跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉峻豪
研究生(外文):Jun Hao Liu
論文名稱:廢棄輪胎橡膠衍生碳對燃料中二苯並噻吩之吸附研究
論文名稱(外文):Investigation of adsorption of dibenzothiophene in fuel by carbon derived from waste rubber tire
指導教授:蔡明瞭
指導教授(外文):Ming Tsai
學位類別:博士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:162
中文關鍵詞:脫硫吸附輪胎回收硝酸改質磷酸活化
外文關鍵詞:desulfurizationtire recyclingnitric acid modificationphosphoric acid- activation.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以回收廢輪胎製備成吸附劑,以磷酸活化法再以硝酸改質燃油脫硫吸附劑,研究其對於二苯並塞吩(dibenzothiophene -DBT)的去除效果。在材料性質上使用BET、XRD、SEM、EDX和Boehm分析其性質。
以濃硫酸處理廢輪胎回收橡膠,並經裂解後獲得之碳黑,不僅可提高碳黑比表面積和降低平均孔徑之優點,也可去除輪胎橡膠中的雜質如Si、S和Zn等元素,達到純化碳材的效果。
磷酸活化法中,分別探討了磷酸活化溫度及磷酸/碳黑比例對材料性質與吸附性能影響。在活化溫度650°C和磷酸/原料質量比為2:1下製備之吸附劑,有最佳的DBT吸附去除率為49.4%。
硝酸表面改質中,使用硝酸濃度15 M在改質溫度70°C下反應3 h,有最佳的DBT吸附去除率為72% 。吸附性能的提升主要受到吸附劑表面官能基的影響,其官能基包括內脂0.27 mmol g-1、羥基0.48 mmol g-1和苯酚1.61mmol g-1,表面官能基的增加有利於活性碳對模擬油中DBT的吸附。
在吸附條件的優化中:活性碳對DBT的最佳吸附時間是1小時;吸附劑用量為0.2 g時吸附脫硫率最大,脫硫率為95 %。且活性碳對模擬油中DBT吸附脫硫率,隨著吸附溫度提高而降低。
採用Langmuir等溫線方程式和Freundlich等溫線方程式對所得實驗結果進行擬合。結果表明Langmuir吸附等溫線模型更適合於活性碳對二苯并噻吩吸附行為的描述(R2=0.9933),所得參數qm及b分别為254.45 mg g-1和0.106 mL mg-1。
吸附動力學研究中採用擬一階動力學模型與擬二階動力學模型對所得實驗結果進行擬合。結果表明擬二階動力學模更適合於活性碳對二苯并噻吩吸附行為的描述(R2=0.9998),所得參數Cal.qe及K2分别為166.3893 mg g-1和0.0188 min-1。
The adsorbent used for recycling waste tires, were prepared by phosphoric acid-activation and nitric acid modification. We investigate the removal effects of the dibenzothiophene. The characteristics of preparing materials are analyzed by BET, XRD, SEM, EDX and Boehm.
The waste rubber is treated with concentrated sulfuric acid to recover the rubber, and the carbon black obtained by the cracking not only can improve the specific surface area and lower the average pore diameter, but also remove impurities such as Si, S and Zn in the tire rubber.To achieve the effect of purified carbon material.
In the phosphoric acid activation method, the effects of phosphoric acid activation temperature and phosphoric acid/carbon black ratio on material properties and adsorption properties were investigated. The adsorbent prepared at an activation temperature of 650 ° C and a phosphoric acid / raw material mass ratio of 2:1 has an optimum DBT adsorption removal rate of 49.4%.


In the surface modification of nitric acid, the optimum DBT adsorption removal rate was 72% when the concentration of nitric acid was 15 M, modification temperature 70 °C and modification time 3 hours. The adsorption performance is mainly affected by the functional groups on the surface of the adsorbent. The functional groups include lactone 0.27 mmol g-1, hydroxyl group 0.48 mmol g-1 and phenol 1.61 mmol g-1. The increase of surface functional groups is beneficial to the activated carbon pair.
In the optimization of adsorption conditions: the optimal adsorption time of activated carbon for DBT is 1 hour; when the amount of adsorbent is 0.2 g, the adsorption desulfurization rate is the highest, and the desulfurization rate is 95%. Moreover, the desulfurization rate of activated carbon to DBT adsorption in simulated oil decreases with increasing adsorption temperature.
The experimental results were fitted the Langmuir isotherm equation and the Freundlich isotherm equation. The results show that the Langmuir adsorption isotherm model is more suitable for the adsorption behavior of dibenzothiophene on activated carbon (R2=0.9933), and the obtained constant qm and b are 254.45 mg g-1 and 0.106 mL mg-1, respectively.
In the adsorption kinetics study, the pseudo-first-order kinetic model and the pseudo-second-order kinetic model were used to fit the experimental results. The results show that the pseudo-second-order kinetic model is more suitable for the adsorption behavior of dibenzothiophene on activated carbon (R2=0.9998). The obtained parameters Cal.qe and K2 are 166.3893 mg g-1 and 0.0188 min-1.
摘要.……………………………………………………………………ii
Abstract………………………………………………………………...iv
圖目錄……………………………………………………….………...ix
表目錄…………………………………………………..……………..xv
第一章論………………………………………………..………………1
1.1 引言…………………………………………………..…………….1
1.2 油品中的硫化物…………………………………………..……….2
1.3 常見脫硫方式………………………………………………..…….3
1.3.1加氫脫硫………………………………………………..……3
1.3.2生物脫硫………………………………………………..……5
1.3.3萃取脫硫………………………………………………..……6
1.3.4吸附脫硫………………………………………………..……7
1.3.4.1分子篩……………………………………………..…..7
1.3.4.2金屬氧化物…………………………………………....8
1.3.4.3活性碳…………………………………………………9
1.4 活性碳改質…………………………………………………….....10
1.4.1表面物理結構改質…………………………………………10
1.4.2表面化學性質改質…………………………………………12
1.4.3金屬離子改質…………………………………………..…..13
1.5吸附原理………………………………………………………..…16
1.5.1吸附概論…………………………………………………....16
1.5.2影響吸附能力之因素………………………………………19
1.5.3等溫吸附模式………………………………………………22
1.5.3.1等溫吸附曲線類型…………………………………..26
1.5.3.2等溫吸附曲線之遲滯現象…………………………..29
1.5.4吸附動力學………………………………………………....31
1.6研究動機…………………………………………………………..32
第二章 實驗設備與程序……………………………………………..35
2.1本實驗所使用之藥品與儀器…………………………………......35
2.1.1實驗儀器……………………………………………………35
2.1.2實驗藥品……………………………………………………37
2.2實驗程序…………………………………………………………..39
2.2.1輪胎橡膠清洗………………………………………………39
2.2.2輪胎硫化與熱裂解…………………………………………39
2.2.3磷酸活化法………………………………………………....40
2.2.4硝酸表面化學改質………………………………………....41
2.3吸附性能分析……………………………………………………..42
2.3.1模擬油配製…………………………………………………42
2.3.2吸光度檢量線…………..…………………………………..42
2.3.3批式吸附實驗………………………………………………43
2.3.4吸附動力學實驗……………………………………………44
2.3.5等溫吸附曲線實驗…………………………………………44
2.4材料性質分析……………………………………………………..45
2.4.1 BET測量比表面積…….…………………………………...45
2.4.2 FE-SEM觀察表面形態…………………………………….48
2.4.3 XRD分析結晶性質………………………………………..51
2.4.4 Boehm法分析表面官能基……………………………...….53
第三章 結果與討論…………………………………………………..58
3.1硫化橡膠對材料性質之影響………………………………...58
3.1.1硫化橡膠衍生碳對孔結構之影響…………………………58
3.1.2硫化橡膠衍生碳之SEM和EDX圖………………………..62
3.1.3 XRD分析硫化橡膠衍生碳………….…………………......65
3.2磷酸活化溫度對材料性質之影響………………………………..67
3.2.1磷酸活化溫度對孔結構之影響……………………….…...67
3.2.2磷酸活化溫度下製備吸附劑之表面官能基分析…………70
3.2.3磷酸活化溫度下製備吸附劑之SEM圖…………………...71
3.2.4磷酸活化溫度對DBT吸附性能之影響…………………..74
3.3磷酸/碳黑比例對材料性質之影響…………………………….....76
3.3.1磷酸/碳黑比例對孔結構之影響…………………………...76
3.3.2磷酸/碳黑比例下製備吸附劑之SEM圖…..........................79
3.3.3磷酸/碳黑比例下製備吸附劑之表面官能基分析………...82
3.3.4磷酸/碳黑比例對DBT吸附性能之影響……………….....83
3.4硝酸改質溫度對材料性質之影響………………………………..86
3.4.1硝酸改質溫度對活性碳孔結構之影響………………..…..86
3.4.2 硝酸改質溫度下製備吸附劑之表面官能基分析……...…89
3.4.3硝酸改質溫度下製備吸附劑之SEM和EDS圖…………..90
3.4.4 XRD分析硝酸改質溫度下製備吸附劑…………………...93
3.4.5硝酸改質溫度對DBT吸附性能之影響……………..……95
3.5硝酸改質濃度對材料性質之影響…………………………..……98
3.5.1硝酸濃度對活性碳孔結構之影響…………………..……..98
3.5.2硝酸濃度下製備吸附劑之表面官能基分析………..……101
3.5.3硝酸濃度下製備吸附劑之SEM和EDS圖………………102
3.5.4硝酸濃度對DBT吸附性能之影響……………………....105
3.6 硝酸改質時間對材料性質之影響………………………..…….107
3.6.1硝酸改質時間對活性碳孔結構之影響……………..……107
3.6.2硝酸改質時間下製備吸附劑之表面官能基分析……..…110
3.6.3硝酸改質時間下製備吸附劑之SEM和EDS圖…………111
3.6.4硝酸改質時間對DBT吸附性能之影響………………....114
3.7吸附條件優化……………………………………………………116
3.7.1吸附溫度的影響…………………………………………..116
3.7.2吸附劑用量影響…………………………………………..117
3.7.3吸附劑時間確定…………………………………………..119
3.8活性碳對DBT吸附模式研究…………………………………..121
3.9吸附動力學………………………………………………………126
3.9.1擬一階吸附動力學………………………………………..126
3.9.1擬二階吸附動力學………………………………………..126
3.10吸附機制.…………………………………………………….....129
3.11 製備所得吸附劑吸附性能比較…………………………….....133
第四章 結論與建議……………………………………………..…..135
第五章 參考文獻……………………………………………..……..138
個人簡介………………………………………………………..……145
[1]. C.Song and X. Ma New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization[J]. Applied Catalysis B: Environmental, 2003, 41(1): 207-238.
[2]. I.V.Babich, J.A.Moulijn. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review [J]. Fuel, 2003, 82(6): 607-631.
[3]. 王雲芳, 尹鋒利, 史德清.車用燃料油吸附法深度脫硫技術發展[J]. 石油化工, 2006, 35 (1): 94~99.
[4]. E. J. Swain. U.S. crude slate gets heavier higher in sulfur. Oil&Gas Journal, 1991, 89 (36): 59~61.
[5]. E. J. Swain. U.S. refining crude slates continue towards heavier feeds, highs sulfur contents. Oil&Gas Journal. 1998, 96 (40): 43~46.
[6]. 凌香,姚银堂,馬波,王少君.氣相色谱一原子發射光譜連用技術测定柴油中硫化物. 燃料化學學報,2002,30(6):535-539.
[7]. I.V.Babich, J.A.Moulijn. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review [J]. Fuel, 2003, 82(6): 607-631.
[8]. B.Liu , Y.Chai , Y.Li . Kinetic investigation of the effect of H2S in the hydrodesulfurization of FCC gasoline[J]. Fuel, 2014, 123: 43-51.
[9]. B.Pawelec, R.M.Navarro, P. Castano . Role of the Ru and support in sulfided RuNiMo catalysts in simultaneous hydrodearomatization (HDA), hydrodesulfurization (HDS), and hydrodenitrogenation (HDN) reactions[J]. Energy & Fuels, 2009, 23(3): 1364-1372
[10]. Toshiki. Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium phlei WU-F1.FEMS Microbiology Letters.2001,204(1):129-133.
[11]. R.Abro, A.A Abdeltawab, S.S Al-Deyab . A review of extractive desulfurization of fuel oils using ionic liquids[J]. RSC Advances, 2014, 4(67): 35302-35317.
[12]. D.Julião ,A.C Gomes, M.Pillinger. Desulfurization of model diesel by extraction/oxidation using a zinc-substituted polyoxometalate as catalyst under homogeneous and heterogeneous (MIL-101 (Cr) encapsulated) conditions[J]. Fuel Processing Technology, 2015, 131: 78-86.
[13]. 李寶忠, 張忠清, 王風秀. 汽油與柴油吸附脫硫技術研究與開發(I)-國内外發展現狀[J], 2002, 15 (3): 31~35c
[14]. Y. Shi, G. Liu, L. Wang. Efficient adsorptive removal of dibenzothiophene from model fuel over heteroatom-doped porous carbons by carbonization of an organic salt[J]. Chemical Engineering Journal, 2015, 259: 771-778.
[15]. N. Farzin Nejad, E.Shams, M.KAmini. Ordered mesoporous carbon CMK-5 as a potential sorbent for fuel desulfurization: application to the removal of dibenzothiophene and comparison with CMK-3[J]. Microporous and Mesoporous Materials, 2013, 168: 239-246.


[16]. T. Nunthaprechachan, S. Pengpanich , M. Hunsom. Adsorptive desulfurization of dibenzothiophene by sewage sludge-derived activated carbon[J]. Chemical Engineering Journal, 2013, 228: 263-271.
[17]. S. Kumar, V.C Srivastava, R.P Badoni. Studies on adsorptive desulfurization by zirconia based adsorbents[J]. Fuel, 2011, 90(11): 3209-3216.
[18]. Cigdem and Saha. Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel.
[19]. G. Shan, H. Liu, J. Xing. Separation of Polycyclic Aromatic Compounds from Model Gasoline by Magnetic Alumina Sorbent Based on π-Complexation. Ind. Eng. Chem. Res. 2004, 43 (3): 758~761.
[20]. P. Jeevanandam, K. J. Klabunde, S. H. Tetzler. Adsorption of thiophenes out of hydrocarbons using metal impregnated nanocrystalline aluminum oxide. Microporous and Mesoporous Materials. 2005, 79 (1-3): 101~110.
[21]. Yang, Yao, Zhang, Jia. Bamboo-derived porous biochar for efficient adsorption removal of dibenzothiophene from model.Fuel.,January 2018,121-129.
[22]. Nunthaprechachan, Pengpanich. Adsorptive desulfurization of dibenzothiophene by sewage sludge-derived activated carbon.Chemical Engineering Journal,July 2013,263-271.
[23]. Pallares, Gonzalez-Cencerrado, Arauzo.Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam.Biomass and Bioenergy.115(2018),64-73
[24]. F.Molina, M. Sabio, Rodrigueznoso. Preparation of activated carbon by chemical activation with ZnCl2.Carbon.1991,999-1007.
[25]. Molina2Sabio M. Rodriguez2Reinoso F. Development of porosity in combined acid carbon dioxide activation. Carbon.1996,34(4):457-462.
[26]. C.O Ania, T.J Bandosz . Importance of structural and chemical heterogen of activated carbon surfaces for adsorption of dibenzothiophene. Langmuir ,21(2005),7752-7759.
[27]. Deng, Lu and Li. Effect of pore structure and oxygen-containing groups on adsorption of dibenzothiophene over activated carbon. Fuel.200(2017)54-61.
[28]. A.Saleh and Gaddafi I.Damaliki. Adsorptive desulfurization of dibenzothiophene from by rubber tyres-derived carbons:Kintics and isotherms evaluation. Precess Safety and Environmental.102(2016)9-19.
[29]. Syed Sikandar Shah,Imtiaz Ahmad,Waqas Ahmad.Adsorptive desulphurization study of liquid fuels using Tin(Sn) impregnated activated charcoal.Journal of Hazard Materials.304(2016),205-213.
[30]. Al.Swat, A. Saleh, A. Ganiyu and Mohammad N.Siddiqui. Preparation of avtivated carbon,zinc oxide and nickel oxide composites for potential application in the desulfurization of model diesel fuels.Jour of Analytical and Applied Pyrolysis,128(2017),246-256

[31]. A. Saleh, A.Al-Hammadi, Tanimu and Alhooshani. Ultra-deep adsorptive desulfurization of fuels on cobalt and molybdenum nanoparticles loaded on activated carbon derived from waste rubber.Joural of Colloid and Interface Science,513(2018),779-787.
[32]. L. Mao, Y. Wang, X. Hu. π-π stacking interactions in the peridinin-chlorophyll-protein of amphidinium carterae , J Phys Chem B ,107(2013),3963-3971.
[33]. A.N. Zhou, X.L. Ma, C.S Song. Effect of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fule. Appl Catal B:Enviro ,23(2009),190-199.
[34]. A. Saleh, O. Sulaiman and A.AL-Hammadi. Adsorptive desulfurization of thiopgene,benzothiophene and dibenzothiophene over avtivated carbon manganese oxide nanocomposite:with column system evaluation. Journal of Cleaner Production.154(2017)401-412.
[35]. I. Danmaliki and A. Saleh. Effects of bimetallic Ce/Fe nanoparticles on the desulfurization do thiophenes using activated carbon. Chemical Engineering Journal.307(2017)914-927.
[36]. G.S. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, Harcourt Brace Jovanovich, London,94,(1978),597.
[37]. M. Suzuki, Adsorption Engineering, Kodansha Ltd,1990,245-249.
[38]. Huang and Rubin.The Surfaces Acidity of Hydrous Soilds.Adsorption of Inorganic at Soild/Liquid Interfaces(1981).54-79.
[39]. Hayes and Leckie.Modeling Ionic Strength Effect on Anion Adsorption at Hydrous/Soluton Interfaces.Colloid Interface(1987).564-572.
[40]. Hayes and Leckie.Modeling Ionic Strength Effect on Anion Adsorption at Hydrous/Soluton Interfaces.Colloid Interface(1988).717-726.
[41]. Hearly and Fuerstenau.The Effect of Crystal Structure on The Surface Properties of A Series of Manganese Dioxides.Colloid Interface(1966).435-444.
[42]. S. Kenneth ,W. Sing. Adsorption by Actived Carbons.Adsorption by Powders and Porous Soilds(2014).321-391.
[43]. Kumar and Chandra. Kinetics and Equilibrium Isotherm Modeling:Graphene-Based Nanomaterials for the Removal of Heavy Metals From Water.Nanomaterials for Wastewater Remediation(2016),79-109.
[44]. 顏冠忠,以吸脫附動力曲線探討土壤吸附特性,南亞技術學院土木與環境工程碩士論文,2008年.
[45]. IUPAC. Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 31(1972).578.
[46]. Y. S. Ho, and G. Mckay, “ Pseudo-second order model for sorption process,” Process Biochemistry, 34, (1999),451-465.
[47]. Y. S. Ho, and G. Mckay, “ Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash,” J. Environmental Science and Health, A34,(1999),1179-1204.
[48]. G. Ertl, H. Knozinger, F. Schuth, and J.Weitkamp. Handbook of heterogeneous catalysis.WILET-VCH Press.3(1997)1308-1338.
[49]. 黃宣宜,白金/中孔碳觸媒之製備及其氧化還原反應特性與穩定性探討,2011年。
[50]. 羅聖文,掃描式電子顯微鏡,科學研習,2013,NO.52-5.
[51]. 許樹恩、吳泰伯,X光繞射原理與材料結構分析,1992
[52]. L. Goertzen, D. Kim, M. Oickle, C. Tarasuk. Standardization of the Boehm titration.Part I.CO2 expulsion and endpoint determination.Carbon.48(2010)1252-1261.
[53]. Sarah L.Goertzen, Kim D. Theriault, Alicia M .Oickle , Anthony C.Tarasuk. Standardization of the Boehm titration . Part I. Method of agitation effect of filtering and dilute titrant. Carbon .48(2010)3313-3322.
[54]. H. Scott Fogler , Essentials of chemical reaction engineering , 2011.
電子全文 電子全文(網際網路公開日期:20230808)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top