|
[1] H. Kroto, Symmetry, space, stars and C60, Reviews of Modern Physics, 69 (1997) 703-722. [2] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56. [3] M.I. Katsnelson, Graphene: carbon in two dimensions, Materials Today, 10 (2007) 20-27. [4] Y.X. Wang, J.B. Pu, J.F. Wang, J.L. Li, J.M. Chen, Q.J. Xue, Interlayer design for the graphite-like carbon film with high load-bearing capacity under sliding-friction condition in water, Applied Surface Science, 311 (2014) 816-824. [5] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669. [6] J. Robertson, Diamond-like amorphous carbon, Materials Science & Engineering R-Reports, 37 (2002) 129-281. [7] J. Wang, C.H. Wang, Y.S. Liu, L.F. Cheng, W.N. Li, Q. Zhang, X.J. Yang, Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser, Applied Surface Science, 340 (2015) 49-55. [8] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985) 162-163. [9] W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Solid C60: a new form of carbon, Nature, 347 (1990) 354. [10] R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, K.B. Lyons, B. Miller, J.M. Rosamilia, R.M. Fleming, A.R. Kortan, S.H. Glarum, A.V. Makhija, A.J. Muller, R.H. Eick, S.M. Zahurak, R. Tycko, G. Dabbagh, F.A. Thiel, Conducting films of C60 and C70 by alkali-metal doping, Nature, 350 (1991) 320. [11] A. Astefanei, O. Núñez, M.T. Galceran, Characterisation and determination of fullerenes: A critical review, Analytica Chimica Acta, 882 (2015) 1-21. [12] N. Arora, N.N. Sharma, Arc discharge synthesis of carbon nanotubes: Comprehensive review, Diamond and Related Materials, 50 (2014) 135-150. [13] A. Merkoçi, Carbon Nanotubes in Analytical Sciences, Microchimica Acta, 152 (2006) 157-174. [14] K.M. Liew, Z.X. Lei, L.W. Zhang, Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review, Composite Structures, 120 (2015) 90-97. [15] V.S. Muralidharan, A. Subramania, Nanoscience and technology, CRC Press, 2009. [16] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials, 6 (2007) 183. [17] H. Syed Muhammad, S.K. Chong, N.M. Huang, S. Abdul Rahman, Fabrication of high-quality graphene by hot-filament thermal chemical vapor deposition, Carbon, 86 (2015) 1-11. [18] G. Venugopal, K. Krishnamoorthy, S.-J. Kim, An investigation on high-temperature electrical transport properties of graphene-oxide nano-thinfilms, Applied Surface Science, 280 (2013) 903-908. [19] T. Terasawa, K. Saiki, Growth of graphene on Cu by plasma enhanced chemical vapor deposition, Carbon, 50 (2012) 869-874. [20] Y. Yao, C.P. Wong, Monolayer graphene growth using additional etching process in atmospheric pressure chemical vapor deposition, Carbon, 50 (2012) 5203-5209. [21] J.H. Lee, E.K. Lee, W.J. Joo, Y. Jang, B.S. Kim, J.Y. Lim, S.H. Choi, S.J. Ahn, J.R. Ahn, M.H. Park, C.W. Yang, B.L. Choi, S.W. Hwang, D. Whang, Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium, Science, 344 (2014) 286-289. [22] G.P. Veronese, M. Allegrezza, M. Canino, E. Centurioni, L. Ortolani, R. Rizzoli, V. Morandi, C. Summonte, Graphene as transparent conducting layer for high temperature thin film device applications, Solar Energy Materials and Solar Cells, 138 (2015) 35-40. [23] J.V. Anguita, S.R.P. Silva, W. Young, Photoluminescence from polymer-like hydrogenated and nitrogenated amorphous carbon films, Journal of Applied Physics, 88 (2000) 5175-5179. [24] R.C. Barklie, Characterisation of defects in amorphous carbon by electron paramagnetic resonance, Diamond and Related Materials, 12 (2003) 1426. [25] R.U.A. Khan, S.R.P. Silva, Switching phenomena in boron-implanted amorphous carbon films, Diamond and Related Materials, 10 (2001) 1036-1039. [26] J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, S.R.P. Silva, Stress-induced formation of high-density amorphous carbon thin films, Journal of Applied Physics, 82 (1997) 6024-6030. [27] S. Aisenberg, R. Chabot, Ion‐Beam Deposition of Thin Films of Diamondlike Carbon, Journal of Applied Physics, 42 (1971) 2953-2958. [28] L. Holland, S.M. Ojha, Deposition of hard and insulating carbonaceous films on an r.f. target in a butane plasma, Thin Solid Films, 38 (1976) L17-L19. [29] E. Wiberg, N. Wiberg, A.F. Holleman, Inorganic chemistry, Academic Press ; De Gruyter, San Diego; Berlin; New York, 2001. [30] C.E. Housecroft, A.G. Sharpe, Inorganic chemistry, DOI (2008) 331. [31] M.J. van Setten, M.A. Uijttewaal, G.A. de Wijs, R.A. de Groot, Thermodynamic Stability of Boron: The Role of Defects and Zero Point Motion, Journal of the American Chemical Society, 129 (2007) 2458-2465. [32] D.R. Stern, L. Lynds, High‐Purity Crystalline Boron, Journal of The Electrochemical Society, 105 (1958) 676-682. [33] A.W. Laubengayer, D.T. Hurd, A.E. Newkirk, J.L. Hoard, Boron. I. Preparation and Properties of Pure Crystalline Boron, Journal of the American Chemical Society, 65 (1943) 1924-1931. [34] L.I. Berger, Semiconductor Materials (Physical Sciences References), 1st Edition ed., CRC Press1996. [35] S. Zhang, W.Z. Lu, C.B. Wang, Q. Shen, L.M. Zhang, Stoichiometric controlling of boron carbide thin films by using boron-carbon dual-targets, Applied Physics Letters, 101 (2012) 4. [36] M. Imam, C. Hoglund, J. Jensen, S. Schmidt, I.G. Ivanov, R. Hall-Wilton, J. Birch, H. Pedersen, Trimethylboron as Single-Source Precursor for Boron-Carbon Thin Film Synthesis by Plasma Chemical Vapor Deposition, J. Phys. Chem. C, 120 (2016) 21990-21997. [37] M. Imam, C. Hoglund, S. Schmidt, R. Hall-Wilton, J. Birch, H. Pedersen, Plasma CVD of hydrogenated boron-carbon thin films from triethylboron, J. Chem. Phys., 148 (2018) 7. [38] T.S. Chen, S.E. Chiou, S.T. Shiue, The effect of different radio-frequency powers on characteristics of amorphous boron carbon thin film alloys prepared by reactive radio-frequency plasma enhanced chemical vapor deposition, Thin Solid Films, 528 (2013) 86-92. [39] T.S. Chen, Y.C. Hsueh, S.E. Chiou, S.T. Shiue, The effect of the native silicon dioxide interfacial layer on photovoltaic characteristics of gold/p-type amorphous boron carbon thin film alloy/silicon dioxide/n-type silicon/aluminum solar cells, Solar Energy Materials and Solar Cells, 137 (2015) 185-192. [40] A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Robertson, W.I. Milne, Photoconductivity of nitrogen-modified hydrogenated tetrahedral amorphous carbon, Journal of Applied Physics, 87 (2000) 789-794. [41] J.J. Cuomo, J.P. Doyle, J. Bruley, J.C. Liu, Sputter deposition of dense diamond‐like carbon films at low temperature, Applied Physics Letters, 58 (1991) 466-468. [42] J. Schwan, S. Ulrich, H. Roth, H. Ehrhardt, S.R.P. Silva, J. Robertson, R. Samlenski, R. Brenn, Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating, Journal of Applied Physics, 79 (1996) 1416-1422. [43] B. Druz, S. DiStefano, A. Hayes, E. Ostan, K. Williams, L. Wang, Ion beam deposition of diamond-like carbon from an r.f. inductively coupled CH4-plasma source, Surface and Coatings Technology, 86-87 (1996) 708-714. [44] R. Gago, O. Sánchez Garrido, A. Climent Font, J.M. Albella, E. Román, J. Raisanen, E. Raühala, Effect of the substrate temperature on the deposition of hydrogenated amorphous carbon by PACVD at 35 kHz, Thin Solid Films, 338 (1999) 88-92. [45] H.C. Lin, S.T. Shiue, Y.M. Chou, H.Y. Lin, T.C. Wu, Effect of substrate temperature on the properties of carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition, Thin Solid Films, 516 (2007) 114-118. [46] S.S. Chen, S.T. Shiue, K.J. Cheng, P.Y. Chen, H.Y. Lin, Minimization of conical particles in carbon coatings of optical fibers prepared by thermal chemical vapor deposition, SPIE, 2008, pp. 5. [47] G. Alfred, Frontmatter, Cold Plasma Materials Fabrication:From Fundamentals to Applications, Wiley-IEEE Press,1994. [48] G. Capote, R. Prioli, P.M. Jardim, A.R. Zanatta, L.G. Jacobsohn, F.L. Freire, Amorphous hydrogenated carbon films deposited by PECVD: influence of the substrate temperature on film growth and microstructure, Journal of Non-Crystalline Solids, 338-340 (2004) 503-508. [49] R.K. Tripathi, O.S. Panwar, A.K. Srivastava, Ishpal, M. Kumar, S. Chockalingam, Structural, Nanomechanical, and Field Emission Properties of Amorphous Carbon Films Having Embedded Nanocrystallites Deposited by Filtered Anodic Jet Carbon Arc Technique, Journal of Nanoscience, 2013 (2013) 11. [50] T. Hirokazu, M. Ken-ichiro, M. Akira, Y. Toshiaki, Y. Takao, Diagnostic Experiment and Kinetic Model Analysis of Microwave C H 4 / H 2 Plasmas for Deposition of Diamondlike Carbon Films, Japanese Journal of Applied Physics, 34 (1995) 1972. [51] T.S. Chen, The p-type amorphous boron carbon thin film alloy prepared by radio-frequency reactive sputtering/plasma-enhanced chemical vapor deposition and its applications for solar cells, Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 2013. [52] C. Aragón, J.A. Aguilera, Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods, Spectrochimica Acta Part B: Atomic Spectroscopy, 63 (2008) 893-916. [53] J. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, D.C. Joy, Scanning electron microscopy and x-ray microanalysis, Fourth edition, Springer, New York, 2018. [54] J. Bates, Fourier transform infrared spectroscopy, Science, 191 (1976) 31-37. [55] B.D. Ratner, D.G. Castner, Electron Spectroscopy for Chemical Analysis, Second ed., Wiley, 2009. [56] E.C. Le Ru, P.G. Etchegoin, Chapter 1 - A quick overview of surface-enhanced Raman spectroscopy, Principles of Surface-Enhanced Raman Spectroscopy, Elsevier, Amsterdam, 2009, pp. 1-27. [57] X.J. Su, Q. Zhao, S. Wang, A. Bendavid, Modification of diamond-like carbon coatings with fluorine to reduce biofouling adhesion, Surface and Coatings Technology, 204 (2010) 2454-2458. [58] M. Rusop, T. Soga, T. Jimbo, Photovoltaic characteristics of phosphorus-doped amorphous carbon films grown by r.f. plasma-enhanced CVD, Solar Energy Materials and Solar Cells, 90 (2006) 3214-3222. [59] A. Liu, H. Wu, J. Zhu, J. Han, L. Niu, Evolution of compressive stress and electrical conductivity of tetrahedral amorphous carbon films with phosphorus incorporation, Diamond and Related Materials, 17 (2008) 1927-1932. [60] M. Hakovirta, R. Verda, X.M. He, M. Nastasi, Heat resistance of fluorinated diamond-like carbon films, Diamond and Related Materials, 10 (2001) 1486-1490. [61] P. Peng, X.D. Li, G.F. Yuan, W.Q. She, F. Cao, D.M. Yang, Y. Zhuo, J. Liao, S.L. Yang, M.J. Yue, Aluminum oxide/amorphous carbon coatings on carbon fibers, prepared by pyrolysis of an organic–inorganic hybrid precursor, Materials Letters, 47 (2001) 171-177. [62] H.C. Tsai, D.B. Bogy, M.K. Kundmann, D.K. Veirs, M.R. Hilton, S.T. Mayer, Structure and properties of sputtered carbon overcoats on rigid magnetic media disks, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 6 (1988) 2307-2315. [63] P. Lespade, R. Al-Jishi, M.S. Dresselhaus, Model for Raman scattering from incompletely graphitized carbons, Carbon, 20 (1982) 427-431. [64] C.A. Taylor, M.F. Wayne, W.K.S. Chiu, Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation, Thin Solid Films, 429 (2003) 190-200. [65] J. Tauc, R. Grigorovici, A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, physica status solidi (b), 15 (1966) 627-637. [66] W.D. Callister, D.G. Rethwisch, Materials science and engineering : an introduction, 2014. [67] M.J. Jackson, Microfabrication and nanomanufacturing, CRC Press/Taylor & Francis, Boca Raton, Fla., 2006. [68] M.J. Chiang, M.H. Hon, Optical emission spectroscopy study of positive direct current bias enhanced diamond nucleation, Thin Solid Films, 516 (2008) 4765-4770. [69] H.C. Hsueh, H.C. Li, D.Y. Chiang, S. Lee, Effects of Ammonia/Methane Mixtures on Characteristics of Plasma Enhanced Chemical Vapor Deposition n-Type Carbon Films, Journal of the Electrochemical Society, 159 (2012) D77-D83. [70] A. Granier, M. Vervloet, K. Aumaille, C. Vallée, Optical emission spectra of TEOS and HMDSO derived plasmas used for thin film deposition, Plasma Sources Science and Technology, 12 (2003) 89. [71] M. Rayar, P. Supiot, P. Veis, A. Gicquel, Optical emission study of a doped diamond deposition process by plasma enhanced chemical vapor deposition, Journal of Applied Physics, 104 (2008) 033304. [72] U. Kuhlmann, H. Werheit, K.A. Schwetz, Distribution of carbon atoms on the boron carbide structure elements, Journal of Alloys and Compounds, 189 (1992) 249-258. [73] Y. Wang, Y. Ye, H. Li, L. Ji, Y. Wang, X. Liu, J. Chen, H. Zhou, Microstructure and tribological properties of the a-C:H films deposited by magnetron sputtering with CH4/Ar mixture, Surface and Coatings Technology, 205 (2011) 4577-4581. [74] M. Lejeune, M. Benlahsen, R. Bouzerar, Stress and structural relaxation in amorphous hydrogenated carbon films, Applied Physics Letters, 84 (2004) 344-346. [75] C.Y. Lin, L.H. Lai, Y.X. Liu, S.T. Shiue, H.Y. Lin, Effects of Ammonia Addition on Thermal Chemical Vapor Deposition Rates and Microstructures of Carbon Films, Journal of The Electrochemical Society, 158 (2011) D445-D451. [76] C.D. Wagner, G.E. Muilenberg, Handbook of x-ray photoelectron spectroscopy : a reference book of standard data for use in x-ray photoelectron spectroscopy, Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, Minn., 1979. [77] P. Mérel, M. Tabbal, M. Chaker, S. Moisa, J. Margot, Direct evaluation of the sp3 content in diamond-like-carbon films by XPS, Applied Surface Science, 136 (1998) 105-110. [78] G. Le Dû, N. Celini, F. Bergaya, F. Poncin-Epaillard, RF plasma-polymerization of acetylene: Correlation between plasma diagnostics and deposit characteristics, Surface and Coatings Technology, 201 (2007) 5815-5821. [79] S. Kaciulis, Spectroscopy of carbon: from diamond to nitride films, Surface and Interface Analysis, 44 (2012) 1155-1161. [80] L.G. Jacobsohn, R.K. Schulze, M.E.H. Maia da Costa, M. Nastasi, X-ray photoelectron spectroscopy investigation of boron carbide films deposited by sputtering, Surface Science, 572 (2004) 418-424. [81] J.K. Shin, C.S. Lee, K.R. Lee, K.Y. Eun, Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films, Applied Physics Letters, 78 (2001) 631-633. [82] L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Applied Physics Letters, 88 (2006) 163106. [83] J.C. Pu, S.F. Wang, C.L. Lin, J.C. Sung, Characterization of boron-doped diamond-like carbon prepared by radio frequency sputtering, Thin Solid Films, 519 (2010) 521-526. [84] C. Oppedisano, A. Tagliaferro, Relationship between sp2 carbon content and E04 optical gap in amorphous carbon-based materials, Applied Physics Letters, 75 (1999) 3650-3652.
|