(54.236.62.49) 您好!臺灣時間:2021/03/08 03:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃仲偉
研究生(外文):Chung-Wei Huang
論文名稱:耦合劑及熱處理對木材塑膠複合材物理機械、潛變及結晶動力學性質之影響
論文名稱(外文):Effects of Coupling Agent and Heat Treatment on the Physico-mechanical, Creep, and Crystallization Kinetic Properties of Wood Plastic Composites
指導教授:吳志鴻吳志鴻引用關係
指導教授(外文):Jyh-Horng Wu
口試委員:卓志隆楊登鈞楊德新郭佩鈺
口試日期:2018-01-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:82
中文關鍵詞:木材塑膠複合材順丁烯二酸酐接枝聚丙烯熱處理短期加速潛變試驗非等溫結晶動力學
外文關鍵詞:Wood plastic compositeMaleic anhydride-grafted polypropyleneHeat treatmentShort-term accelerated creep testsNon-isothermal crystallization kinetic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討不同順丁烯二酸酐接枝聚丙烯(Maleic anhydride-grafted polypropylene,MAPP)添加量以及不同熱處理木粒片對其木材塑膠複合材料(Wood plastic composites,WPC)物理機械、潛變性質以及結晶動力學之影響。試驗結果顯示,不同MAPP添加量之WPC中,係以添加3 wt% MAPP之WPCM3具有較優異之物理機械性質。而在不同熱處理木粒片所製備之WPC中,則以180oC熱處理者(WPCH180)具有較優異之物理機械性質。另外,比較階段式等溫試驗法(Stepped isothermal method,SIM)及階段式等應力試驗法(Stepped isostress method,SSM)進行短期加速潛變試驗結果發現,以SSM方法所繪製之潛變主曲線(Master curves)與長期潛變間具有高度之一致性,顯示SSM較適合用於預測WPC之長期潛變性質。根據SSM之試驗結果顯示,添加5 wt% MAPP能有效提升WPC之抗潛變性。而經不同熱處理木粒片所製備之WPC,則以220oC熱處理木粒片所製備之WPC(WPCH220)具有最低之應變量。此外,WPCM5及WPCH220二者於20年之潛變抗性改善率(Improvement of creep resistance,ICR)分別達到61%及48%。
另一方面,本研究以數種常見之非等溫結晶動力學(Non-isothermal crystallization kinetics)模式對WPC中塑膠基質之結晶行為進行分析。試驗結果顯示,添加木粒片於塑膠中時,會加快WPC中塑膠基質之結晶速率。而添加MAPP於WPC時,則於添加量達3 wt%時有最快之結晶速率。然而,過高之MAPP添加量則會阻礙PP分子鏈之結晶,降低其結晶速率。此外,透過Kissinger分析模式得知,當MAPP添加量為3 wt%時,PP之結晶活化能最低(-224 kJ/mol)。至於不同熱處理木粒片所製備之WPC,其活化能則隨著熱處理溫度提高而下降,當熱處理溫度達220oC時,PP之結晶活化能最低(-271 kJ/mol),此結果與結晶速率之結果相符合。
Effects of maleic anhydride-grafted polypropylene (MAPP) contents and heat treated wood particles on the physico-mechanical, creep properties, and crystallization kinetics of WPC were evaluated by universal testing machine and differential scanning calorimetry (DSC). The results revealed that the WPC with 3 wt% MAPP demonstrated the best physico-mechanical properties among all MAPP-contained WPCs. Additionally, the WPC made of 180oC heat treated wood particles exhibited the best physico-mechanical properties among all heat treated WPCs. To predict the long-term creep behavior of WPCs, two short-term accelerated creep testing methods, termed the stepped isothermal method (SIM) and stepped isostress method (SSM), were used in this study. In comparison with SIM, the creep master curve constructed from SSM exhibited better consistency with long term experimental data. This result indicated that SSM is more suitable for predicting the long-term creep behavior of WPC. Moreover, the creep resistance of WPC with MAPP was better than that of WPC without MAPP. The SSM test results show that adding 5 wt% of MAPP could improve the creep resistance of WPC. On the other hand, among all heat treated WPCs, the WPCH220 exhibited the best creep resistance. According to the SSM-predicted creep behavior, the improvement of creep resistance (ICR) of WPCM5 and WPCH220 reached 61% and 48%, respectively, over a 20-year period as compared to the WPC without MAPP.
In the crystallizaiton kinetic analysis, numerical non-isothermal crystallization kinetic models were applied to analyze the crystallization behavior of plastic matrix within the WPC. The result showed that the crystallization rate of PP increased with addition of wood particles. In addition, the WPC with 3 wt% MAPP suggested the fastest crystallization rate. However, lower crystallization rate of WPC with higher MAPP contents (>3 wt%) is probably due to the sufficiently high density of nuclei, which hinders the transport of PP molecular chains to crystal surface during non-isothermal crystallization. Furthermore, based on the Kissinger model, among all MAPP-contained WPCs, the WPCM3 showed the lowest crystallization activation energy (ΔE) (-224 kJ/mol). Moreover, the ΔE of heat treated WPCs decreased with increasing the heat treatment temperature. Among all heat treated WPCs, the WPCH220 displayed the lowest ΔE (-271 kJ/mol). These results are in agreement with the crystallization rate.
摘要 i
Abstract ii
表目次 vi
圖目錄 viii
第一章 前言 1
第二章 文獻回顧 4
一、混鍊對木材塑膠複合材中纖維型態及分散性之影響 4
二、添加耦合劑對複合材料性質之影響 7
三、熱處理對複合材料性質之影響 9
四、短期潛變試驗法之理論基礎 11
五、非等溫結晶動力學之應用 14
第三章 材料與方法 19
一、試驗材料 19
(一)木質材料 19
(二)塑膠材料 19
(三)耦合劑 19
二、試驗方法 19
(一)粒片之熱處理 19
(二)木材塑膠複合材之製備 19
三、性質分析 20
(一)WPC之物理性質 20
(二)WPC之機械性質 21
(三)潛變試驗 22
(四)非等溫結晶動力學 24
(五)統計分析 24
第四章 結果與討論 25
一、耦合劑對木材塑膠複合材物理機械性質之影響 25
(一)耦合劑對木材塑膠複合材物理性質之影響 25
(二)耦合劑對木材塑膠複合材機械性質之影響 26
二、不同溫度熱處理木粒片對木材塑膠複合材性質之影響 27
(一)熱處理木粒片對木材塑膠複合材物理性質之影響 27
(二)熱處理木粒片對木材塑膠複合材機械性質之影響 28
三、以短期加速潛變試驗法預測木材塑膠複合材之長期潛變行為 30
(一)以階段式等溫試驗法預測木材塑膠複合材之長期潛變行為 30
(二)以階段式等應力試驗法預測木材塑膠複合材之長期潛變行為 32
四、木材塑膠複合材之非等溫結晶動力學 48
(一)木材塑膠複合材中PP基質之非等溫結晶行為之探討 48
(二)以Avrami模式探討木材塑膠複合材之非等溫結晶動力學 54
(三)以Avrami-Ozawa模式探討木材塑膠複合材之非等溫結晶動力學 59
(四)添加MAPP及熱處理木粒片對WPC內塑膠基質結晶活化能之影響 64
第五章 結論 70
參考文獻 72
Achereiner, F., K. Engelsing, M. Bastian, and P. Heidemeyer (2013) Accelerated creep testing of polymers using the stepped isothermal method. Polym. Test. 32:447–454.
Andrezej, B. and O. Faruk (2004) Creep and impact properties of wood fiber polypropylene composites: influence of temperature and moisture content. Compos. Sci. Technol. 64(5):693–700.
Arino, R. and A. Boldizar (2013) A barrier screw compounding and mechanical properties EEA copolymer and cellulose fiber composite. Int. Polym. Process. 4:421–428.
Arwinfar, F. and S. Khalil (2016) Mechanical properties and morphology of wood plastic composites produced with thermally treated beech wood. Bioresorces 11(1):1494–1504.
Avrami, M. (1939) Kinetics of phase change. I. General theory. J. Chem. Phys. 7:1103–1112.
Ayrilmis, N. and S. Jarusombuti (2011) Effect of thermal-treatment of ribber fibers on physical and mechanical properties of medium density fiberboard. J. Trop. For. Sci. 23:10–16.
Beaugrand, G. and P. Evon (2013) Lignocellulosic fiber reinforced composites: influence of compounding conditions on defibrization and mechanical properties. Appl. Polym. Sci. 128:1227–1238.
Bledaki, A. K., M. Letman, and A. Viksne (2005) A comparison of compounding process and wood type for wood fibre-PP composites. Compos. Part A-Appl. S. 36:789–797.
Bledaki, A. K. and M. Letman (2005) A comparison of compounding for wood fiber-PP composites. Compos. Part A-Appl. S. 36:789–797.
Boonstra, M. J. (2008) A two-stage thermal modification of wood. PhD dissertation. Belgium: Ghent University. 297 pp.
Boonstra, M. J. and B. Tjeerdsma (2006) Chemical analysis of heat treated softwoods. Eur. J. Wood Wood Prod. 64:204–211.
Bouafif, H. and A. Koubaa (2009) Wood particle/high-density polypropylene composites: Thermal sensity and nucleating ability of wood particles. J. Appl. Polym. Sci. 113:593–600.
Cao, J. Z. and Y. Wang (2010) Preliminary study of viscoelastic properties of MAPP-modified wood flour/polypropylene composites. For. Stud. China 12:85–89.
Chen, J, and S. J. Bull (2009) The investment of creep of electroplated Sn and Ni-Sn coating on copper at room temperature by nanoindentation. Surf. Coat. Tech. 203:1609–1617.
Daniela, S. R. (2015) Application of the time temperature superposition principle to concentrated magnetic nanofluids. Rom. Rep. Phys. 67(3)890–914.
Deniz, A. and A. Kiziltas (2015) Heat treated wood nylon 6 composites. Compos. Part B-Eng. 65:414–423.
Esteves, B. M. and H. Pereira (2009) Wood modification by heat-treatment: a review. Bioresorces 4:370–404.
Fan, Q. and D. Feihong (2015) Non-isothermal crystallization kinetics of polypropylene and hyperbranched polyester blends. Chin. J. Chem. Eng. 23:441–445.
Fang, H. and Q. Wu (2013) Effect of thermal treatment on durability of short bamboo-fibers and its reinforced composites. Fibers Polym. 14:436–440.
Fengel, D. (1966) On the change of wood components within the temperature range up to 200oC – Part 1. Holz. Roh-Werkst. 24:98–109.
Findley, W. N., J. S. Lai, and K. Onaran (1976) Creep and relaxation of nonlinear viscoelastic materials with an introduction to linear viscoelasticity. Dover publications, New York. 380 pp.
Friedman, H. L. (1963) Kineics of thermal degradation of charforming plastics from thermogravimetry. Application to a phenolic plastic. Polym. Sci. 6:183–195.
Gao, H. and Y. Xie (2012) Grafting effect of polypropylene/polyethylene blends with maleic anhydride on the properties of the resulting wood plastic composites. Compos. Part A-Appl. S. 43:150–157.
Gao, R., M. Kuriyagawa, K. H. Nitta, and B. Liu (2015) Structural interpretation of Eyring activation parameters for tensile yielding behavior of isotactic polypropylene solid. J. Macromol. Sci. B 1–36.
Gardner, D., H. Yousoo, and W. Lu (2015) Wood plastic composites technology. Curr. Forest Rep. 1:139–150.
Giannopoulos, I. and C. J. Burgoyne (2011) Prediction of the long–term behaviour of high modulus fibres using the stepped isostress method (SSM). J Mater. Sci. 46:7660–7672.
Gosselin, R., D. Rodrigue, and B. Riedl (2006) Injection molding of post consimer wood plastic composites: morphology. J. Thermoplast. Compos. Mater. 19:639–657.
Gozdecki, C. and A. Wilczynski (2015) Properties of wood plastic composites made of milled particleboard and polypropylene. Eur. J. Wood Wood Prod. 73:87–95.
Grozdanov, A. and A. Buzarovska (2007) Nonisothermal crystallization kinetics of kenaf fiber/polypropylene composites. Polym. Eng. Sci. 47:745–749.
Hadid, M. and B. Guerira (2014) Assessment of the stepped isostress method in the presiction of long term creep of thermoplastics. Polym. Test. 34:113–119.
Hakkou, M. and M. Petrissans (2005) Investigation of wood wettability changes during heat-treatment on the basis of chemical analysis. Polym. Degrad. Stabil. 89:1–5.
Hashley, G., J. Howard, and H. Eyring (1946) Mechanical properties of textiles. Text. Res. J. 15:295–311.
Hillis, W. (1984) High temperature and chemical effects on wood stability. Part 1 General considerations. Wood Sci. Technol. 18:281–293.
Hojjat, M. H. and A. Ayse (2015) Polypropylene reinforced with nanocrystalline cellulose: coupling agent optimization. J. Appl. Polym Sci. 132:424–438.
Holbery, J. and D. Houston (2006) Natural fiber reinforced polymer composites in automotive application. JOM-US. 58:80–86.
Homkhiew, C. and T. Ratanawilai (2014) Effects of nature weathering on the properties of recycled polypropylene composites reinforced with rubberwood flour. Ind. Crop. Prod. 56:52–59.
Hosseinaei, O., S. Wang, and T. G. Rials (2012) Effect of hemicellulose extraction on properties of wood flour and wood plastic composites. Compos. Part A-Appl. S. 43:686–694.
Hu, C. G., G. Juifen, and J. Zhou (2013) Effect of the thickness of the heat treated wood specimen on water-soluble exreactives and mechanical properties of Merbau heartwood. Bioresorces 8:603–611.
Huang, L. and H. Wang (2016) Non-isothermal crystallization kinetics of wood–flour/polypropylene composites in the presence of β-nucleating agent. J. Forestry Res. 27(4)949–958.
Huda, M. S. and L. T. Drzal (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological studies. J. Appl. Polym. Sci. 102:4856–4569.
Hung, K. C., T. L. Wu, Y. L. Chen, and J. H. Wu (2016) Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled–polypropylene composites. Constr. Build. Mater. 108:139–145.
Ichazo, M. N. and C. Albano (2001) Polypropylene/wood flour composites: treatment and properties. Compos. Struct. 54:207–214.
Isayev, A. I. and M. Modic (1987) Self-reinforced melt processible polymer composites: extrusion, compression, and injection molding. Polym. Compos. 8:158–175.
Jakonov, D. and T. Konepleva (1967) Moisture absorption by scot pine wood after heat-treatment. Arhangelsk 10:112–114.
Jeziorny, A. (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C. Polymer 19:1142–1144.
Kaboorani, A. (2008) Feasibility of using heat treated wood in wood/thermoplastic composites. J. Reinf. Plast. Comp. 27:1689–1699.
Kaboorani, A. (2009) Thermal properties of composites made of heat-treated wood and polypropylene. J. Compos. Mater. 43:2599–2607.
Kajaks, J. and K. Kalnins (2014) Physical and mechanical properties of composites based on polypropylene and timber industry waste. Cent. Eur. J. Eng. 4:385–390.
Kamdem, D. P., A. Pizzi, and A. Jermannaud (2002) Durability of heat-treated wood. Eur. J. Wood Wood Prod. 60:1–6.
Karmaker, A. C. and J. A. Youngquist (1996) Injection molding of polypropylene reinforced with short jute fiber. J. Appl. Polym. Sci. 62:1147–1151.
Kazayawoko, M., J. J. Balatinecz, and L. M. Matuana (1999) Surface modification and adhesion mechanisms in woodfiber polypropylene composites. J. Mater. Sci. 34:6189–6199.
Keener, T. J., R. K. Stauart, and T. K. Brown (2004) Maleated coupling agent for natural fiber composites. Compos. Part A-Appl. S. 35:357–362.
Khalid, M. and S. Ali (2006) Effect of MAPP as coupling agent on the mechanical properties of palm fiber empty fruit bunch and cellulose polypropylene biocomposites. Int. J. Eng. Sci. 3:79–84.
Kim, H., B. Lee, and S. Choi (2007) The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos. Part A-Appl. S. 38:1473–1482.
Kissinger, H. E. (1957) Reaction kinetics in differential thermal analysis. Anal. Chem. 29:1702–1706.
Kollmann, F. and A. Schneider (1963) On the sorption behavior of heat stabilized wood. Holz. Roh-Werkst. 21:77–85.
Lee, S. H. and S. Wang (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos. Part A-Appl. S. 37:80–91.
Lee, S. Y., H. Yang, and H. Kim (2004) Creep behavior and manufacturing parameters of flour filled polypropylene composites. Compos. Struct. 65:459–469.
Lei, Y. and Q. Wu (2007) Influence of nanoclay on properties of HDPE/wood Composites. J. Appl. Polym. Sci. 106(6):3958–3966.
Li, L., H. Li., and C. Guo (2011) Influence of rare earth coupling agent on non-isothermal crystallization behavior of wood flour/polypropylene composite. Polym. Compos. 20:781–790.
Li, X., L. Tabil, and S. Panigrahi (2007) Chemical treatment of natural fiber for use in natural fiber-reinforce composite: a review. J. Polym. Environ. 15:25–33.
Liu, J. and Z. Mo (1991) Crystallization kinetics of polymers. Chinese Polym. Bull. 4:199–207.
Long, Y. and R. A. Sharks (1995) Kinetics of polymer crystallization. Prog. Polym. Sci. 20:651–701.
Lu, J. Z. and Q. Wu (2005) Maleated wood fiber-high density polyethylene composite: coupling agent performance. Compos. Interface. 96:93–102.
Lu, J. Z. and Q. Wu (2006) Maleated wood fiber-high density polyethylene composite: coupling mechanisms and interfacial characterization. Compos. Interface. 12:125–140.
Lu, J. Z. and Q. Wu (2006) The influence of fiber feature and polymer melt index on mechanical properties of sueacane fiber/polymer composites. J. Appl. Polym. Sci. 102:5676–5619.
Lu, J. Z. (2003) Chemical coupling in wood plastic composites. PhD dissertation. Baton Rouge: Louisiana State University. 277 pp.
Lu, J. Z., I. Negulescu, and Q. Wu (2005) Wood-fiber/high-density-polyethylene composite: coupling mechanism and interface characterization. Compos. Interface. 12:125–140.
Luo, A. A., B. R. Powell, and M. P. Balogh (2002) Creep and microstructure of magnesium-aluminum-calcium based alloys. Metall. Master. Trans. A 33(3):567–574.
Luo, S. P. and J. Cao (2012) Properties of PEG/thermally modified wood flour/polypropylene (PP) composites. For. Stud. China. 14:307–314.
Luo, S. P. and J. Cao (2013) Investigation of the interfacial compatibility of PEG and thermally modified wood flour/polypropolyene composites using the stress relaxation approach. Bioresorces 8:2064–2073.
Mahlberg, R., L. Paajanen, and A. Nurmi (2001) Wood on the mechanical and adhesion properties of wood fiber/polypropylene fiber and polypropylene/veneer composites. Eur. J. Wood Wood Prod. 59:319–326.
Maldas, D. and B. V. Kokta (1989) Thermalplastic composited of polystyrene: effect of different wood species on mechanical properties. J. Appl. Polym. Sci. 38:413–139.
Malekani, M., B. Bazyer, and M. Talaiepour (2014) Influence of maleic-anhydride polypropylene (MAPP) on the physical properties of polypropylene/sawdust fir flour composite. J. Appl. Environ. Biol. Sci. 4(3):340–343.
Mathew, A. P. and K. Oksman (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl. Polym. Sci. 101:300–310.
Mburu, F., S. Dumarcay, F. Huber, M. Petrissans, and P. Gérardin (2007) Evaluation of thermally modified Grevillea robusta heartwood as an alternative to shortage of wood resource in Kenya: Characterisation of physicochemical properties and improvement of bio-resistance. Polym. Degrad. Stabil. 98:3478–3486.
Mechraoui, A., B. Riedl, and D. Rodgrigue (2007) The effect of fibre and coupling agent on the mechanical properties of hemp/polypropylene composites. Compos. Interface. 14:837–848.
Mohanty, S. and K. Nayak (2004) Effect of MAPP as coupling agent on the performance of jute-PP composites. J. Reinf. Plast. Compos. 23:575–588.
Mubarak, Y. and H. Jones (2001) Modeling of non-isothermal crystallization kinetic of isotactic polypropylene. Polymer 42(7)3171–3182.
Najafi, S. K., H. Sharifnia, and Tajvidi, M. (2008) Effects of water absorption on creep behavior of wood–plastic composites. J. Compos. Mater. 42:993–1002.
Nikolov, S. and E. Ensev (1967) Effect of heat treatment on the sorption dynamics of beech wood. Ser. Meh. Tein. Darv. Nauc. Trud. Lesoteh. Inst. 14:71–77.
Niu, P., X. Wang, B. Liu, S. Long, and J. Yang (2012) Melting and nonisothermal crystallization behavior of polypropylene/hemp fiber composites. J. Compos. Mater. 46(2)203–210.
Nornberg, B., E. Borchardt, G. A. Luinstra, and J. Fromm (2014) Wood plastic composites from poly(propylene carbonate) and poplar wood flour–mechanical, thermal and morphological properties. Eur. Polym. J. 50:167–176.
Nourbakhsh, A. and A. Ashori (2008) Fundamental studies on wood-plastic composites: Effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite. Polym. Compos. 29(5):569–573.
Nygard, P. and B. S. Tanem (2008) Extrusion-based wood fibre-PP composites: wood powder and pelletized wood fiber. Compos. Sci. Technol. 68:3418–3424.
Oksman, K. and H. Lindberg (1998) The nature and location of SEBS-MA compatibilizer in polyethylene-wood flour composites. J. Appl. Polym. Sci. 69:201–209.
Ozawa, T. (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158.
Peltola, H. and B. Madsen (2011) Experimental study of fiber length and orientation in injection molded matural fiber/starch acetate composites. Adv. Mater. Sci. 1–7.
Peltola, H., E. Paakkonen, and P. Jetsu (2014) Wood based PLA and PP composites: effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties. Compos. Part A-Appl. S. 61:13–22.
Pendleton, D. E., T. A. Hoffard, and T. Adcock (2002) Durability of an extruded HDPE/wood composite. Forest Prod. J. 52:21–27.
Pilate, P., V. Lardot, and F. Cambier (2015) Contribution to the understanding of the high temperature behavior and the compressive creep behavior of silica refractory materials. J. Eur. Ceram. Soc. 35(2):813–822.
Pitchard, G. (2004) Two technologies merge: wood plasticd composites. Reinf. Plast. 48(6):26–29.
Ratanawilan, T. and K. Nakawirot (2014) Influence of wood species and particle size on mechanical and thermal properties of wood polypropylene composites. Fiber Polym. 15:2160–2168.
Robin, J. J. and Y. Breton (2001) Reinforcement of recycled polypropylene with wood fibers heat treated. J. Reinf. Plast. Compos. 20:1523–1562.
Roson, M. J. (1978) Surface and interfacial phenomena. John Wiley & Sons, New York. 500 pp.
Rusche, H. (1973) Thermal degradation of wood at temperature up to 200oC: Part 1. Holz. Roh-Werkst. 31:273–281.
Sain, M. M. and B. V. Kokta (1993) Effect of reactive additives on the performance of cellulose fiber-filled polypropolyene composites. J. Adhes. Sci. Technol. 7:49–61.
Sallih, N. and P. Lescher (2014) Factorial study of material and process parameters on the mechanical properties of extrude kneaf fibre/polypropylene composites sheets. Compos. Part A-Appl. S. 61:91–107.
Sanadi, A. and D. F. Caulfield (2000) Transcrystalline interphase in natural fiber-PP composite: effct of coupling agent. Compos. Interface. 7:31–43.
Seborg, R. and H. Tarkow (1953) Effect of heat upon the dimensional stabilization of wood. Forest Prod. J. 3:59–67.
Spear, M. J., A. Eder, and M. Carus (2015) Wood polymer composites. Woodhead Publishing Cambridge. pp. 195–249.
Stark, N. M. and R. E. Rowland (2003) Effect of wood fiber characteristics on mechanical properties of wood/polypropylene composites. Wood Fiber Sci. 2:167–174.
Summerscales, J. and N. P. Dissanayake (2010) A review of bast fibres and their composites part 1– fibres as reinforcements. Compos. Part A-Appl. S. 41:1329–1335.
Sykacek, E. and M. Hrabalova (2009) Extrusion of five biopolymers reinforced with increasing wood flour concentration on a production machine, injection moulding and mechanical performance. Compos. Part A-Appl. S. 40:1272–1282.
Tiemann, H. (1920) Effect of different method of drying on the strength and hygroscopicity of wood. The Kiln Drying of Lumber. Philadelphia. 326 pp.
Troltzsch, J., J. Stiller, K. Hase, and I. Roth (2015) Effect of maleic anhydride modification on the mechanical properties of highly filled glass fibre reinforced, low-viscosity polypropylene for injection moulding. J. Mater. Sci. 5:111–120.
Weiland, J. J. and R. Guyonnet (2003) Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Eur. J. Wood Wood Prod. 61:216–220.
Wikberg, H. and S. L. Maunu (2004) Characterisation of thermally modified hardwood and softwoods by 13C CPMAS NMR. Carbohyd. Polym. 58:461–466.
Yang, H. and R. Yan (2007) Characeristics of hemicellulose, cellulose, and lignin pyrolysis. Fuel 86:1781–1788.
Yang, T. C., Y. C. Chien, L. T. Wu, K. C. Hung, and J. H. Wu (2017) Effects of heat-treated wood particles on the physico-mechanical properties and extended creep behavior of wood/recycled-HDPE composites using the time-temperature superposition principle. Materials 10(4):365.
Yeo, S. S. and Y. G. Hsuan (2009) Predicting the creep behavior of high density polyethylene geogrid using stepped isothermal method. Service life prediction of polymeric materials. Springer, New York. pp. 205–218.
Yuan, Q. and S. Awate (2006) Nonisothermal crystallization behavior of polypropylene-clay nanocomposites. Eur. Polym. J. 42:1994–2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔