跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 09:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李建融
研究生(外文):Jian-Rong Li
論文名稱:轉錄組分析之整合性生物資訊研究
論文名稱(外文):The integrated bioinformatics study for transcriptome profiling
指導教授:劉俊吉
口試委員:陳玉婷謝立青吳謂勝黃耀廷
口試日期:2018-06-11
學位類別:博士
校院名稱:國立中興大學
系所名稱:醫學生物科技博士學位學程
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:104
中文關鍵詞:轉錄組分析RNA-Seq癌症植物資料庫
外文關鍵詞:Transcriptome profilingRNA-SeqCancerPlantDatabase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:2429
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:1
轉錄組(Transcriptome)包含在特定組織或細胞類型,於特定發育階段和特定生理或病理條件下,由基因組轉錄的所有RNA所包含之所有信息。而轉錄組學(Transcriptomic)則是使用高通量技術大規模的研究RNA分子,而此透過高通量技術檢查細胞中轉錄組的組成與豐度的過程,便是轉錄組分析(Transcriptome profiling)。轉錄組分析能夠用於找出特定細胞狀態下的表現量模式,或是找出關鍵的基因。DNA微陣列分析(DNA microarray analysis)與次世代定序(next-generation sequencing, NGS)技術的RNA測序(RNA-Sequencing, RNA-Seq)在近年已被廣泛運用於轉錄組分析研究的領域。本論文將使用轉錄組分析(Transcriptome profiling)研究轉錄組學,將利用其探討癌症特性與精準醫療、疾病的非侵入性診斷(non-invasive diagnosis)、以及植物逆境與作物產量,本論文整體架構將依此分為三部分。
第一部分為使用轉錄組分析研究癌症特性與精準醫療,我們收集大規模的癌症RNA-Seq資料進行分析後,找出大量癌症的不同時期或與正常組織之間的差異表現轉錄體並建構了大型資料庫;此外我們亦整合大規模的癌症基因表現量與藥物處理後基因表現差異資料(drug treatment profiles),透過演算法計算出藥物調控指數,而依此開發出一個能夠整合癌症患者基因表現量與突變資料的精準醫療預測方法。第二部分為使用轉錄組分析探討非侵入性診斷,血液中的循環microRNA (miRNA)雖然已被發現具有作為非侵入性診斷的生物標記(biomarker)潛力,然而尚未有大規模的分析並建構資料庫,因此在本研究中,我們收集並分析大規模的miRNA之DNA微陣列分析與small RNA-Seq資料,結合生物途徑與特徵選取(feature selection)的方法,建構一個循環miRNA表現量資料庫。第三部分則探討轉錄組學在植物逆境與作物產量的運用,我們收集大規模的各種植物物種在逆境環境下的RNA-Seq資料,分析後找出了各種植物在不同逆境條件下的RNA表現量差異並建構了大型資料庫;此外我們亦使用small RNA-Seq調查了129種台灣稻米栽培種的miRNA,並且調查了這些稻米的八種產量相關性狀,結合特徵選取與機器學習的方法,找出了與稻米穗數(panicle number)性狀密切相關的miRNA,並且能夠以少數miRNA的表現量便能夠有效預測稻米的穗數。
本論文涵蓋了多個層面的生物資訊技術,以透過轉錄體分析許多不同的領域。在癌症領域的研究能提供生物與醫學研究者一些研究癌症機制與治療的參考;而在以循環miRNA作為非侵入性診斷的生物標記的研究則有潛力能夠提供臨床上於例行檢測時便能夠診斷出特定疾病的可能性;而在植物的逆境與產量的研究成果,則能夠促進農業與生物研究上對抗全球氣候變遷而導致的作物危機,並且也能夠提供農業上對育種方便的一個新觀點。最後,我們建立了三個大型的資料庫,其能夠對於學術交流,幫助知識庫的建立,並且在相互驗證方面將提供具體的助益。
The transcriptome contains complete information of all RNAs that are transcribed by the genome at specific developmental stages and under specific physiological or pathological conditions in a particular tissue or cell type. Transcriptomics is a large-scale study of RNA molecules using high-throughput techniques. The process of examining the composition and abundance of transcriptomes in cells by high-throughput techniques is transcriptome profiling. It can be used to identify the expression patterns to classify cellular states or to identify genes with specific expression patterns. DNA microarray analysis and RNA Sequencing (RNA-Seq), a tool of next-generation sequencing (NGS) technologies, have been widely utilized for transcriptome profiling. In this dissertation, we collected, analyzed, and integrated large-scale datasets of transcriptome profiling to study cancer precision medicine, non-invasion diagnosis of disease, plant stress, and crop yield. The architecture of this dissertation is divided into three major components.
The first component is using transcriptome profiling to study cancer characteristics and precision medicine. After collecting and analyzing large-scale cancer RNA-Seq data, we identified a large number of differentially expressed transcripts between different cancer stages or between normal tissues and cancers, which resulted in a comprehensive cancer RNA-Seq database. Additionally, we integrated large-scale cancer expression profiles and drug treatment profiles to develop a novel precision medicine method. The second component is using transcriptome profiling to study the non-invasion diagnosis of disease. Circulating microRNAs (miRNAs) in the blood have been found to be a potential biomarker for non-invasive diagnostics. Although there have been several studies attempting to generate circulating miRNA database, they have not yet integrate the large-scale circulating miRNAs profiles and predict the potential biomarkers using machine learning methods. In this study, we collected and analyzed large-scale DNA microarray analysis of miRNAs and small RNA-Seq data, combined with biological pathways and feature selection methods to construct a circulating miRNA-expression database. The third component is utilizing transcriptome profiling to study the application of transcriptomics in plant stress and crop yield. We collected, processed, analyzed and visualized large-scale publically available plant stress RNA-seq data to construct a plant stress RNA-Seq database. In addition, we also used small RNA-Seq to investigate miRNAs of 129 Taiwanese rice cultivars and examine eight yield-related traits of these rice cultivars. In combination with feature selection and machine learning methods, we have identified certain miRNAs that are closely related to the panicle number traits in rice cultivars.
This study is a framework to provide integrated and comprehensive knowledge for bioinformatics and transcriptome profiling. The results of this study in cancer research provide a resource for research on cancer mechanisms and treatments by biological and medical researchers. The Study on circulating miRNAs will facilitate potential non-invasive biomarkers discovery for routine clinical examinations. The research findings on plant stress and yield may help to solve the food crisis caused by global climate change. Finally, we constructed three large databases, which may contribute to academic interconnection, knowledge base establishment, and mutual validation.
中文摘要 i
Abstract ii
Table of contents iv
List of tables vii
List of figures vii
Chapter 1 Preface 1
Transcriptome profiling 1
DNA microarrays technology 1
RNA Sequencing 2
Cancer characteristics and precision medicine 4
Non-invasive diagnosis of diseases 5
Plant stress and crop yield 5
Research objectives 6
Chapter 2 Construct a cancer RNA-Seq database of phenotype-specific transcriptome profiling in cancer cells 7
Abstract 7
Introduction 7
Materials and methods 10
RNA-seq datasets 10
Phenotype-specific differentially expressed transcripts (DETs) 11
Construction of mRNA-lncRNA co-expression networks 12
Results 13
Web interfaces 13
Example applications 15
Discussion 21
Chapter 3 Construction of a prediction system for precision medicine and drug repositioning of cancer using large-scale drug treatment profiles 23
Abstract 23
Introduction 23
Precision medicine 23
Drug repositioning 25
Purpose 26
Materials and methods 27
Cancer datasets collection and pre-treatment 27
Drug treatment profiles collection and pre-treatment 28
Calculation of Drug Regulatory Score 29
Analysis of precision medicine and drug repositioning 32
Results 33
Results of precision medicine 33
Results of drug repositioning 35
Discussion 37
Chapter 4 A comprehensive database for circulating microRNA biomarker identification 39
Abstract 39
Introduction 39
Materials and methods 42
Circulating miRNA datasets collections 42
Phenotype-specific differentially expressed circulating miRNAs identification and pathway enrichment analysis 42
Feature selection pipeline construction for circulating miRNAs 43
Results 45
Web interfaces 45
KEGG enrichment analysis 46
Feature selection 47
Example Applications 48
Discussion 53
Chapter 5 Construction of a plant stress transcriptome database using large-scale RNA-seq data 55
Abstract 55
Introduction 56
Materials and methods 58
Plant stress RNA-seq datasets collection 58
Stress-specific differentially expressed transcripts 58
Protein-coding transcript-lncRNA co-expression networks 59
Results 59
Utility and discussion 59
Web interface 60
Case study 63
Discussion 65
Future development 65
Conclusions 65
Chapter 6 Use feature selection to identify the crucial miRNAs that can regulate the agronomic traits of rice 67
Abstract 67
Introduction 67
Materials and methods 69
Rice cultivars collection, cultivation and phenotype investigation 69
Small RNA library preparation and sequencing 69
Identification of known miRNAs and prediction of novel miRNAs 69
Phenotype profiles and expression profiles pre-process 70
Feature selection 71
Classification 72
Results 72
Identification of known miRNAs and prediction of novel miRNAs 72
Feature selection and Classification across eight traits 73
Feature selection and Classification of Panicle Number 75
Discussion 83
Chapter 7 Conclusion 85
References 88
1.Casamassimi A, Federico A, Rienzo M, Esposito S, Ciccodicola A: Transcriptome Profiling in Human Diseases: New Advances and Perspectives. Int J Mol Sci 2017, 18.
2.Jacquier A: The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 2009, 10:833-844.
3.Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW: Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet 2016, 17:257-271.
4.Cieslik M, Chinnaiyan AM: Cancer transcriptome profiling at the juncture of clinical translation. Nat Rev Genet 2018, 19:93-109.
5.Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE, Jr., Hieter P, Vogelstein B, Kinzler KW: Characterization of the yeast transcriptome. Cell 1997, 88:243-251.
6.Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, et al: The transcriptional landscape of the mammalian genome. Science 2005, 309:1559-1563.
7.Smith JJ, Marelli M, Christmas RH, Vizeacoumar FJ, Dilworth DJ, Ideker T, Galitski T, Dimitrov K, Rachubinski RA, Aitchison JD: Transcriptome profiling to identify genes involved in peroxisome assembly and function. J Cell Biol 2002, 158:259-271.
8.Lockhart DJ, Winzeler EA: Genomics, gene expression and DNA arrays. Nature 2000, 405:827-836.
9.Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 2009, 10:57-63.
10.Li JR, Sun CH, Li W, Chao RF, Huang CC, Zhou XJ, Liu CC: Cancer RNA-Seq Nexus: a database of phenotype-specific transcriptome profiling in cancer cells. Nucleic Acids Res 2016, 44:D944-951.
11.Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270:467-470.
12.Chen JJ, Lin YC, Yao PL, Yuan A, Chen HY, Shun CT, Tsai MF, Chen CH, Yang PC: Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 2005, 23:953-964.
13.Chen JJ, Peck K, Hong TM, Yang SC, Sher YP, Shih JY, Wu R, Cheng JL, Roffler SR, Wu CW, Yang PC: Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 2001, 61:5223-5230.
14.Wang CC, Tsai MF, Hong TM, Chang GC, Chen CY, Yang WM, Chen JJ, Yang PC: The transcriptional factor YY1 upregulates the novel invasion suppressor HLJ1 expression and inhibits cancer cell invasion. Oncogene 2005, 24:4081-4093.
15.Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A, et al: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002, 1:133-143.
16.Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, et al: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A 2001, 98:13790-13795.
17.Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002, 30:41-47.
18.Liu CC, Chen WS, Lin CC, Liu HC, Chen HY, Yang PC, Chang PC, Chen JJ: Topology-based cancer classification and related pathway mining using microarray data. Nucleic Acids Res 2006, 34:4069-4080.
19.Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, et al: Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002, 8:816-824.
20.Chen CN, Lin JJ, Chen JJ, Lee PH, Yang CY, Kuo ML, Chang KJ, Hsieh FJ: Gene expression profile predicts patient survival of gastric cancer after surgical resection. J Clin Oncol 2005, 23:7286-7295.
21.Finishing the euchromatic sequence of the human genome. Nature 2004, 431:931-945.
22.Metzker ML: Sequencing technologies - the next generation. Nat Rev Genet 2010, 11:31-46.
23.Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63.
24.Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5:621-628.
25.Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahler J: Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 2008, 453:1239-1243.
26.Clark TA, Sugnet CW, Ares M, Jr.: Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 2002, 296:907-910.
27.Royce TE, Rozowsky JS, Gerstein MB: Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res 2007, 35:e99.
28.Okoniewski MJ, Miller CJ: Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinformatics 2006, 7:276.
29.Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008, 18:1509-1517.
30.Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, et al: A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 2008, 321:956-960.
31.Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, et al: Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 2008, 5:613-619.
32.Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, McDonald H, Varhol R, Jones S, Marra M: Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 2008, 45:81-94.
33.Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A: Global cancer statistics, 2012. CA Cancer J Clin 2015, 65:87-108.
34.Ding Y, Yang DZ, Zhai YN, Xue K, Xu F, Gu XY, Wang SM: Microarray expression profiling of long non-coding RNAs in epithelial ovarian cancer. Oncol Lett 2017, 14:2523-2530.
35.Yue Y, Song M, Qiao Y, Li P, Yuan Y, Lian J, Wang S, Zhang Y: Gene function analysis and underlying mechanism of esophagus cancer based on microarray gene expression profiling. Oncotarget 2017, 8:105222-105237.
36.Cosphiadi I, Atmakusumah TD, Siregar NC, Muthalib A, Harahap A, Mansyur M: Bone Metastasis in Advanced Breast Cancer: Analysis of Gene Expression Microarray. Clin Breast Cancer 2018.
37.Guo S, Xu X, Ouyang Y, Wang Y, Yang J, Yin L, Ge J, Wang H: Microarray expression profile analysis of circular RNAs in pancreatic cancer. Mol Med Rep 2018.
38.Zhang YH, Huang T, Chen L, Xu Y, Hu Y, Hu LD, Cai Y, Kong X: Identifying and analyzing different cancer subtypes using RNA-seq data of blood platelets. Oncotarget 2017, 8:87494-87511.
39.Zhang Z, Wu H, Zhou H, Gu Y, Bai Y, Yu S, An R, Qi J: Identification of potential key genes and high-frequency mutant genes in prostate cancer by using RNA-Seq data. Oncol Lett 2018, 15:4550-4556.
40.Lin KH, Huang MY, Cheng WC, Wang SC, Fang SH, Tu HP, Su CC, Hung YL, Liu PL, Chen CS, et al: RNA-seq transcriptome analysis of breast cancer cell lines under shikonin treatment. Sci Rep 2018, 8:2672.
41.Shi Z, Li C, Tarwater L, Li J, Li Y, Kaliney W, Chandrashekar DS, Stack MS: RNA-seq Reveals the Overexpression of IGSF9 in Endometrial Cancer. J Oncol 2018, 2018:2439527.
42.Koduru SV, Tiwari AK, Hazard SW, Mahajan M, Ravnic DJ: Exploration of small RNA-seq data for small non-coding RNAs in Human Colorectal Cancer. J Genomics 2017, 5:16-31.
43.Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, et al: Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007, 9:166-180.
44.Kupershmidt I, Su QJ, Grewal A, Sundaresh S, Halperin I, Flynn J, Shekar M, Wang H, Park J, Cui W, et al: Ontology-based meta-analysis of global collections of high-throughput public data. PLoS One 2010, 5.
45.Liu F, White JA, Antonescu C, Gusenleitner D, Quackenbush J: GCOD - GeneChip Oncology Database. BMC Bioinformatics 2011, 12:46.
46.Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, Staudt LM: Toward a Shared Vision for Cancer Genomic Data. N Engl J Med 2016, 375:1109-1112.
47.Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al: NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 2013, 41:D991-995.
48.Coordinators NR: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2013, 41:D8-D20.
49.Levy MA, Lovly CM, Horn L, Naser R, Pao W: My Cancer Genome: Web-based clinical decision support for genome-directed lung cancer treatment. Journal of Clinical Oncology 2011, 29.
50.Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, et al: COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 2017, 45:D777-D783.
51.Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, et al: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483:603-607.
52.Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, et al: Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 2013, 41:D955-961.
53.Weiland M, Gao XH, Zhou L, Mi QS: Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol 2012, 9:850-859.
54.Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A: Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 2013, 10:472-484.
55.Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, et al: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008, 18:997-1006.
56.Duffy MJ: Role of tumor markers in patients with solid cancers: A critical review. Eur J Intern Med 2007, 18:175-184.
57.Lieben L: Diagnosis: RNA-seq for blood-based pan-cancer diagnostics. Nat Rev Cancer 2015, 15:696-697.
58.van Loon LC: The Intelligent Behavior of Plants. Trends Plant Sci 2016, 21:286-294.
59.Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M: Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits. Front Plant Sci 2017, 8:537.
60.Mushtaq M, Bhat JA, Mir ZA, Sakina A, Ali S, Singh AK, Tyagi A, Salgotra RK, Dar AA, Bhat R: CRISPR/Cas approach: A new way of looking at plant-abiotic interactions. J Plant Physiol 2018, 224-225:156-162.
61.Vaughan MM, Block A, Christensen SA, Allen LH, Schmelz EA: The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochemistry Reviews 2018, 17:37-49.
62.Atkinson NJ, Urwin PE: The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 2012, 63:3523-3543.
63.Medeiros JS, Danielson SC: Renewed interest in whole-plant physiology sheds light on the complexity of plant stress response architecture. Tree Physiol 2018, 38:503-506.
64.Charrier G, Nolf M, Leitinger G, Charra-Vaskou K, Losso A, Tappeiner U, Ameglio T, Mayr S: Monitoring of Freezing Dynamics in Trees: A Simple Phase Shift Causes Complexity. Plant Physiol 2017, 173:2196-2207.
65.Aldon D, Mbengue M, Mazars C, Galaud JP: Calcium Signalling in Plant Biotic Interactions. Int J Mol Sci 2018, 19.
66.Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M: OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 2010, 42:545-549.
67.Basu U, Bajaj D, Sharma A, Malik N, Daware A, Narnoliya L, Thakro V, Upadhyaya HD, Kumar R, Tripathi S, et al: Genetic dissection of photosynthetic efficiency traits for enhancing seed yield in chickpea. Plant Cell Environ 2018.
68.Abdelrahman M, Al-Sadi AM, Pour-Aboughadareh A, Burritt DJ, Tran LP: Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiol Biochem 2018.
69.Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB: Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456:470-476.
70.Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Edgar R, Federhen S, et al: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2008, 36:D13-21.
71.Krupp M, Marquardt JU, Sahin U, Galle PR, Castle J, Teufel A: RNA-Seq Atlas--a reference database for gene expression profiling in normal tissue by next-generation sequencing. Bioinformatics 2012, 28:1184-1185.
72.Tseng YT, Li W, Chen CH, Zhang S, Chen JJ, Zhou X, Liu CC: IIIDB: a database for isoform-isoform interactions and isoform network modules. BMC Genomics 2015, 16 Suppl 2:S10.
73.Li W, Kang S, Liu CC, Zhang S, Shi Y, Liu Y, Zhou XJ: High-resolution functional annotation of human transcriptome: predicting isoform functions by a novel multiple instance-based label propagation method. Nucleic Acids Res 2014, 42:e39.
74.Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, et al: GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012, 22:1760-1774.
75.Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25.
76.Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, Chen P, Gertner RS, Gaublomme JT, Yosef N, et al: Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 2014, 510:363-369.
77.Roberts A, Pachter L: Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 2013, 10:71-73.
78.Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28:511-515.
79.Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, et al: The UCSC Genome Browser database: 2015 update. Nucleic Acids Res 2015, 43:D670-681.
80.Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011, 12:323.
81.Benjamini Y, Hochberg Y: Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 1995, 57:289-300.
82.Liu CC, Lin CC, Chen WS, Chen HY, Chang PC, Chen JJ, Yang PC: CRSD: a comprehensive web server for composite regulatory signature discovery. Nucleic Acids Res 2006, 34:W571-577.
83.Ruan Q, Dutta D, Schwalbach MS, Steele JA, Fuhrman JA, Sun F: Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics 2006, 22:2532-2538.
84.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-2504.
85.Mangiulli M, Valletti A, Caratozzolo MF, Tullo A, Sbisa E, Pesole G, D'Erchia AM: Identification and functional characterization of two new transcriptional variants of the human p63 gene. Nucleic Acids Res 2009, 37:6092-6104.
86.Westfall MD, Pietenpol JA: p63: Molecular complexity in development and cancer. Carcinogenesis 2004, 25:857-864.
87.Matsubara R, Kawano S, Kiyosue T, Goto Y, Hirano M, Jinno T, Toyoshima T, Kitamura R, Oobu K, Nakamura S: Increased DeltaNp63 expression is predictive of malignant transformation in oral epithelial dysplasia and poor prognosis in oral squamous cell carcinoma. Int J Oncol 2011, 39:1391-1399.
88.Rocco JW, Ellisen LW: p63 and p73: life and death in squamous cell carcinoma. Cell Cycle 2006, 5:936-940.
89.Barbieri CE, Tang LJ, Brown KA, Pietenpol JA: Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res 2006, 66:7589-7597.
90.Bishop JA, Teruya-Feldstein J, Westra WH, Pelosi G, Travis WD, Rekhtman N: p40 (DeltaNp63) is superior to p63 for the diagnosis of pulmonary squamous cell carcinoma. Mod Pathol 2012, 25:405-415.
91.Nobre AR, Albergaria A, Schmitt F: p40: a p63 isoform useful for lung cancer diagnosis - a review of the physiological and pathological role of p63. Acta Cytol 2013, 57:1-8.
92.Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, Halle D, Grinbaum R, Roistacher M, Bochem A, Dayanc BE, Ritter G, Gomceli I, et al: Colon cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues. Int J Cancer 2012, 130:1598-1606.
93.Alaiyan B, Ilyayev N, Stojadinovic A, Izadjoo M, Roistacher M, Pavlov V, Tzivin V, Halle D, Pan H, Trink B, et al: Differential expression of colon cancer associated transcript1 (CCAT1) along the colonic adenoma-carcinoma sequence. BMC Cancer 2013, 13:196.
94.Yang F, Xue X, Bi J, Zheng L, Zhi K, Gu Y, Fang G: Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J Cancer Res Clin Oncol 2013, 139:437-445.
95.Mizrahi I, Mazeh H, Grinbaum R, Beglaibter N, Wilschanski M, Pavlov V, Adileh M, Stojadinovic A, Avital I, Gure AO, et al: Colon Cancer Associated Transcript-1 (CCAT1) Expression in Adenocarcinoma of the Stomach. J Cancer 2015, 6:105-110.
96.Riquelme E, Suraokar MB, Rodriguez J, Mino B, Lin HY, Rice DC, Tsao A, Wistuba, II: Frequent coamplification and cooperation between C-MYC and PVT1 oncogenes promote malignant pleural mesothelioma. J Thorac Oncol 2014, 9:998-1007.
97.Chinen Y, Sakamoto N, Nagoshi H, Taki T, Maegawa S, Tatekawa S, Tsukamoto T, Mizutani S, Shimura Y, Yamamoto-Sugitani M, et al: 8q24 amplified segments involve novel fusion genes between NSMCE2 and long noncoding RNAs in acute myelogenous leukemia. J Hematol Oncol 2014, 7:68.
98.Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H, Ronning P, Reuland B, Guenther K, Beadnell TC, et al: PVT1 dependence in cancer with MYC copy-number increase. Nature 2014, 512:82-86.
99.van Nimwegen KJ, van Soest RA, Veltman JA, Nelen MR, van der Wilt GJ, Vissers LE, Grutters JP: Is the $1000 Genome as Near as We Think? A Cost Analysis of Next-Generation Sequencing. Clin Chem 2016, 62:1458-1464.
100.Dong L, Wang W, Li A, Kansal R, Chen Y, Chen H, Li X: Clinical Next Generation Sequencing for Precision Medicine in Cancer. Curr Genomics 2015, 16:253-263.
101.Collins FS, Varmus H: A new initiative on precision medicine. N Engl J Med 2015, 372:793-795.
102.Council NR: Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. Washington, DC: The National Academies Press; 2011.
103.Lu YF, Goldstein DB, Angrist M, Cavalleri G: Personalized medicine and human genetic diversity. Cold Spring Harb Perspect Med 2014, 4:a008581.
104.Midha A, Dearden S, McCormack R: EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am J Cancer Res 2015, 5:2892-2911.
105.Chan BA, Hughes BG: Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res 2015, 4:36-54.
106.Gazdar AF: Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 2009, 28 Suppl 1:S24-31.
107.Ung MH, Varn FS, Cheng C: IDEA: Integrated Drug Expression Analysis-Integration of Gene Expression and Clinical Data for the Identification of Therapeutic Candidates. CPT Pharmacometrics Syst Pharmacol 2015, 4:415-425.
108.Ashburn TT, Thor KB: Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004, 3:673-683.
109.Reichert JM: Trends in development and approval times for new therapeutics in the United States. Nat Rev Drug Discov 2003, 2:695-702.
110.Avorn J: The $2.6 billion pill--methodologic and policy considerations. N Engl J Med 2015, 372:1877-1879.
111.Shim JS, Liu JO: Recent advances in drug repositioning for the discovery of new anticancer drugs. Int J Biol Sci 2014, 10:654-663.
112.Oprea TI, Mestres J: Drug repurposing: far beyond new targets for old drugs. AAPS J 2012, 14:759-763.
113.Oprea TI, Bauman JE, Bologa CG, Buranda T, Chigaev A, Edwards BS, Jarvik JW, Gresham HD, Haynes MK, Hjelle B, et al: Drug Repurposing from an Academic Perspective. Drug Discov Today Ther Strateg 2011, 8:61-69.
114.Saxena A, Becker D, Preeshagul I, Lee K, Katz E, Levy B: Therapeutic Effects of Repurposed Therapies in Non-Small Cell Lung Cancer: What Is Old Is New Again. Oncologist 2015, 20:934-945.
115.Khaleel SS, Andrews EH, Ung M, DiRenzo J, Cheng C: E2F4 regulatory program predicts patient survival prognosis in breast cancer. Breast Cancer Res 2014, 16:486.
116.Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, et al: The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006, 313:1929-1935.
117.Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF, Tubelli AA, Asiedu JK, et al: A Next Generation Connectivity Map: L1000 Platform And The First 1,000,000 Profiles. bioRxiv 2017.
118.Cox DR: Regression Models and Life-Tables. Journal of the Royal Statistical Society Series B-Statistical Methodology 1972, 34:187-+.
119.Gray KA, Yates B, Seal RL, Wright MW, Bruford EA: Genenames.org: the HGNC resources in 2015. Nucleic Acids Res 2015, 43:D1079-1085.
120.Cheng C, Yan X, Sun F, Li LM: Inferring activity changes of transcription factors by binding association with sorted expression profiles. BMC Bioinformatics 2007, 8:452.
121.Varn FS, Andrews EH, Mullins DW, Cheng C: Integrative analysis of breast cancer reveals prognostic haematopoietic activity and patient-specific immune response profiles. Nat Commun 2016, 7:10248.
122.Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, Zakowski MF, Heelan RT, Kris MG, Varmus HE: KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2005, 2:e17.
123.DeBoer C, Meulman PA, Wnuk RJ, Peterson DH: Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 1970, 23:442-447.
124.Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM: Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 1994, 91:8324-8328.
125.Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al: Mutations of the BRAF gene in human cancer. Nature 2002, 417:949-954.
126.Fukuyo Y, Hunt CR, Horikoshi N: Geldanamycin and its anti-cancer activities. Cancer Lett 2010, 290:24-35.
127.Fukuyo Y, Inoue M, Nakajima T, Higashikubo R, Horikoshi NT, Hunt C, Usheva A, Freeman ML, Horikoshi N: Oxidative stress plays a critical role in inactivating mutant BRAF by geldanamycin derivatives. Cancer Res 2008, 68:6324-6330.
128.Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Jr., Wu YL, Paz-Ares L: Lung cancer: current therapies and new targeted treatments. Lancet 2017, 389:299-311.
129.Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R: FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist 2003, 8:303-306.
130.Ladanyi M, Pao W: Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod Pathol 2008, 21 Suppl 2:S16-22.
131.Rothenberg ML, LaFleur B, Levy DE, Washington MK, Morgan-Meadows SL, Ramanathan RK, Berlin JD, Benson AB, 3rd, Coffey RJ: Randomized phase II trial of the clinical and biological effects of two dose levels of gefitinib in patients with recurrent colorectal adenocarcinoma. J Clin Oncol 2005, 23:9265-9274.
132.Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
133.Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19:92-105.
134.Alhasan AH, Patel PC, Choi CH, Mirkin CA: Exosome encased spherical nucleic acid gold nanoparticle conjugates as potent microRNA regulation agents. Small 2014, 10:186-192.
135.Ma R, Jiang T, Kang X: Circulating microRNAs in cancer: origin, function and application. J Exp Clin Cancer Res 2012, 31:38.
136.O'Brien KP, Ramphul E, Howard L, Gallagher WM, Malone C, Kerin MJ, Dwyer RM: Circulating MicroRNAs in Cancer. Methods Mol Biol 2017, 1509:123-139.
137.Kawaguchi T, Komatsu S, Ichikawa D, Tsujiura M, Takeshita H, Hirajima S, Miyamae M, Okajima W, Ohashi T, Imamura T, et al: Circulating MicroRNAs: A Next-Generation Clinical Biomarker for Digestive System Cancers. Int J Mol Sci 2016, 17.
138.Singh R, Ramasubramanian B, Kanji S, Chakraborty AR, Haque SJ, Chakravarti A: Circulating microRNAs in cancer: Hope or hype? Cancer Lett 2016, 381:113-121.
139.Zhang Y, Li T, Qiu Y, Zhang T, Guo P, Ma X, Wei Q, Han L: Serum microRNA panel for early diagnosis of the onset of hepatocellular carcinoma. Medicine (Baltimore) 2017, 96:e5642.
140.Motawi TK, Shaker OG, El-Maraghy SA, Senousy MA: Serum MicroRNAs as Potential Biomarkers for Early Diagnosis of Hepatitis C Virus-Related Hepatocellular Carcinoma in Egyptian Patients. PLoS One 2015, 10:e0137706.
141.Alhasan AH, Scott AW, Wu JJ, Feng G, Meeks JJ, Thaxton CS, Mirkin CA: Circulating microRNA signature for the diagnosis of very high-risk prostate cancer. Proc Natl Acad Sci U S A 2016, 113:10655-10660.
142.Liu XL, Pan Q, Zhang RN, Shen F, Yan SY, Sun C, Xu ZJ, Chen YW, Fan JG: Disease-specific miR-34a as diagnostic marker of non-alcoholic steatohepatitis in a Chinese population. World J Gastroenterol 2016, 22:9844-9852.
143.De Rosa S, Eposito F, Carella C, Strangio A, Ammirati G, Sabatino J, Abbate FG, Iaconetti C, Liguori V, Pergola V, et al: Transcoronary concentration gradients of circulating microRNAs in heart failure. Eur J Heart Fail 2018.
144.Russo F, Di Bella S, Vannini F, Berti G, Scoyni F, Cook HV, Santos A, Nigita G, Bonnici V, Lagana A, et al: miRandola 2017: a curated knowledge base of non-invasive biomarkers. Nucleic Acids Res 2018, 46:D354-D359.
145.Ainsztein AM, Brooks PJ, Dugan VG, Ganguly A, Guo M, Howcroft TK, Kelley CA, Kuo LS, Labosky PA, Lenzi R, et al: The NIH Extracellular RNA Communication Consortium. J Extracell Vesicles 2015, 4:27493.
146.Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, et al: miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 2016, 44:D239-247.
147.Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K: KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017, 45:D353-D361.
148.Hoerl AE, Kennard RW: Ridge Regression - Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12:55-&.
149.Tibshirani R: Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B-Methodological 1996, 58:267-288.
150.Chang CC, Lin CJ: LIBSVM: A Library for Support Vector Machines. Acm Transactions on Intelligent Systems and Technology 2011, 2.
151.Genuer R, Poggi JM, Tuleau-Malot C: Variable selection using random forests. Pattern Recognition Letters 2010, 31:2225-2236.
152.Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A: Conditional variable importance for random forests. BMC Bioinformatics 2008, 9:307.
153.Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30:207-210.
154.Leinonen R, Sugawara H, Shumway M, International Nucleotide Sequence Database C: The sequence read archive. Nucleic Acids Res 2011, 39:D19-21.
155.Bodenreider O: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res 2004, 32:D267-270.
156.Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ: LIBLINEAR: A Library for Large Linear Classification. Journal of Machine Learning Research 2008, 9:1871-1874.
157.Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer classification using support vector machines. Machine Learning 2002, 46:389-422.
158.Sun Q, Zhao X, Liu X, Wang Y, Huang J, Jiang B, Chen Q, Yu J: miR-146a functions as a tumor suppressor in prostate cancer by targeting Rac1. Prostate 2014, 74:1613-1621.
159.Dong J, Liu Y, Liao W, Liu R, Shi P, Wang L: miRNA-223 is a potential diagnostic and prognostic marker for osteosarcoma. J Bone Oncol 2016, 5:74-79.
160.Fuse M, Kojima S, Enokida H, Chiyomaru T, Yoshino H, Nohata N, Kinoshita T, Sakamoto S, Naya Y, Nakagawa M, et al: Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. J Hum Genet 2012, 57:691-699.
161.Ding HY, Qian WQ, Xu J: MicroRNA-146b acts as a potential tumor suppressor in human prostate cancer. J BUON 2016, 21:434-443.
162.Okato A, Arai T, Kojima S, Koshizuka K, Osako Y, Idichi T, Kurozumi A, Goto Y, Kato M, Naya Y, et al: Dual strands of pre-miR150 (miR1505p and miR1503p) act as antitumor miRNAs targeting SPOCK1 in naive and castration-resistant prostate cancer. Int J Oncol 2017, 51:245-256.
163.Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R: Abiotic and biotic stress combinations. New Phytol 2014, 203:32-43.
164.Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, et al: Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 2002, 8:1-16.
165.Luck J, Spackman M, Freeman A, Trebicki P, Griffiths W, Finlay K, Chakraborty S: Climate change and diseases of food crops. Plant Pathology 2011, 60:113-121.
166.Di C, Yuan J, Wu Y, Li J, Lin H, Hu L, Zhang T, Qi Y, Gerstein MB, Guo Y, Lu ZJ: Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J 2014, 80:848-861.
167.Moustafa K, Cross JM: Genetic Approaches to Study Plant Responses to Environmental Stresses: An Overview. Biology (Basel) 2016, 5.
168.Staiger D, Brown JW: Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 2013, 25:3640-3656.
169.Priya P, Jain M: RiceSRTFDB: a database of rice transcription factors containing comprehensive expression, cis-regulatory element and mutant information to facilitate gene function analysis. Database (Oxford) 2013, 2013:bat027.
170.Naika M, Shameer K, Mathew OK, Gowda R, Sowdhamini R: STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol 2013, 54:e8.
171.Zhang S, Yue Y, Sheng L, Wu Y, Fan G, Li A, Hu X, Shangguan M, Wei C: PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress. BMC Plant Biol 2013, 13:33.
172.Kumar SA, Kumari PH, Sundararajan VS, Suravajhala P, Kanagasabai R, Kishor PBK: PSPDB: Plant Stress Protein Database. Plant Molecular Biology Reporter 2014, 32:940-942.
173.Sanseverino W, Hermoso A, D'Alessandro R, Vlasova A, Andolfo G, Frusciante L, Lowy E, Roma G, Ercolano MR: PRGdb 2.0: towards a community-based database model for the analysis of R-genes in plants. Nucleic Acids Res 2013, 41:D1167-1171.
174.Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS: Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 2012, 40:D1178-1186.
175.Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Falin LJ, Grabmueller C, et al: Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res 2016, 44:D574-580.
176.Sjodin A, Street NR, Sandberg G, Gustafsson P, Jansson S: The Populus Genome Integrative Explorer (PopGenIE): a new resource for exploring the Populus genome. New Phytol 2009, 182:1013-1025.
177.Yi X, Zhang Z, Ling Y, Xu W, Su Z: PNRD: a plant non-coding RNA database. Nucleic Acids Res 2015, 43:D982-989.
178.O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, et al: Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 2016, 44:D733-745.
179.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
180.Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007, 35:W182-185.
181.Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28:27-30.
182.Welin BV, Olson A, Nylander M, Palva ET: Characterization and Differential Expression of Dhn/Lea/Rab-Like Genes during Cold-Acclimation and Drought Stress in Arabidopsis-Thaliana. Plant Molecular Biology 1994, 26:131-144.
183.Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET: Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 2004, 54:743-753.
184.Hayami N, Sakai Y, Kimura M, Saito T, Tokizawa M, Iuchi S, Kurihara Y, Matsui M, Nomoto M, Tada Y, Yamamoto YY: The Responses of Arabidopsis Early Light-Induced Protein2 to Ultraviolet B, High Light, and Cold Stress Are Regulated by a Transcriptional Regulatory Unit Composed of Two Elements. Plant Physiol 2015, 169:840-855.
185.Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K: Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 2002, 29:417-426.
186.Nordin K, Vahala T, Palva ET: Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 1993, 21:641-653.
187.Guo W, Ward RW, Thomashow MF: Characterization of a Cold-Regulated Wheat Gene Related to Arabidopsis cor47. Plant Physiol 1992, 100:915-922.
188.Rajashekar CB, Zhou HE, Zhang Y, Li W, Wang X: Suppression of phospholipase Dalpha1 induces freezing tolerance in Arabidopsis: response of cold-responsive genes and osmolyte accumulation. J Plant Physiol 2006, 163:916-926.
189.Wang Z, Ji H, Yuan B, Wang S, Su C, Yao B, Zhao H, Li X: ABA signalling is fine-tuned by antagonistic HAB1 variants. Nat Commun 2015, 6:8138.
190.Zhan X, Qian B, Cao F, Wu W, Yang L, Guan Q, Gu X, Wang P, Okusolubo TA, Dunn SL, et al: An Arabidopsis PWI and RRM motif-containing protein is critical for pre-mRNA splicing and ABA responses. Nat Commun 2015, 6:8139.
191.Brondani C, Rangel N, Brondani V, Ferreira E: QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice ( Oryza sativa) using microsatellite markers. Theor Appl Genet 2002, 104:1192-1203.
192.Luo X, Ji SD, Yuan PR, Lee HS, Kim DM, Balkunde S, Kang JW, Ahn SN: QTL mapping reveals a tight linkage between QTLs for grain weight and panicle spikelet number in rice. Rice (N Y) 2013, 6:33.
193.Yamamoto T, Lin H, Sasaki T, Yano M: Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 2000, 154:885-891.
194.Kim VN: MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005, 6:376-385.
195.Mallory AC, Vaucheret H: Functions of microRNAs and related small RNAs in plants. Nat Genet 2006, 38 Suppl:S31-36.
196.Liu Q, Zhang YC, Wang CY, Luo YC, Huang QJ, Chen SY, Zhou H, Qu LH, Chen YQ: Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett 2009, 583:723-728.
197.Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, Liao JY, Wang XJ, Qu LH, Chen F, et al: Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol 2013, 31:848-852.
198.Li S, Gao F, Xie K, Zeng X, Cao Y, Zeng J, He Z, Ren Y, Li W, Deng Q, et al: The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J 2016, 14:2134-2146.
199.Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34:D140-144.
200.Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res 2008, 36:D154-158.
201.Kozomara A, Griffiths-Jones S: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014, 42:D68-73.
202.Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39:D152-157.
203.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST+: architecture and applications. BMC Bioinformatics 2009, 10:421.
204.An J, Lai J, Sajjanhar A, Lehman ML, Nelson CC: miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data. BMC Bioinformatics 2014, 15:275.
205.Fu L, Niu B, Zhu Z, Wu S, Li W: CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28:3150-3152.
206.Peng T, Sun H, Qiao M, Zhao Y, Du Y, Zhang J, Li J, Tang G, Zhao Q: Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in rice. BMC Plant Biol 2014, 14:196.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊