(44.192.112.123) 您好!臺灣時間:2021/03/01 03:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林彥辰
研究生(外文):Yen-Chen Lin
論文名稱:具自適性等化器之3-Gb/s 1/3-速率全差動時脈與資料回復電路
論文名稱(外文):A 3-Gb/s 1/3-Rate Fully Differential Clock and Data Recovery Circuit with an Adaptive Equalizer
指導教授:楊清淵楊清淵引用關係
指導教授(外文):Ching-Yuan Yang
口試委員:張清榮黃崇禧翁峻鴻
口試委員(外文):Ching-Rong ChangChorng-Sii HwangJun-Hong Weng
口試日期:2018-01-11
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:115
中文關鍵詞:自適性等化器鎖相迴路時脈資料回復電路
外文關鍵詞:Adaptive EqualizerPhase-Locked Loop (PLL)Clock and Data Recovery (CDR)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於近年來半導體製程快速發展,提升了整體電路的操作速度,消費性電子產品顯示畫質也變得越來越高。由較早期的解析度480P(640×480)至到目前主流畫質Full HD 1080P(1920×1080),加上目前行動裝置與電視之間影音串流應用快速發展,因此顯示器的高速介面電路必須達到更高的傳輸速率來滿足高畫質的影音傳輸。為了達到下個世代高解析度Ultra HD 4K2K(3840×2160)的規格,應用在大型顯示器的高速介面電路由早期的多點傳輸變成點對點傳輸來達到更高速、低功耗的特性。本論文之設計主要針對大型顯示器高速介面中的嵌入式時脈差分訊號為目標,並透過自適性等化器結合1/3-速率取樣方式來實現時脈與資料回復電路。
本論文第一部分所設計實現的3-Gb/s具有振幅控制迴路類比等化器可以補償大尺寸顯示器在1.5-GHz時24-dB的通道損失。為了解決輸入、輸出限幅放大器振幅不同,以及高頻補償空間受到低頻補償而造成壓縮的問題,本論文採用具有振幅控制迴路的系統架構。本晶片以聯電0.18-μm 1P6M CMOS製程來實現,在工作電壓為1.8-V時,其功率消耗為27-mW,而核心部分面積為0.12-(mm)^2,輸出峰對峰值抖動為0.256-UI。
本論文第二部分所實現的3-Gb/s具自適性等化器之時脈與資料回復電路,為了達到高速、低功耗、低抖動的特性,我們提出1/3-速率取樣技術,除此之外整個系統架構採用全差動的方式來完成。本晶片以聯電0.18-μm 1P6M CMOS製程來實現,在工作電壓為1.8-V時,取樣速率為1-Gb/s時,其功率消耗為112-mW,而核心部分面積為0.36-(mm)^2,回復時脈峰對峰值抖動為5.07-ps,並列3組輸出的回復資料峰對峰值抖動分別為5.31、4.75、4.23-ps。
Due to the rapid development of semiconductor process in recent years, the operating speed of the overall circuit increases progressively, and the display quality of consumer electronics, too. The video streaming applications develop rapidly between mobile devices and TVs, from the early resolution 480P(640×480) to the current mainstream Full HD 1080P(1920×1080), resulting in that, the high-speed display interface must achieve a higher transmission rate to satisfy the high-definition video. In order to achieve the next generation Ultra HD 4K2K(3840×2160) specification, the high-speed interface used in large display panel have replaced from early multi-drop systems to point-to-point systems for higher speed and lower power consumption.
In the first part, this thesis proposes a 3-Gb/s equalizer with adaptive swing controller that compensates for the large display panel channel loss of 24-dB at 1.5GHz. In order to solve the different amplitude between input and output of limiting amplifier, and tradeoff between high-frequency and low-frequency compensation issue, we use adaptive swing controller technique. The test chip was implemented in UMC 0.18-μm 1P6M CMOS technology. It works at power supply 1.8-V with 27-mW. The core area is 0.12-(mm)^2, and output peak-to-peak jitter is 0.256-UI.
In the second part, the thesis proposes a 3-Gb/s clock and data recovery with adaptive equalizer. In order to achieve high speed, lower power consumption and jitter, we propose a 1/3-rate sampling technique, and the entire system architecture is made up by fully differential structure. The test chip was implemented in UMC 0.18-μm 1P6M CMOS technology. It works at power supply 1.8-V and sampling rate is 1Gb/s with 112-mW. The core area is 0.36-(mm)^2, and peak-to-peak jitter of recovery clock is 5.07-ps, and recovery data of 1-Gb/s peak-to-peak jitter is 5.31、4.75、4.23-ps, respectively.
致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xiv
第一章 緒論 1
1.1 論文動機 1
1.2 大尺寸顯示器的高速介面簡介 2
1.3 時脈資料回復電路的抖動參數 6
1.3.1 抖動產生 6
1.3.2 抖動轉移函數 6
1.3.3 抖動峰值 7
1.3.4 抖動容忍度 9
1.4 論文架構 10
第二章 自適性等化器電路架構 11
2.1 自適性等化器的發展 11
2.2 傳統類比等化器電路架構 12
2.2.1 頻譜平衡技術的電路架構 12
2.2.2 傳統單迴路控制的電路架構 13
2.2.3 雙迴路控制的電路架構 14
2.2.4 振幅迴路控制的電路架構 15
2.3 高頻補償電路 16
2.3.1 Cherry-Hopper放大器 16
2.3.2 源級退化的技巧 19
2.3.3 增加零點的技巧 20
2.3.4 增加被動高通網路的技巧 22
2.3.5 fT倍頻電路 24
2.3.6 正回授的技巧 25
第三章 具有振幅控制迴路類比等化器的設計與實現 27
3.1 類比等化器電路架構 27
3.2 類比等化器的子電路介紹 30
3.2.1 高頻補償電路 30
3.2.2 帶通濾波器 38
3.2.3 整流器與誤差放大器 39
3.2.4 限幅放大器 41
3.3 類比等化器的模擬結果 42
3.4 類比等化器的晶片佈局與量測 47
第四章 時脈資料回復電路 53
4.1 時脈與資料回復電路簡介 53
4.1.1 串列傳輸與並列傳輸 54
4.1.2 資料形式 55
4.2 相位偵測器簡介 56
4.2.1 線性相位偵測器 57
4.2.2 二位元相位偵測器 61
4.3 取樣速率 63
4.4 時脈與資料回復電路架構 64
4.4.1 以鎖相迴路為基底之時脈回復電路 64
4.4.2 以延遲鎖定迴路為基底之時脈資料回復電路 68
4.4.3 結合鎖相迴路與延遲鎖定迴路之時脈資料回復電路 69
4.4.4 以相位內插為基底之時脈資料回復電路 70
4.4.5 以超取樣為基底之時脈資料回復電路 71
第五章 具有1/3-速率時脈資料回復電路的設計與實現 73
5.1 時脈資料回復電路的系統架構與迴路分析 73
5.2 系統參數設計與行為模擬 79
5.3 時脈資料回復電路的子電路介紹 82
5.3.1 差動控制環形振盪器 82
5.3.2 相位頻率偵測器 84
5.3.3 相位偵測器 86
5.3.4 除頻器 90
5.3.5 充電泵 91
5.3.6 訊號選擇器 93
5.3.7 鎖定偵測器 94
5.4 時脈資料回復電路的模擬結果 95
5.5 時脈資料回復電路的晶片佈局與量測 99
第六章 結論 107
參考文獻 108
[1]K. Yamaguchi, Y. Hori, K.Nakajima, K. Suzuki, M. Mizuno, and H. Hayama, “A 2.0Gb/s clock-embedded interface for Full-HD 10-bit 120Hz LCD drivers with 1/5-rate noise-tolerant phase and frequency recovery,” IEEE J. Solid-State Circuits, vol. 4, no. 2, pp. 3560-3567, Dec. 2009.
[2]H. K. Joen, Y. H. Moon, J. K. Kang, and L. S. Kim, “An intra-panel interface with clock-embedded differential signaling for TFT-LCD systems,” IEEE J. Display Tech, vol. 7, no. 10, pp.562-571, Oct. 2011.
[3]W.-T. Oh, J.-H. Kim, Y.-H. Chang, T.-J. Kim, J.-Y. Lee, K.-S. Nah, and G.-C. Hwang, “A 3.4Gbps/lane overhead clock embedded intra-panel interface for high resolution and large-sized TFT-LCDs,” SID Symp. Digest, vol. 44, pp.396-399, 2013.
[4]Y.-H. Chang, J.-H. Kim, W.-T. Oh, J.-Y. Lee, K.-S. Nah, and G.-C Hwang, “A 3.5Gbps/lane intra-panel interface with a PVT-robust VCO based CDR for UD TV applications in 0.18μm high-voltage CMOS technology,” SID Symp. Digest, vol. 44, pp.384-387, 2013.
[5]H.-K. Jeon, et al., “A 3.7Gb/s clock-embedded intra-panel interface for the large-sized UHD 120Hz LCD TV application,” SID Symp. Digest, vol. 45, pp.1195-1198, 2014.
[6]National Semiconductor Corporation, RSDS^TM “Intra-panel” Interface Specification. Revision 1.0, May. 2003
[7]Texas Instruments Corporation, The mini-LVDS Interface Specification. Revision 0.1, August. 2001.
[8]R. McCartney and M. Bell, “A third-generation timing controller and column-driver architecture using point-to-point differential signaling,” SID Symp. Digest, vol. 35, pp.91-97, 2005.
[9]C. Zajac, and S. Poniatowski, “A new intra-panel interface for large size/high resolution TFT-LCD applications,” SID Symp. Digest, vol. 35, pp384-387, 2004.
[10]W.-C. Huang, C.-F. Chung, C.-H. Yang, Y.-H Ho, and R.-Y. Chang, “Skew-less point-to-point mini-LVDS (SPPmL) interface for large-scale TFT-LCD applications,” SID Symp. Digest, vol. 43, pp. 1215-1218, 2012.
[11]K. Nakajima, et al, “A 12-bit LCD source driver IC with point-to-point link interface”, SID Symp. Digest, vol. 38, pp.1633-1636, 2006.
[12]H.-K. Jeon et al., “A clock embedded differential signaling (CEDS^TM) for the next generation TFT-LCD applications,” SID Symp. Digest, vol. 40, pp. 975-978, 2009.
[13]B. Razavi, Design of Integrated Circuit for Optical Communications, McGraw-Hill Inc., Second Edition, 2012.
[14]J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G.Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Thrush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2121-2130, Dec. 2003.
[15]Kamran Farzan, and David A. Johns, “A CMOS 10-Gb/s power-efficient 4-PAM transmitter,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 529-532, Mar. 2004.
[16]R. Sun, J. Park, F. O’Mahony, and C. Patrick Yue, “A tunable passive filter for low-power high-speed equalizers,” in Symp. VLSI Circuits 2006 Dig. Tech. Papers, pp. 244-245.
[17]H. Liu, I. Mohammed, Y. Fan, M. Morgan, and J. Liu, “An HDMI cable equalizer with self-generated energy ratio adaptation scheme,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 7, pp. 595-599, Jul. 2009.
[18]H. Liu et al., “A 5-Gb/s serial-link redriver with adaptive equalizer and transmitter swing enhancement,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 4, pp. 1001–1011, Apr. 2014.
[19]A. J. Baker, “An adaptive cable equalizer for serial digital video rates to 400Mb/s,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1996, pp. 174-175.
[20]J. N. Babanezhad, “A 3.3-V analog adaptive line –equalizer for fast Ethernet data communication,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), May, 1998, pp. 343-346.
[21]G. E. Zhang and M. M. Green, “A 10-Gb/s BiCMOS adaptive cable equalizer,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2132-2140, Nov. 2005.
[22]J.-S. Choi, M.-S. Hwang, and D.-K. Jeong, “A 0.18-μm CMOS 3.5-Gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 419-425, Mar. 2004.
[23]S. Gondi and B. Razavi, “Equalization and clock and data recovery techniques for 10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1999-2011, Sep. 2007.
[24]W.Y. Lee, and L.-S. Kim, “An adaptive equalizer with the capacitance multiplication for DisplayPort main link in 0.18-μm CMOS,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.20, no. 5, pp. 964-968, May 2012.
[25]R. S. Kajley, P. J. Hurst, and J. E. C. Brown, “A mixed-signal decision-feedback equalizer that uses a look-ahead architecture,” IEEE J. Solid-State Circuits, vol. 32, no. 3, pp. 450-459, Mar. 1997.
[26]Y.-S. Sohn, S.-J. Bae, H.-J. Park, C.-H. Kim, and S.-I. Cho, “A 2.2 Gbps CMOS look-ahead DFE receiver for multidrop channel with pin-to-pin time skew compensation,” Proc. IEEE Custom Integrated Circuits Conf., pp. 473-476, Sep, 2003.
[27]V. Balan, J. Caroselli, J.-G. Chern, et al., “A 4.8-6.4Gb/s serial link for backplane applications using decision feedback equalization,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1957-1967, Nov. 2005.
[28]E. M. Cherry and D. E. Hopper, “The design of wideband transistor feed-back amplifier,” Proc. Inst. Electr. Eng., vol. 110, no. 2, pp. 375-389, Feb. 1963.
[29]Jri Lee, “A 20-Gb/s adaptive equalizer in 0.13-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2058-2066, Sep. 2006.
[30]K.-H. Cheng, Y.-C. Tsai, Y.-H. Wu, and Y.-F. Lin, “A 5-Gb/s inductorless CMOS adaptive equalizer for PCI express generation II applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 5, pp. 324-328, May. 2010.
[31]S. Galal and B. Razavi, “10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2138-2146, Dec. 2003.
[32]R. P. Jindal, “Gigahertz-band high-gain low-noise AGC amplifiers in fine-line NMOS,” IEEE J. Solid-State Circuits, vol. 22, pp. 512-521, Aug. 1987.
[33]A. Fayed, and M. Ismail, Adaptive Techniques for Mixed Signal System on Chip, Springer, 2006.
[34]劉深淵、楊清淵, 鎖相迴路, 滄海書局, 2006.
[35]C. Hogge, “A self-correcting clock recovery circuit,” IEEE J. Lightwave Technology, vol. 3, no. 6, pp. 1312-1314, Dec. 1985.
[36]S. B. Anand and B. Razavi, “A 2.75-Gb/s CMOS clock and data recovery circuit with broad capture range,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2001, pp. 214-215.
[37]H.-H. Chang, R.-J Yang, and S.-I. Liu, “Low jitter and multirate clock and data recovery circuit using a MSADLL for chip-to-chip interconnection,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 12, pp. 2356-2364, Dec. 2004.
[38]L. DeVito, J. Newton, R. Croughwell, J. Bulzacchelli, and F. Benkley, “A 52 and 155 MHz clock-recovery PLL,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1991, pp. 142-143.
[39]T. H. Lee, and J. F. Bulzacchelli, “A 155MHz clock recovery delay-and phase-locked loop,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1736-1746, Dec. 1992.
[40]J. D. H. Alexander, “Clock recovery from random binary data,” Electronics Letters, vol. 11, pp. 541-542, Oct. 1975.
[41]J. Savoj and B. Razavi, “A 10-Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 761-767, May. 2001.
[42]K.-S. Ha and L.-S. Kim, “A 3.2-Gb/s Transceiver with a quarter-rate Linear phase detector reducing the phase offset,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2008, pp. 218-220.
[43]S.-J. Song, S. M. Park, and H.J. Yoo, “A 4-Gb/s CMOS clock and data recovery circuit using 1/8-rate clock technique,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1213-1219, Jul. 2003.
[44]R.-J. Yang, S.-P. Chen, and S.-I. Liu, “A 3.125Gb/s clock and data recovery circuit for the 10-Gbase-LX4 Ethernet,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1356-1360, Aug. 2004.
[45]M. H. Perrott, et al., “ A 2.5-Gb/s multi-rate 0.25μm CMOS clock and data recovery circuit utilizing a hybrid analog/digital loop filter and all-digital referenceless frequency acquisition," IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2930-2944, Dec. 2006.
[46]J. C. Scheytt, G.Hanke, and U. Langmann, “A 0.155, 0622, and 2.488-Gb/s automatic bit-rate selecting clock and data recovery ic for bit-rate transparent SDH systems,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1935-1943, Dec. 2003.
[47]L. Henrickson, et al., “Low powerfully integrated 10-Gb/s SONET/SDH transceiver in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1595-1601, Oct. 2003.
[48]H. S. Muthali, T. P. Thomas, and I. A. Young, “A CMOS 10-Gb/s SONET transceiver,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1026-1033, Jul. 2004.
[49]B. Razavi, “Challenges in the Design of High-Speed Clock Data Recovery Circuit,” IEEE Communication Magazine, pp. 94-101, Aug. 2002.
[50]X. Maillard, F. Devisch, and M. kuijk, “A 900-Mb/s CMOS data recovery DLL using half-frequency clock,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 711-715, Dec. 2002.
[51]D. Dalton, et al., “12.5-Mb/s to 2.7-Gb/s continuous-rate CDR with automatic frequency acquisition and data-rate readback,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2713-2725, Dec. 2005.
[52]W. Rhee, et al., “A 10-Gb/s CMOS clock and data recovery circuit using a secondary delay-locked loop,” Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, pp. 81-84. Sep. 2003.
[53]R. Kreienkamp, et al., “A 10-Gb/s CMOS clock and data recovery circuit with an analog phase interpolator,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 736-743, May. 2005.
[54]M. Y. He and J. Poulton, “A CMOS mixed-signal clock and data recovery circuit for OIF CEI-6G+ backplane transceiver,” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 597-606, Mar. 2006.
[55]P. Larrson, “A 2-1600-MHz CMOS clock recovery PLL with low-vdd capability,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1951-1959, Dec. 1999.
[56]C.-K. Yang and M. Horowitz, “A 0.8-μm CMOS 2.5 Gb/s oversampling receiver and transmitter for serial links,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 2015-2023, Dec. 1996.
[57]J. Kim and D.-K. Jeong, “Multi-Gigabit-Rate Clock and Data Recovery Based on Blind Oversampling,” IEEE Communication Magazine, pp. 68-74, Dec. 2003.
[58]S. I. Ahmed and T. A. Kwasniewski, “Overview of oversampling clock and data recovery circuits.” Canadian Conference on Electrical and Computer Engineering, pp. 1876-1881, May. 1-4, 2005
[59]F. M. Gardner, “Charge-pump phase-lock loop,” IEEE Trans. Commun., vol.28, pp. 1849-1858, Nov. 1980.
[60]R. E. Best, Phase-Locked Loop: Design, Simulation and Applications, New York: McGraw-Hill, Fourth Ed., 1999.
[61]W.-Y. Lee and L.-S. Kim, “A 5.4Gb/s clock and data recovery circuit using seamless loop transition scheme with minimal phase noise degradation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 11, pp. 2518-2527, Nov. 2012.
[62]S. B. Anand and B. Razavi, “A CMOS clock recovery circuit for 2.5-Gb/s NRZ Data,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 432-439, Mar. 2001.
[63]C.-Y. Yang and S.-I. Liu, “Fast-switching frequency synthesizer with a discriminator-aided phase detector,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1445-1452, Oct. 2000.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔