materials, 12 (2003) 1426.
[25] R.U.A. Khan, S.R.P. Silva, Switching phenomena in boron-implanted amorphous carbon films, Diamond and Related Materials, 10 (2001) 1036-1039.
[26] J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, S.R.P. Silva, Stress-induced formation of high-density amorphous carbon thin films, Journal of Applied Physics, 82 (1997) 6024-6030.
[27] S. Aisenberg, R. Chabot, Ion‐Beam Deposition of Thin Films of Diamondlike Carbon, Journal of Applied Physics, 42 (1971) 2953-2958.
[28] L. Holland, S.M. Ojha, Deposition of hard and insulating carbonaceous films on an r.f. target in a butane plasma, Thin Solid Films, 38 (1976) L17-L19.
[29] E. Wiberg, N. Wiberg, A.F. Holleman, Inorganic chemistry, Academic Press ; De Gruyter, San Diego; Berlin; New York, 2001.
[30] C.E. Housecroft, A.G. Sharpe, Inorganic chemistry, DOI (2008) 331.
[31] M.J. van Setten, M.A. Uijttewaal, G.A. de Wijs, R.A. de Groot, Thermodynamic Stability of Boron: The Role of Defects and Zero Point Motion, Journal of the American Chemical Society, 129 (2007) 2458-2465.
[32] D.R. Stern, L. Lynds, High‐Purity Crystalline Boron, Journal of The Electrochemical Society, 105 (1958) 676-682.
[33] A.W. Laubengayer, D.T. Hurd, A.E. Newkirk, J.L. Hoard, Boron. I. Preparation and Properties of Pure Crystalline Boron, Journal of the American Chemical Society, 65 (1943) 1924-1931.
[34] L.I. Berger, Semiconductor Materials (Physical Sciences References), 1st Edition ed., CRC Press1996.
[35] S. Zhang, W.Z. Lu, C.B. Wang, Q. Shen, L.M. Zhang, Stoichiometric controlling of boron carbide thin films by using boron-carbon dual-targets, Applied Physics Letters, 101 (2012) 4.
[36] M. Imam, C. Hoglund, J. Jensen, S. Schmidt, I.G. Ivanov, R. Hall-Wilton, J. Birch, H. Pedersen, Trimethylboron as Single-Source Precursor for Boron-Carbon Thin Film Synthesis by Plasma Chemical Vapor Deposition, J. Phys. Chem. C, 120 (2016) 21990-21997.
[37] M. Imam, C. Hoglund, S. Schmidt, R. Hall-Wilton, J. Birch, H. Pedersen, Plasma CVD of hydrogenated boron-carbon thin films from triethylboron, J. Chem. Phys., 148 (2018) 7.
[38] T.S. Chen, S.E. Chiou, S.T. Shiue, The effect of different radio-frequency powers on characteristics of amorphous boron carbon thin film alloys prepared by reactive radio-frequency plasma enhanced chemical vapor deposition, Thin Solid Films, 528 (2013) 86-92.
[39] T.S. Chen, Y.C. Hsueh, S.E. Chiou, S.T. Shiue, The effect of the native silicon dioxide interfacial layer on photovoltaic characteristics of gold/p-type amorphous boron carbon thin film alloy/silicon dioxide/n-type silicon/aluminum solar cells, Solar Energy Materials and Solar Cells, 137 (2015) 185-192.
[40] A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Robertson, W.I. Milne, Photoconductivity of nitrogen-modified hydrogenated tetrahedral amorphous carbon, Journal of Applied Physics, 87 (2000) 789-794.
[41] J.J. Cuomo, J.P. Doyle, J. Bruley, J.C. Liu, Sputter deposition of dense diamond‐like carbon films at low temperature, Applied Physics Letters, 58 (1991) 466-468.
[42] J. Schwan, S. Ulrich, H. Roth, H. Ehrhardt, S.R.P. Silva, J. Robertson, R. Samlenski, R. Brenn, Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating, Journal of Applied Physics, 79 (1996) 1416-1422.
[43] B. Druz, S. DiStefano, A. Hayes, E. Ostan, K. Williams, L. Wang, Ion beam deposition of diamond-like carbon from an r.f. inductively coupled CH4-plasma source, Surface and Coatings Technology, 86-87 (1996) 708-714.
[44] R. Gago, O. Sánchez Garrido, A. Climent Font, J.M. Albella, E. Román, J. Raisanen, E. Raühala, Effect of the substrate temperature on the deposition of hydrogenated amorphous carbon by PACVD at 35 kHz, Thin Solid Films, 338 (1999) 88-92.
[45] H.C. Lin, S.T. Shiue, Y.M. Chou, H.Y. Lin, T.C. Wu, Effect of substrate temperature on the properties of carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition, Thin Solid Films, 516 (2007) 114-118.
[46] S.S. Chen, S.T. Shiue, K.J. Cheng, P.Y. Chen, H.Y. Lin, Minimization of conical particles in carbon coatings of optical fibers prepared by thermal chemical vapor deposition, SPIE, 2008, pp. 5.
[47] G. Alfred, Frontmatter, Cold Plasma Materials Fabrication:From Fundamentals to Applications, Wiley-IEEE Press,1994.
[48] G. Capote, R. Prioli, P.M. Jardim, A.R. Zanatta, L.G. Jacobsohn, F.L. Freire, Amorphous hydrogenated carbon films deposited by PECVD: influence of the substrate temperature on film growth and microstructure, Journal of Non-Crystalline Solids, 338-340 (2004) 503-508.
[49] R.K. Tripathi, O.S. Panwar, A.K. Srivastava, Ishpal, M. Kumar, S. Chockalingam, Structural, Nanomechanical, and Field Emission Properties of Amorphous Carbon Films Having Embedded Nanocrystallites Deposited by Filtered Anodic Jet Carbon Arc Technique, Journal of Nanoscience, 2013 (2013) 11.
[50] T. Hirokazu, M. Ken-ichiro, M. Akira, Y. Toshiaki, Y. Takao, Diagnostic Experiment and Kinetic Model Analysis of Microwave C H 4 / H 2 Plasmas for Deposition of Diamondlike Carbon Films, Japanese Journal of Applied Physics, 34 (1995) 1972.
[51] T.S. Chen, The p-type amorphous boron carbon thin film alloy prepared by radio-frequency reactive sputtering/plasma-enhanced chemical vapor deposition and its applications for solar cells, Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 2013.
[52] C. Aragón, J.A. Aguilera, Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods, Spectrochimica Acta Part B: Atomic Spectroscopy, 63 (2008) 893-916.
[53] J. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, D.C. Joy, Scanning electron microscopy and x-ray microanalysis, Fourth edition, Springer, New York, 2018.
[54] J. Bates, Fourier transform infrared spectroscopy, Science, 191 (1976) 31-37.
[55] B.D. Ratner, D.G. Castner, Electron Spectroscopy for Chemical Analysis, Second ed., Wiley, 2009.
[56] E.C. Le Ru, P.G. Etchegoin, Chapter 1 - A quick overview of surface-enhanced Raman spectroscopy, Principles of Surface-Enhanced Raman Spectroscopy, Elsevier, Amsterdam, 2009, pp. 1-27.
[57] X.J. Su, Q. Zhao, S. Wang, A. Bendavid, Modification of diamond-like carbon coatings with fluorine to reduce biofouling adhesion, Surface and Coatings Technology, 204 (2010) 2454-2458.
[58] M. Rusop, T. Soga, T. Jimbo, Photovoltaic characteristics of phosphorus-doped amorphous carbon films grown by r.f. plasma-enhanced CVD, Solar Energy Materials and Solar Cells, 90 (2006) 3214-3222.
[59] A. Liu, H. Wu, J. Zhu, J. Han, L. Niu, Evolution of compressive stress and electrical conductivity of tetrahedral amorphous carbon films with phosphorus incorporation, Diamond and Related Materials, 17 (2008) 1927-1932.
[60] M. Hakovirta, R. Verda, X.M. He, M. Nastasi, Heat resistance of fluorinated diamond-like carbon films, Diamond and Related Materials, 10 (2001) 1486-1490.
[61] P. Peng, X.D. Li, G.F. Yuan, W.Q. She, F. Cao, D.M. Yang, Y. Zhuo, J. Liao, S.L. Yang, M.J. Yue, Aluminum oxide/amorphous carbon coatings on carbon fibers, prepared by pyrolysis of an organic–inorganic hybrid precursor, Materials Letters, 47 (2001) 171-177.
[62] H.C. Tsai, D.B. Bogy, M.K. Kundmann, D.K. Veirs, M.R. Hilton, S.T. Mayer, Structure and properties of sputtered carbon overcoats on rigid magnetic media disks, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 6 (1988) 2307-2315.
[63] P. Lespade, R. Al-Jishi, M.S. Dresselhaus, Model for Raman scattering from incompletely graphitized carbons, Carbon, 20 (1982) 427-431.
[64] C.A. Taylor, M.F. Wayne, W.K.S. Chiu, Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation, Thin Solid Films, 429 (2003) 190-200.
[65] J. Tauc, R. Grigorovici, A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, physica status solidi (b), 15 (1966) 627-637.
[66] W.D. Callister, D.G. Rethwisch, Materials science and engineering : an introduction, 2014.
[67] M.J. Jackson, Microfabrication and nanomanufacturing, CRC Press/Taylor & Francis, Boca Raton, Fla., 2006.
[68] M.J. Chiang, M.H. Hon, Optical emission spectroscopy study of positive direct current bias enhanced diamond nucleation, Thin Solid Films, 516 (2008) 4765-4770.
[69] H.C. Hsueh, H.C. Li, D.Y. Chiang, S. Lee, Effects of Ammonia/Methane Mixtures on Characteristics of Plasma Enhanced Chemical Vapor Deposition n-Type Carbon Films, Journal of the Electrochemical Society, 159 (2012) D77-D83.
[70] A. Granier, M. Vervloet, K. Aumaille, C. Vallée, Optical emission spectra of TEOS and HMDSO derived plasmas used for thin film deposition, Plasma Sources Science and Technology, 12 (2003) 89.
[71] M. Rayar, P. Supiot, P. Veis, A. Gicquel, Optical emission study of a doped diamond deposition process by plasma enhanced chemical vapor deposition, Journal of Applied Physics, 104 (2008) 033304.
[72] U. Kuhlmann, H. Werheit, K.A. Schwetz, Distribution of carbon atoms on the boron carbide structure elements, Journal of Alloys and Compounds, 189 (1992) 249-258.
[73] Y. Wang, Y. Ye, H. Li, L. Ji, Y. Wang, X. Liu, J. Chen, H. Zhou, Microstructure and tribological properties of the a-C:H films deposited by magnetron sputtering with CH4/Ar mixture, Surface and Coatings Technology, 205 (2011) 4577-4581.
[74] M. Lejeune, M. Benlahsen, R. Bouzerar, Stress and structural relaxation in amorphous hydrogenated carbon films, Applied Physics Letters, 84 (2004) 344-346.
[75] C.Y. Lin, L.H. Lai, Y.X. Liu, S.T. Shiue, H.Y. Lin, Effects of Ammonia Addition on Thermal Chemical Vapor Deposition Rates and Microstructures of Carbon Films, Journal of The Electrochemical Society, 158 (2011) D445-D451.
[76] C.D. Wagner, G.E. Muilenberg, Handbook of x-ray photoelectron spectroscopy : a reference book of standard data for use in x-ray photoelectron spectroscopy, Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, Minn., 1979.
[77] P. Mérel, M. Tabbal, M. Chaker, S. Moisa, J. Margot, Direct evaluation of the sp3 content in diamond-like-carbon films by XPS, Applied Surface Science, 136 (1998) 105-110.
[78] G. Le Dû, N. Celini, F. Bergaya, F. Poncin-Epaillard, RF plasma-polymerization of acetylene: Correlation between plasma diagnostics and deposit characteristics, Surface and Coatings Technology, 201 (2007) 5815-5821.
[79] S. Kaciulis, Spectroscopy of carbon: from diamond to nitride films, Surface and Interface Analysis, 44 (2012) 1155-1161.
[80] L.G. Jacobsohn, R.K. Schulze, M.E.H. Maia da Costa, M. Nastasi, X-ray photoelectron spectroscopy investigation of boron carbide films deposited by sputtering, Surface Science, 572 (2004) 418-424.
[81] J.K. Shin, C.S. Lee, K.R. Lee, K.Y. Eun, Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films, Applied Physics Letters, 78 (2001) 631-633.
[82] L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Applied Physics Letters, 88 (2006) 163106.
[83] J.C. Pu, S.F. Wang, C.L. Lin, J.C. Sung, Characterization of boron-doped diamond-like carbon prepared by radio frequency sputtering, Thin Solid Films, 519 (2010) 521-526.
[84] C. Oppedisano, A. Tagliaferro, Relationship between sp2 carbon content and E04 optical gap in amorphous carbon-based materials, Applied Physics Letters, 75 (1999) 3650-3652.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top