|
[1] “Taiwan ministry of health and welfare.” https://www.mohw.gov.tw/cp-16-33598-1.html. [2] W. B. Kannel, “Left ventricular hypertrophy as a risk factor: the Framingham experience.,” Journal of hypertension. Supplement: official journal of the International Society of Hypertension, vol. 9, no. 2, pp. S3–8; discussion S8–9,1991. [3] P. D. Myers, B. M. Scirica, and C. M. Stultz, “Machine Learning Improves Risk Stratification After Acute Coronary Syndrome,” Scientific Reports, vol. 7, p. 12692, Oct. 2017. [4] K. O. Gupta and P. Chatur, “Ecg signal analysis and classification using data mining and artificial neural networks 1,” 2012. [5] J. Adnan, N. Daud, A. Mokhtar, F. Hashim, S. Ahmad, A. Rashidi, and Z. Rizman, “Multilayer perceptron based activation function on heart abnormality activity,” Journal of Fundamental and Applied Sciences, vol. 9, no. 3S, pp. 417–432, 2017. [6] U. R. Acharya, H. Fujita, O. S. Lih, M. Adam, J. H. Tan, and C. K. Chua, “Automated detection of coronary artery disease using different durations of ecg segments with convolutional neural network,” Knowledge-Based Systems, vol. 132, pp. 62–71, 2017. [7] M. Boussaa, I. Atouf, M. Atibi, and A. Bennis, “Ecg signals classification using mfcc coefficients and ann classifier,” in International Conference on Electrical and Information Technologies (ICEIT), pp. 480–484, IEEE, 2016. [8] K.-l. Hsu, H. V. Gupta, and S. Sorooshian, “Artificial neural network modeling of the rainfall-runoff process,” Water resources research, vol. 31, no. 10, pp. 2517–2530, 1995. [9] D. O. Hebb, The organization of behavior: A neuropsychological theory. Psychology Press, 2005. [10] M. F. OSC, “Structure of a neuron.” https://owlcation.com/stem/Structure-of-a-Neuron. [11] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958. [12] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in International Conference on Artificial Intelligence and Statistics, pp. 315–323, 2011. [13] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing neural networks,” in Advances in Neural Information Processing Systems, pp. 972–981, 2017. [14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, pp. 533–536, Oct. 1986. [15] A. Liaw, M. Wiener, et al., “Classification and regression by randomforest,” R news, vol. 2, no. 3, pp. 18–22, 2002. [16] T. G. Dietterich, “Ensemble learning,” The handbook of brain theory and neural networks, vol. 2, pp. 110–125, 2002. [17] L. Fraiwan, K. Lweesy, N. Khasawneh, H. Wenz, and H. Dickhaus, “Automated sleep stage identification system based on time–frequency analysis of a single eeg channel and random forest classifier,” Computer methods and programs in biomedicine, vol. 108, no. 1, pp. 10–19, 2012. [18] R. G. Kumar and Y. Kumaraswamy, “Investigating cardiac arrhythmia in ecg using random forest classification,” Int. J Comput. Appl, vol. 37, pp. 31–34, 2012. [19] R. E. Klabunde, “Electrocardiogram graph.” http://www.cvphysiology.com/Arrhythmias/A009. [20] Cables and L. Sensors, “The description of the 12-leads ecg.” https://www.cablesandsensors.com/pages/12-lead-ecg-placement-guide-with-illustrations. [21] R. B. Devereux, D. R. Alonso, E. M. Lutas, G. J. Gottlieb, E. Campo, I. Sachs, and N. Reichek, “Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings,” American Journal of Cardiology, vol. 57, pp. 450–458, Feb. 1986. [22] R. D. Mosteller, “Simplified calculation of body-surface area,” The New England Journal of Medicine, vol. 317, p. 1098, Oct. 1987. [23] E. L. Schiffrin, Q. Pu, and J. B. Park, “Effect of amlodipine compared to atenolol on small arteries of previously untreated essential hypertensive patients,” American journal of hypertension, vol. 15, no. 2, pp. 105–110, 2002. [24] M. Clinic, “Comparison of normal heart and lvh.” https://www.mayoclinic.org/diseases-conditions/left-ventricular-hypertrophy/multimedia/ left-ventricular-hypertrophy/img-20008677. [25] M. Sokolow and T. P. Lyon, “The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads,” American heart journal, vol. 37, no. 2, pp. 161–186, 1949. [26] P. N. Casale, R. B. Devereux, D. R. Alonso, E. Campo, and P. Kligfield, “Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: validation with autopsy findings.,” Circulation, vol. 75, pp. 565–572, Mar. 1987. [27] C. S. Dangare and S. S. Apte, “Improved study of heart disease prediction system using data mining classification techniques,” International Journal of Computer Applications, vol. 47, no. 10, pp. 44–48, 2012. [28] A. Janos and W. Steinbrunn, “Heart disease data set.” http://archive.ics.uci.edu/ml/datasets/Heart+Disease. [29] U. I. M. L. Repository, “Statlog (heart) data set.” http://archive.ics.uci.edu/ml/datasets/statlog+(heart). [30] T. Song, X. F. Qu, Y. T. Zhang, W. Cao, B. H. Han, Y. Li, J. Y. Piao, L. L. Yin, and H. Da Cheng, “Usefulness of the heart-rate variability complex for predicting cardiac mortality after acute myocardial infarction,” BMC Cardiovascular Disorders, vol. 14, p. 59, May 2014. [31] K. Gregory Piatetsky, “Top data science and machine learning methods used in 2017.” https://www.kdnuggets.com/2017/12/top-data-science-machine-learning-methods.html. [32] G. E. A. P. A. Batista and M. C. Monard, “An analysis of four missing data treatment methods for supervised learning,” Applied Artificial Intelligence, vol. 17, pp. 519–533, May 2003. [33] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression,” The American Statistician, vol. 46, no. 3, pp. 175–185, 1992. [34] D. Harris and S. Harris, Digital Design and Computer Architecture, Second Edition. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2nd ed.,2012. [35] D. M. Hawkins, “The problem of overfitting,” Journal of chemical information and computer sciences, vol. 44, no. 1, pp. 1–12, 2004. [36] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for efficient neural network,” in Advances in neural information processing systems, pp. 1135–1143, 2015. [37] A. Kumar, “How to diagnose underfitting/overfitting of learning algorithm.” https://vitalflux.com/ machine-learning-diagnose-underfittingoverfitting-learning-algorithm/. [38] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014. [39] R. K. Riegelman, Studying a study and testing a test: how to read the medical evidence. Lippincott Williams & Wilkins, 2005. [40] M. A. Bauml and D. A. Underwood, “Left ventricular hypertrophy: an overlooked cardiovascular risk factor,” Cleve Clin J Med, vol. 77, no. 6, pp. 381–7, 2010. [41] D. Pewsner, P. Jüni, M. Egger, M. Battaglia, J. Sundström, and L. M. Bachmann, “Accuracy of electrocardiography in diagnosis of left ventricular hypertrophy in arterial hypertension: systematic review,” Bmj, vol. 335, no. 7622, p. 711, 2007. [42] T. Martin, Y. Bhaskar, and K. Umesh, “Sensitivity and specificity of the electrocardiogram in predicting the presence of increased left ventricular mass index on the echocardiogram in afro-caribbean hypertensive patients,” West indian medical journal, vol. 56, no. 2, pp. 134–138, 2007. [43] P. Gosse, E. Jan, P. Coulon, A. Cremer, G. Papaioannou, and S. Yeim, “Ecg detection of left ventricular hypertrophy: the simpler, the better?,” Journal of hypertension, vol. 30, no. 5, pp. 990–996, 2012. [44] G. Schillaci, F. Battista, and G. Pucci, “A review of the role of electrocardiography in the diagnosis of left ventricular hypertrophy in hypertension,” Journal of electrocardiology, vol. 45, no. 6, pp. 617–623, 2012. [45] J. K. Park, J. H. Shin, S. H. Kim, Y.-H. Lim, K.-S. Kim, S. G. Kim, J. H. Kim, H. G. Lim, and J. Shin, “A comparison of cornell and sokolow-lyon electrocardiographic criteria for left ventricular hypertrophy in korean patients,” Korean circulation journal, vol. 42, no. 9, pp. 606–613, 2012. [46] N. Samesima, L. F. Azevedo, L. D. N. J. De Matos, L. S. Echenique, C. E. Negrao, and C. A. Pastore, “Comparison of electrocardiographic criteria for identifying left ventricular hypertrophy in athletes from different sports modalities,” Clinics, vol. 72, no. 6, pp. 343–350, 2017.
|