|
[1]K. Yamaguchi, Y. Hori, K.Nakajima, K. Suzuki, M. Mizuno, and H. Hayama, “A 2.0Gb/s clock-embedded interface for Full-HD 10-bit 120Hz LCD drivers with 1/5-rate noise-tolerant phase and frequency recovery,” IEEE J. Solid-State Circuits, vol. 4, no. 2, pp. 3560-3567, Dec. 2009. [2]H. K. Joen, Y. H. Moon, J. K. Kang, and L. S. Kim, “An intra-panel interface with clock-embedded differential signaling for TFT-LCD systems,” IEEE J. Display Tech, vol. 7, no. 10, pp.562-571, Oct. 2011. [3]W.-T. Oh, J.-H. Kim, Y.-H. Chang, T.-J. Kim, J.-Y. Lee, K.-S. Nah, and G.-C. Hwang, “A 3.4Gbps/lane overhead clock embedded intra-panel interface for high resolution and large-sized TFT-LCDs,” SID Symp. Digest, vol. 44, pp.396-399, 2013. [4]Y.-H. Chang, J.-H. Kim, W.-T. Oh, J.-Y. Lee, K.-S. Nah, and G.-C Hwang, “A 3.5Gbps/lane intra-panel interface with a PVT-robust VCO based CDR for UD TV applications in 0.18μm high-voltage CMOS technology,” SID Symp. Digest, vol. 44, pp.384-387, 2013. [5]H.-K. Jeon, et al., “A 3.7Gb/s clock-embedded intra-panel interface for the large-sized UHD 120Hz LCD TV application,” SID Symp. Digest, vol. 45, pp.1195-1198, 2014. [6]National Semiconductor Corporation, RSDS^TM “Intra-panel” Interface Specification. Revision 1.0, May. 2003 [7]Texas Instruments Corporation, The mini-LVDS Interface Specification. Revision 0.1, August. 2001. [8]R. McCartney and M. Bell, “A third-generation timing controller and column-driver architecture using point-to-point differential signaling,” SID Symp. Digest, vol. 35, pp.91-97, 2005. [9]C. Zajac, and S. Poniatowski, “A new intra-panel interface for large size/high resolution TFT-LCD applications,” SID Symp. Digest, vol. 35, pp384-387, 2004. [10]W.-C. Huang, C.-F. Chung, C.-H. Yang, Y.-H Ho, and R.-Y. Chang, “Skew-less point-to-point mini-LVDS (SPPmL) interface for large-scale TFT-LCD applications,” SID Symp. Digest, vol. 43, pp. 1215-1218, 2012. [11]K. Nakajima, et al, “A 12-bit LCD source driver IC with point-to-point link interface”, SID Symp. Digest, vol. 38, pp.1633-1636, 2006. [12]H.-K. Jeon et al., “A clock embedded differential signaling (CEDS^TM) for the next generation TFT-LCD applications,” SID Symp. Digest, vol. 40, pp. 975-978, 2009. [13]B. Razavi, Design of Integrated Circuit for Optical Communications, McGraw-Hill Inc., Second Edition, 2012. [14]J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G.Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2121-2130, Dec. 2003. [15]Kamran Farzan, and David A. Johns, “A CMOS 10-Gb/s power-efficient 4-PAM transmitter,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 529-532, Mar. 2004. [16]R. Sun, J. Park, F. O’Mahony, and C. Patrick Yue, “A tunable passive filter for low-power high-speed equalizers,” in Symp. VLSI Circuits 2006 Dig. Tech. Papers, pp. 244-245. [17]H. Liu, I. Mohammed, Y. Fan, M. Morgan, and J. Liu, “An HDMI cable equalizer with self-generated energy ratio adaptation scheme,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 7, pp. 595-599, Jul. 2009. [18]H. Liu et al., “A 5-Gb/s serial-link redriver with adaptive equalizer and transmitter swing enhancement,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 4, pp. 1001–1011, Apr. 2014. [19]A. J. Baker, “An adaptive cable equalizer for serial digital video rates to 400Mb/s,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1996, pp. 174-175. [20]J. N. Babanezhad, “A 3.3-V analog adaptive line –equalizer for fast Ethernet data communication,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), May, 1998, pp. 343-346. [21]G. E. Zhang and M. M. Green, “A 10-Gb/s BiCMOS adaptive cable equalizer,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2132-2140, Nov. 2005. [22]J.-S. Choi, M.-S. Hwang, and D.-K. Jeong, “A 0.18-μm CMOS 3.5-Gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 419-425, Mar. 2004. [23]S. Gondi and B. Razavi, “Equalization and clock and data recovery techniques for 10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1999-2011, Sep. 2007. [24]W.Y. Lee, and L.-S. Kim, “An adaptive equalizer with the capacitance multiplication for DisplayPort main link in 0.18-μm CMOS,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.20, no. 5, pp. 964-968, May 2012. [25]R. S. Kajley, P. J. Hurst, and J. E. C. Brown, “A mixed-signal decision-feedback equalizer that uses a look-ahead architecture,” IEEE J. Solid-State Circuits, vol. 32, no. 3, pp. 450-459, Mar. 1997. [26]Y.-S. Sohn, S.-J. Bae, H.-J. Park, C.-H. Kim, and S.-I. Cho, “A 2.2 Gbps CMOS look-ahead DFE receiver for multidrop channel with pin-to-pin time skew compensation,” Proc. IEEE Custom Integrated Circuits Conf., pp. 473-476, Sep, 2003. [27]V. Balan, J. Caroselli, J.-G. Chern, et al., “A 4.8-6.4Gb/s serial link for backplane applications using decision feedback equalization,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1957-1967, Nov. 2005. [28]E. M. Cherry and D. E. Hopper, “The design of wideband transistor feed-back amplifier,” Proc. Inst. Electr. Eng., vol. 110, no. 2, pp. 375-389, Feb. 1963. [29]Jri Lee, “A 20-Gb/s adaptive equalizer in 0.13-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2058-2066, Sep. 2006. [30]K.-H. Cheng, Y.-C. Tsai, Y.-H. Wu, and Y.-F. Lin, “A 5-Gb/s inductorless CMOS adaptive equalizer for PCI express generation II applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 5, pp. 324-328, May. 2010. [31]S. Galal and B. Razavi, “10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2138-2146, Dec. 2003. [32]R. P. Jindal, “Gigahertz-band high-gain low-noise AGC amplifiers in fine-line NMOS,” IEEE J. Solid-State Circuits, vol. 22, pp. 512-521, Aug. 1987. [33]A. Fayed, and M. Ismail, Adaptive Techniques for Mixed Signal System on Chip, Springer, 2006. [34]劉深淵、楊清淵, 鎖相迴路, 滄海書局, 2006. [35]C. Hogge, “A self-correcting clock recovery circuit,” IEEE J. Lightwave Technology, vol. 3, no. 6, pp. 1312-1314, Dec. 1985. [36]S. B. Anand and B. Razavi, “A 2.75-Gb/s CMOS clock and data recovery circuit with broad capture range,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2001, pp. 214-215. [37]H.-H. Chang, R.-J Yang, and S.-I. Liu, “Low jitter and multirate clock and data recovery circuit using a MSADLL for chip-to-chip interconnection,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 12, pp. 2356-2364, Dec. 2004. [38]L. DeVito, J. Newton, R. Croughwell, J. Bulzacchelli, and F. Benkley, “A 52 and 155 MHz clock-recovery PLL,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1991, pp. 142-143. [39]T. H. Lee, and J. F. Bulzacchelli, “A 155MHz clock recovery delay-and phase-locked loop,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1736-1746, Dec. 1992. [40]J. D. H. Alexander, “Clock recovery from random binary data,” Electronics Letters, vol. 11, pp. 541-542, Oct. 1975. [41]J. Savoj and B. Razavi, “A 10-Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 761-767, May. 2001. [42]K.-S. Ha and L.-S. Kim, “A 3.2-Gb/s Transceiver with a quarter-rate Linear phase detector reducing the phase offset,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2008, pp. 218-220. [43]S.-J. Song, S. M. Park, and H.J. Yoo, “A 4-Gb/s CMOS clock and data recovery circuit using 1/8-rate clock technique,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1213-1219, Jul. 2003. [44]R.-J. Yang, S.-P. Chen, and S.-I. Liu, “A 3.125Gb/s clock and data recovery circuit for the 10-Gbase-LX4 Ethernet,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1356-1360, Aug. 2004. [45]M. H. Perrott, et al., “ A 2.5-Gb/s multi-rate 0.25μm CMOS clock and data recovery circuit utilizing a hybrid analog/digital loop filter and all-digital referenceless frequency acquisition," IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2930-2944, Dec. 2006. [46]J. C. Scheytt, G.Hanke, and U. Langmann, “A 0.155, 0622, and 2.488-Gb/s automatic bit-rate selecting clock and data recovery ic for bit-rate transparent SDH systems,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1935-1943, Dec. 2003. [47]L. Henrickson, et al., “Low powerfully integrated 10-Gb/s SONET/SDH transceiver in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1595-1601, Oct. 2003. [48]H. S. Muthali, T. P. Thomas, and I. A. Young, “A CMOS 10-Gb/s SONET transceiver,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1026-1033, Jul. 2004. [49]B. Razavi, “Challenges in the Design of High-Speed Clock Data Recovery Circuit,” IEEE Communication Magazine, pp. 94-101, Aug. 2002. [50]X. Maillard, F. Devisch, and M. kuijk, “A 900-Mb/s CMOS data recovery DLL using half-frequency clock,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 711-715, Dec. 2002. [51]D. Dalton, et al., “12.5-Mb/s to 2.7-Gb/s continuous-rate CDR with automatic frequency acquisition and data-rate readback,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2713-2725, Dec. 2005. [52]W. Rhee, et al., “A 10-Gb/s CMOS clock and data recovery circuit using a secondary delay-locked loop,” Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, pp. 81-84. Sep. 2003. [53]R. Kreienkamp, et al., “A 10-Gb/s CMOS clock and data recovery circuit with an analog phase interpolator,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 736-743, May. 2005. [54]M. Y. He and J. Poulton, “A CMOS mixed-signal clock and data recovery circuit for OIF CEI-6G+ backplane transceiver,” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 597-606, Mar. 2006. [55]P. Larrson, “A 2-1600-MHz CMOS clock recovery PLL with low-vdd capability,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1951-1959, Dec. 1999. [56]C.-K. Yang and M. Horowitz, “A 0.8-μm CMOS 2.5 Gb/s oversampling receiver and transmitter for serial links,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 2015-2023, Dec. 1996. [57]J. Kim and D.-K. Jeong, “Multi-Gigabit-Rate Clock and Data Recovery Based on Blind Oversampling,” IEEE Communication Magazine, pp. 68-74, Dec. 2003. [58]S. I. Ahmed and T. A. Kwasniewski, “Overview of oversampling clock and data recovery circuits.” Canadian Conference on Electrical and Computer Engineering, pp. 1876-1881, May. 1-4, 2005 [59]F. M. Gardner, “Charge-pump phase-lock loop,” IEEE Trans. Commun., vol.28, pp. 1849-1858, Nov. 1980. [60]R. E. Best, Phase-Locked Loop: Design, Simulation and Applications, New York: McGraw-Hill, Fourth Ed., 1999. [61]W.-Y. Lee and L.-S. Kim, “A 5.4Gb/s clock and data recovery circuit using seamless loop transition scheme with minimal phase noise degradation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 11, pp. 2518-2527, Nov. 2012. [62]S. B. Anand and B. Razavi, “A CMOS clock recovery circuit for 2.5-Gb/s NRZ Data,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 432-439, Mar. 2001. [63]C.-Y. Yang and S.-I. Liu, “Fast-switching frequency synthesizer with a discriminator-aided phase detector,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1445-1452, Oct. 2000.
|