吳雅芳、林志鴻、王肇芬、鄭安秀。2011。馬鈴薯青枯病菌 馬鈴薯青枯病菌 (Ralstonia solanacearum phylotype II/ race 3/ biovar 2) 於雲林縣斗南地區田間之族群密度與馬鈴薯罹病率調查。Plant Pathology Bulletin 20: 68-77頁。
吳雅芳、鄭安秀、林志鴻。2017。番茄青枯病防治實務。臺南區農業專訊第100期。臺南。19-23頁。
周浩平、林宜賢、黃㯖昌、鄧文玲。2016。應用液化澱粉芽孢桿菌 Bacillus amyloliquefaciens PMB01 防治茄科作物青枯病。重要植物病原細菌與菌植體研討會。130-138頁。
林雅涵。2015。茶與百香果炭疽病之拮抗微生物鑑定及其於病害防治應用潛力。國立中興大學植物病理系碩士論文。90頁。林駿奇。2009。作物青枯病之生態與防治。花蓮區農業專訊第70期。18-21頁。張俊傑。2016。藉由Bacillus amyloliquefaciens啟動西瓜內源之免疫反應於果斑病之防治。國立屏東科技大學植物醫學系碩士論文。56頁郭宏遠。2002。番茄產銷概況分析。種苗科技專訊第37期。68頁陳正次。2000。番茄栽培管理果菜類蔬菜栽培斑課程講義。行政院農業試驗所台中。台灣
曾國欽、徐世典。2003。重要植物細菌性病害之診斷鑑定。植物重要防檢疫病害診斷鑑定技術研習會專刊(二)。95-115頁。
劉興隆、趙佳鴻、沈原民。2010。茄科作物青枯病發生生態及管理策略。臺中區農業專訊第70期。7-9頁。戴振洋、趙佳鴻。2012。臺灣番茄病毒病介紹~以黃化捲葉病毒病為例。台中區農業改良場101年專題討論專集特刊116號。73-80頁。
Arias, R.S., Sagardoy, M.A., Van Vuurde, J.W. (1999) Spatio‐temporal distribution of naturally occurring Bacillus spp. and other bacteria on the phylloplane of soybean under field conditions. Journal of Basic Microbiology 39:283-292.
Beauregard, P.B., Chai, Y., Vlamakis, H., Losick, R., Kolter, R. (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences. 110:E1621-E1630.
Behera, B.C., Singdevsachan, S.K., Mishra, R.R., Sethi, B.K., Dutta, S.K., Thatoi, H.N. (2016) Phosphate solubilising bacteria from mangrove soils of Mahanadi river delta, Odisha, India. World Journal of Agricultural Research 4:18-23.
Boukaew, S., Chuenchit, S., Petcharat, V. (2011) Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. Biological Control 56:365-374.
Boulter, J., Boland, G., Trevors, J. (2000) Compost: a study of the development process and end-product potential for suppression of turfgrass disease. World Journal of Microbiology and Biotechnology 16:115-134.
Branda, S.S., Gonzalez-Pastor, J.E., Dervyn, E., Ehrlich, S.D., Losick, R., Kolter, R. (2004) Genes involved in formation of structured multicellular communities by Bacillus subtilis. Journal of Bacteriology. 186:3970-9.
Branda, S.S., Vik, S., Friedman, L., Kolter, R. (2005) Biofilms: the matrix revisited. Trends in Microbiology. 13:20-6.
Brannen, P., Kenney, D. (1997) Kodiak®—a successful biological-control product for suppression of soil-borne plant pathogens of cotton. Journal of Industrial Microbiology & Biotechnology. 19:169-171.
Brimner, T.A., Boland, G.J. (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agriculture, Ecosystems & Environment. 100:3-16.
Cao, Y., Zhang, Z., Ling, N., Yuan, Y., Zheng, X., Shen, B., Shen, Q. (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biology and Fertility of Soils. 47:495-506.
Carvalhais, L. C., Dennis, P. G., Fedoseyenko, D., Hajirezaei, M. R., Borriss, R., von Wirén, N. (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. Journal of Plant Nutrition and Soil Science. 174:3-11
Chen, D., Liu, X., Li, C., Tian, W., Shen, Q., Shen, B. (2014) Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt. Journal of Environmental Management. 137:120-7.
Chen, H.Y., Huh, J.H., Yu, Y.C., Ho, L.H., Chen, L.Q., Tholl, D., Frommer, W.B., Guo, W.J. (2015) The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. The Plant Journal. 83:1046-58.
Chen, L.Q., Hou, B.H., Lalonde, S., Takanaga, H., Hartung, M.L., Qu, X.Q., Guo, W.J., Kim, J.G., Underwood, W., Chaudhuri, B., Chermak, D., Antony, G., White, F.F., Somerville, S.C., Mudgett, M.B., Frommer, W.B. (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 468:527-32.
Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., Guo, J.H. (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology. 15:848-64.
Costerton, J.W., Stewart, P.S., Greenberg, E.P. (1999) Bacterial biofilms: a common cause of persistent infections. Science. 284:1318-1322.
Davies, J.L., Andrews, G., Miller, R., Owen, H. (1973) Comparison of the Stannous Chloride and Vanadate Methods for Estimation of Serum Inorganic Phosphorus by Use of the" SMA 12/60". Clinical chemistry. 19:411-414.
De Weert, S., Vermeiren, H., Mulders, I. H., Kuiper, I., Hendrickx, N., Bloemberg, G. V., Vanderleyden, J., De Mot, R., Lugtenberg, B. J. (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Molecular Plant-Microbe Interactions. 15:1173-80.
Denny, TP, Hayward, AC. (2001) Ralstonia. In: Schaad NW, Jones JB, Chun W, editors. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd Ed. St. Paul, MN; APS Press. pp. 165–189.
Dunn, A.K., Handelsman, J. (1999) A vector for promoter trapping in Bacillus cereus. Gene. 226:297-305.
Eddy, B. (1961) The voges‐proskauer reaction and its significance: a review. Journal of Applied Microbiology. 24:27-41.
Ehmann, A. (1977) The Van Urk-Salkowski reagent—a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A. 132:267-276.
Elasri, M.O., Miller, R.V. (1999) Study of the response of a biofilm bacterial community to UV radiation. Applied and Environmental Microbiology. 65:2025-2031.
Feng, C.Y., Han, J.X., Han, X.X., Jiang, J. (2015) Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene. 573:261-72.
Fravel, D.R., Deahl, K.L., Stommel, J.R. (2005) Compatibility of the biocontrol fungus Fusarium oxysporum strain CS-20 with selected fungicides. Biological Control. 34:165-169.
French, E., Sequeira, L. (1970) Strains of Pseudomonas solanacearum from Central and South America: a comparative study. Phytopathology. 60:506-12.
Fritze, D. (2004) Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology. 94:1245-1248.
Genin, S. (2010) Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytologist. 187:920-8.
Ge X., Wei W., Li G., Sun M., Li H., Wu J., Hu F. (2017) Isolated Pseudomonas aeruginosa strain VIH2 and antagonistic properties against Ralstonia solanacearum. Microbial Pathogenesis. 111:519-526.
Guo, W.J., Nagy, R., Chen, H.Y., Pfrunder, S., Yu, Y.C., Santelia, D., Frommer, W.B., Martinoia, E. (2014) SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiology. 164:777-89.
Hartman, G., Hong, W., Wang, T. (1991) Survey of bacterial wilt on fresh market hybrid tomatoes in Taiwan. Plant Protection Bulletin, Taiwan 33:197-203.
Hayward, A. (1964) Characteristics of Pseudomonas solanacearum. Journal of Applied Microbiology. 27:265-277.
Huang, T.P., Tzeng, D.D., Wong, A.C., Chen, C.H., Lu, K.M., Lee, Y.H., Huang, W.D., Hwang, B.F., Tzeng, K.C. (2012) DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere biofilms. PLoS One. 7:e42124.
Hsu, S. (1991) Ecology and control of Pseudomonas solanacearum in Taiwan. Plant Prot. Bull, Taiwan. 33: 72-79.
Hyakumachi, M., Nishimura, M., Arakawa, T., Asano, S., Yoshida, S., Tsushima, S., Takahashi, H. (2013) Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato. Microbes and Environments. 28:128-134.
Idris, E.E., Bochow, H., Ross, H., Borriss, R. (2004) Use of Bacillus subtilis as biocontrol agent. VI. Phytohormonelike action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. Journal of Plant Diseases and Protection. 111:583-597.
Kado, C., Heskett, M. (1970) Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology. 60:969-976
Kelman, A. (1954) The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology. 44:693-695.
Kiers, E.T., Duhamel, M., Beesetty, Y., Mensah, J.A., Franken, O., Verbruggen, E., Fellbaum, C.R., Kowalchuk, G.A., Hart, M.M., Bago, A. (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 333:880-882.
King, S.R., Davis, A.R., Liu, W., Levi, A. (2008) Grafting for disease resistance. HortScience. 43:1673-1676.
Kuzyakov, Y., Jones, D. (2006) Glucose uptake by maize roots and its transformation in the rhizosphere. Soil Biology and Biochemistry. 38:851-860.
Lopez-Bucio, J., Campos-Cuevas, J.C., Hernandez-Calderon, E., Velasquez-Becerra, C., Farias-Rodriguez, R., Macias-Rodriguez, L.I., Valencia-Cantero, E. (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions. 20:207-17.
Lugtenberg, B. J., Kravchenko, L. V., Simons, M. (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environmental Microbiology. 1:439-446.
Lugtenberg, B.J., Dekkers, L., Bloemberg, G.V. (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology. 39:461-490.
Manck-Gotzenberger, J., Requena, N. (2016) Arbuscular mycorrhiza symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family. Frontiers in Plant Science. 7:487.
Milca, R.d.C.R.L., Jssica, M.F., Nataliane, M.d.V., Danilo, M.d.S.S., Ozias, E.F., Joo, L.d.A., Janete, M.d.A., Glucia, M.d.S.L. (2014) Plant growth promoting potential of endophytic bacteria isolated from cashew leaves. African Journal of Biotechnology. 13:3360-3365.
Mohammadipour, M., Mousivand, M., Salehi Jouzani, G., Abbasalizadeh, S. (2009) Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides. Canadian Journal of Microbiology. 55:395-404.
Morris, C.E., Monier, J.M. (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annual Review of Phytopathology. 41:429-53.
Nagórska, K., Bikowski, M., Obuchowski, M. (2007) Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochimica Polonica. 54:495-508.
Neal, A.L., Ahmad, S., Gordon-Weeks, R., Ton, J. (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One. 7:e35498.
Ongena, M., Jacques, P. (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology. 16:115-25.
Parke, J. (1991) Root colonization by indigenous and introduced microorganisms, The rhizosphere and plant growth, Springer. pp. 33-42.
Perez, G. A. (2015) Biocontrol of tomato bacterial wilt and biofilm formation by Bacillus subtilis strains GAPB2 and GAPB3. International Master Program of Agriculture. pp. 79
Prior, P., Allen, C., Elphinstone, J. (1998) Bacterial wilt disease: molecular and ecological aspects. Springer Science & Business Media.
Rick, C. M. (1980) Tomato. Hybridization of crop plants(hybridizationof), Crop Science Society of America. 669-680.
Rodrı́guez, H., Fraga, R. (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances. 17:319-339.
Ryu, C.-M., Farag, M.A., Hu, C.-H., Reddy, M.S., Wei, H.-X., Paré, P.W., Kloepper, J.W. (2003) Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences. 100:4927-4932.
Schallmey, M., Singh, A., Ward, O.P. (2004) Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology. 50:1-17.
Singh, D., Yadav, D.K., Chaudhary, G., Rana, V.S., Sharma, R.K. (2016) Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. Journal of Plant Pathology and Microbiology. 7:1.
Stewart, P.S. (2002) Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology. 292:107-13.
Sun, S., Wang, J., Zhu, L., Liao, D., Gu, M., Ren, L., Kapulnik, Y., Xu, G. (2012) An active factor from tomato root exudates plays an important role in efficient establishment of mycorrhizal symbiosis. PloS One. 7:e43385.
Teitzel, G.M., Parsek, M.R. (2003) Heavy Metal Resistance of Biofilm and Planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology. 69:2313-2320.
Vasse, J., Frey, P., and Trigalet, A. (1995) Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Molecular Plant-Microbe Interactions. 8: 241-251.
Vinson, J. A., Hao, Y., Su, X., & Zubik, L. (1998) Phenol antioxidant quantity and quality in foods: vegetables. Journal of Agricultural and Food Chemistry. 46: 3630-3634.
Weng, J., Wang, Y., Li, J., Shen, Q., Zhang, R. (2013) Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Applied Microbiology and Biotechnology. 97:8823-30.
Wicker, E., Grassart, L., Coranson-Beaudu, R., Mian, D., Guilbaud, C., Fegan, M., Prior, P. (2007) Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Applied and Environmental Microbiology. 73:6790-801.
Wu, K., Fang, Z., Guo, R., Pan, B., Shi, W., Yuan, S., Guan, H., Gong, M., Shen, B., Shen, Q. (2015) Pectin enhances bio-control efficacy by inducing colonization and secretion of secondary metabolites by Bacillus amyloliquefaciens SQY 162 in the rhizosphere of tobacco. PLoS One. 10:e0127418.
Xiong, H., Li, Y., Cai, Y., Cao, Y., Wang, Y. (2015) Isolation of Bacillus amyloliquefaciens JK6 and identification of its lipopeptides surfactin for suppressing tomato bacterial wilt. RSC Advances. 5:82042-82049.
Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., Nishiuchi, Y. (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov. Microbiology and Immunology. 39:897-904.
Yu, X., Ai, C., Xin, L., Zhou, G. (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology. 47:138-145.
Zhang, N., Wang, D., Liu, Y., Li, S., Shen, Q., Zhang, R. (2013) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant and Soil. 374:689-700.