跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 08:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐訓慶
研究生(外文):Hsun-Ching Hsu
論文名稱:用光通量切割法進行任意指向性轉換之自由曲面透鏡設計
論文名稱(外文):Optical Freeform Lens Design for Directivity Transform with Flux Partition Method
指導教授:韓斌韓斌引用關係
指導教授(外文):Pin Han
口試委員:蔡政穆李澄鈴柯宜謀陳榮燊
口試委員(外文):Cheng-Mu TsaiCheng-Ling LeeYee-Mou KaoRung-Sheng Chen
口試日期:2018-04-26
學位類別:博士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:70
中文關鍵詞:自由曲面透鏡Lambertian 光源光通量切割照度指向性轉換
外文關鍵詞:Freeform lensLambertianFlux partition methodIlluminationDirectivity transformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本論文提供執行指向性轉換的自由曲面透鏡設計策略。它使用光通量切割的方法,並將其適度分配到對應的強度分佈。原則上,在滿足折射定理及不發生全反射的情況下,任意的光型分佈是可以藉由這個方法達成。以常見的Lambertian頂部發光LED作為光源為例,這方法成功地給出了不同要求的強度分佈,例如:等向性和指數型態指向性的分佈。我們進一步利用計算結果製造了等向性透鏡並量測強度分佈
,實驗結果與模擬結果非常吻合,其等向性超過80%。
這個方法除了有直接性和速度上的優點,其最主要之兩個特點為1.考慮Fresnel 的損失,2.在設計階段即可得知透鏡的效率因子。僅利用幾何光學與光通量守恆原理,不用憑藉偏微分方程或疊代演算方法,就可以進行任意指向性之轉換,相信在照明工程或顯示器領域,將會有更廣泛的應用。
This research provides a free form lens design strategy that performs directivity transformation. In principle, arbitrary beam pattern can be achieved with this method, which uses a modified flux partition and assigns each one to calculated position based on illumination required. Taking a real Lambertian top emitting white light LED source for example, this method successfully gives different required intensity distributions, such as the isotropic and exponential ones. Moreover, the isotropic directivity lens is fabricated and the beam pattern is measured to verify the effectiveness. The experimental results are in good agreement with the simulation ones, which provides high directivity isotropy (more than 80%).
The features of this method are the following: 1. This method takes Fresnel loss of the lens into consideration. 2. It predicts the efficiency of the lens. It also has the advantages of directness and speed. This scheme uses simple photometry and geometrical optics without resorting to partial differential equations or iterative algorithm. It is expected to find wide applications in general beam shaping, particularly in lighting or illumination engineering where arbitrary directivity transformation is required.
摘要...................................................i
Abstract..............................................ii
目次..................................................iii
表目次................................................vi
圖目次................................................vii
第1章 序論..............................................1
1.1. 研究動機...........................................1
1.2. 論文架構...........................................3
1.3. 自由曲面透鏡文獻探討................................4
第2章 基本光學理論.......................................6
2.1. 幾何光學(Geometrical optics).......................6
2.1.1. Lambertian餘弦定律(Lambert’s cosine law).........7
2.1.2. 折射率(Refractive index).........................8
2.1.3. 反射律(Law of Reflection)........................9
2.1.4. 折射定律(Law of Refraction)......................11
2.1.5. 臨界角和全反射(Critical angle and Total internal reflection)............................................12
2.2. 波動光學(Wave optics)..............................13
2.2.1. 菲涅耳方程式(Fresnel Equations)..................14
2.2.2. 垂直偏振(Transverse Electric Polarization).......15
2.2.3. 平行偏振(Transverse Magnetic Polarization).......16
2.2.4. 反射比與透射比(Reflectivity and Transmissivity)..17
2.2.5. 布魯斯特角(Brewster’s Angle).....................21
2.3. 光度學(Photometry)................................22
2.3.1. 光通量(Luminous Flux)...........................23
2.3.2. 照度(Illuminance)...............................23
2.3.3. 光強度(Luminous Intensity)......................25
第3章 光通量切割法設計與模擬.............................28
3.1. 設計步驟..........................................28
3.2. 模擬驗證..........................................39
3.2.1. 等向性分析......................................41
3.2.2. 指向性分析......................................45
3.2.3. 高次項分析......................................47
3.2.4. Fresnel分析....................................48
第4章 實驗結果.........................................49
4.1. 實作測試..........................................49
4.2. 差異性驗證........................................54
第5章 結論與展望.......................................56
著作目錄...............................................59
參考文獻...............................................61
[1] R. J. Koshel, Illumination Engineering, New York, NY, USA: Wiley, 2013, ch. 4.
[2] Y. Ding, X. Liu, Z.-R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Exp., vol. 16, no. 17, pp. 12958–12966, Aug. 2008.
[3] C. C. Sun, X.-H. Lee, I. Moreno, C.-H. Lee, Y.-W. Yu, T.-H. Yang, T.-Y. Chung, “Design of LED street lighting adapted for free-form roads,” IEEE Photon. J., vol. 9, no. 1, Feb 2017, Art. no. 8200213.
[4] Z. M. Zhu, H. Liu, and S.-M. Chen, “The design of diffuse reflective free-form surface for indirect illumination with high efficiency and uniformity,” IEEE Photon. J., vol. 7, no. 3, Jun. 2015, Art. no. 1600510.
[5] R. Winston, Nonimaging Optics. Amsterdam, The Netherlands: Elsevier, 2005.
[6] J. Rubinstein and G. Wolansky, “Intensity control with a free-form lens,” J. Opt. Soc. Amer. A, vol. 24, no. 2, pp. 463–469, Feb. 2007. [6]
[7] C.-Y. Tsai, “Free-form surface design method for a collimator TIR lens,” J. Opt. Soc. Amer. A, vol. 33, no. 4, pp. 785–792, Apr. 2016.
[8] J. Chaves, Introduction to Nonimaging Optics. Boca Raton, FL, USA: CRC Press, 2008, ch. 8.
[9] R. Wu, C. Y. Huang, X. Zhu, H.-N. Cheng, and R. Liang, “Direct three-dimensional design of compact and ultra-efficient freeform lenses for extended light sources,” Optica, vol. 3, no. 8, pp. 840–843, Aug. 2016.
[10] S. Hu, K. Du, T. Mei, L. Wan, and N. Zhu, “Ultra-compact LED lens with double freeform surfaces for uniform illumination,” Opt. Exp., vol. 23, no. 16, pp. 20350–20355, Aug. 2015.
[11] J. C. Bortz, N. E. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, Novel Opt. Syst. Design Optim. III, vol. 4092, pp. 130–138, Oct. 2000, doi: 10.1117/12.402419.
[12] Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Exp., vol. 18, no. 9, pp. 9055–9063, Apr. 2010.
[13] F. Fournier and J. Rolland, “Optimization of freeform lightpipes for light-emitting-diode projectors,” Appl. Opt., vol. 47, no. 7, pp. 957–966, Mar. 2008.
[14] D. Ma, Z. Feng, and R. Liang, “Tailoring freeform illumination optics in a doublepole coordinate system,” Appl. Opt., vol. 54, no. 9, pp. 2395–2399, Mar. 2015.
[15] R. Wu et al., “Freeform illumination design: A nonlinear boundary problem for the elliptic Monge–Ampére equation,” Opt. Lett., vol. 38, no. 2, pp. 229–231, Jan. 2013.
[16] J.-J. Chen, T.-Y. Wang, K.-L. Huang, T.-S. Liu, M.-D. Tsai, and C.-T. Lin, “Freeform lens design for LED collimating illumination,” Opt. Exp., vol. 20, no. 10, pp. 10984–10995, May 2012.
[17] J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting-diode based collimating lens,” Opt. Eng., vol. 49, no. 9, Sep. 2010, Art. no. 093001.
[18] W. Song, D. Cheng, Y. Liu, and Y. Wang, “Free-form illumination of a refractive surface using multiple-faceted refractors,” Appl. Opt., vol. 54, no. 28, pp. E1–E7, Oct. 2015.
[19] C.-M. Tsai, “Uniformity and collimation of incoherence Gaussian beam with divergence based on only one Fresnel surface,” IEEE Photon. J., vol. 8, no. 6, Dec 2016, Art. no. 6500509.
[20] V. Oliker, “Mathematical aspects of design of beam shaping surfaces in geometrical optics,” in Trends in Nonlinear Analysis. New York, NY, USA: Springer, 2002, pp. 191–222.
[21] F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Exp., vol. 18, no. 5, pp. 5295–5304, Mar. 2010.
[22] J.-J. Chen, Z.-Y. Huang, T.-S. Liu, M.-D. Tsai, and K.-L. Huang, “Freeform lens design for light-emitting diode uniform illumination by using a method of source–target luminous intensity mapping,” Appl. Opt., vol. 54, no. 28, pp. E146–E152, Oct. 2015.
[23] J. Bortz and N. Shatz, “Generalized functional method of nonimaging optical design,” Proc. SPIE 6338, Nonimag. Opt. Efficient Illumination Syst. III, vol. 6338, Aug. 2006, Art. no. 633805, doi:10.1117/12.678600.
[24] H.-C. Hsu and P. Han, “Optical flux partition method for high uniformity illumination of a refractive lens,” Appl. Opt., vol. 53, no. 29, pp. H14–H19, Oct. 2014.
[25] H.-C. Hsu and P. Han, “High uniformity and directivity of a reflective device with optical flux partition method,” J. Display Technol., vol. 11, no. 12, pp. 1018–1022, Dec. 2015.
[26] 林宗賦, 高性能表面結構太陽光反應器之光學設計與模擬,中興大學精密工程研究所碩士論文, 2014。
[27] 陳彥羽, 高性能一體式鋁板燈具之光學設計,中興大學精密工程研究所碩士論文, 2017。
[28] 耿繼業,幾何光學,全華圖書出版社,2013。
[29] E. Hecht, OPTICS, Addision Wesley, 2001, ch. 4.
[30] 劉易靈, 玻璃導光板吸收及色散量測方法之開發,中興大學精密工程研究所碩士論文, 2017。
[31] C. A. Bennett, Principles of Physical optics, 2008, ch. 3.
[32] W. R. McCluney, Introduction to Radiometry and Photometry, Norwood, MA, USA: Artech House, 1994.
[33] E. Uiga, Optoelectronics. Englewood Cliffs, NJ, USA, Prentice-Hall, 1995, pp. 32–33.
[34] S. P. Woods and T. G. Constandinou, “Wireless Capsule Endoscope for Targeted Drug Delivery: Mechanics and Design Considerations,” IEEE Trans. Biomed. Eng., 60(4), pp.945-953, 2013.
[35] D. K. Iakovidis and A. Koulaouzidis “Software for enhanced video capsule endoscopy: challenges for essential progress,” Nat. Rev. Gastroenterol. Hepatol., 12(3), pp.172-186, 2015.
[36] P. Valdastri, C. Quaglia, E. Susilo, A. Menciassi, P. Dario, C. N. Ho, G. Anhoeck and M. O. Schurr, “Wireless therapeutic endoscopic capsule: In vivo experiment,” Endoscopy, 40(12), pp.979–982, 2008.
[37] I. Wilding, P. Hirst and A. Connor, “Development of a new engineering based capsule for human drug absorption studies,” Pharm. Sci. Technol. Today, 3(11), pp.385-392, 2000.
[38] W. Lujia, L. Li, H. Chao and M. Q. H. Meng, “A novel RF-based propagation model with tissue absorption for location of the GI tract,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp.654-657, 2010.
[39] W. Lujia, H. Chao, T. Longqiang, and L. Mao and M. Q.H. Meng, “A novel radio propagation radiation model for location of the capsule in GI tract,” in Proc. IEEE Int. Conf. Rob. Biomimetics, pp.2332-2337, 2009.
[40] X. Wang and M. Q. H. Meng, “Perspective of active capsule endoscope: Actuation and localisation,” Int. J. Mechatron. Autom., 1(1), pp.38-45, 2011.
[41] G. Ciuti, P. Valdastri, A. Menciassi, and P. Dario, “Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures,” Robotica, 28(2), pp.199-207, 2010.
[42] H. Chao, L. Mao, S. Shuang, W. Yang, R. Zhang and M. Q. H. Meng, “A cubic 3-axismagnetic sensor array for wirelessly trackingmagnet position and orientation,” IEEE Sens. J., 10(5), pp.903-913, 2010.
[43] N. C. Atuegwu and R. L. Galloway, “Volumetric characterization of the Aurora magnetic tracker system for image-guided transorbital endoscopic procedures,” Phy. Med. Biol., 53(16), pp.4355-4368, 2008.
[44] R. Kuth, J. Reinschke and R. Rockelein, “Method for determining the position and orientation of an endoscopy capsule guided through an examination object by using a navigating magnetic field generated by means of a navigation device,” U.S. Patent, 20,070,038,063 ,2007.
[45] V. Schlageter, P. A. Besse, R. S. Popovic, and P. Kucerab, “Tracking system with five degrees of freedom using a 2D-array of Hall sensors and a permanent magnet,” Sens. Actuators A: Phys., 92(1), pp.37-42, 2001.
[46] Y.-C. Tseng, P. Han, H.-C. Hsu, and C.-M. Tsai, “A flexible FOV capsule endoscope design based on compound lens,” IEEE Journal of Display Technology, DOI: 10.1109/JDT.2016.2615681.
[47] P. Han and Y.-C. Tseng, “Spectral Shift Amplification and Polarization-Controlled Spectral Shift with Silver Metal,” Metals, 06 2016.
[48] Y.-C. Tseng, P. Han, H.-C. Hsu, and C.-M. Tsai, “Color multiplexing method to capture front and side images with a capsule endoscope, ” Applied Optics, vol.54(28), pp.E241, Oct. 2015.
[49] Y.-C. Tseng, C.-M. Tsai and P. Han, “A Capsule Endoscope System with 140˚ View Angle based on F-number 2.0,” OPTIC 2015.
[50] Y.-C. Tseng, H.-C. Hsu, C.-M. Tsai, and P. Han,” A Capsule Endoscope with Multi-Side-Images by using Spectra Multiplexing,” OPTIC 2015.
[51] Q. Fang., “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomedical Optics Express., vol. 1, no. 1, pp. 165–175, Aug. 2010.
[52] H.-C. Hsu, C.-J. Wang, H.-R. Lin, and P. Han, ”Optimized semi-sphere lens design for power LED package, ” Microelectronics Reliability., vol. 52, no. 5, pp. 849-899, May. 2012.
[53] P. Han, H.-C. Hsu, and C.-M. Tsai, “Beam Shaping Freeform Lens Design With Modified Optical Flux Partition,” IEEE Photon. J., vol. 10, no. 1, Feb. 2018, Art. no. 8200113.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top