|
[1]. C.Song and X. Ma New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization[J]. Applied Catalysis B: Environmental, 2003, 41(1): 207-238. [2]. I.V.Babich, J.A.Moulijn. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review [J]. Fuel, 2003, 82(6): 607-631. [3]. 王雲芳, 尹鋒利, 史德清.車用燃料油吸附法深度脫硫技術發展[J]. 石油化工, 2006, 35 (1): 94~99. [4]. E. J. Swain. U.S. crude slate gets heavier higher in sulfur. Oil&Gas Journal, 1991, 89 (36): 59~61. [5]. E. J. Swain. U.S. refining crude slates continue towards heavier feeds, highs sulfur contents. Oil&Gas Journal. 1998, 96 (40): 43~46. [6]. 凌香,姚银堂,馬波,王少君.氣相色谱一原子發射光譜連用技術测定柴油中硫化物. 燃料化學學報,2002,30(6):535-539. [7]. I.V.Babich, J.A.Moulijn. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review [J]. Fuel, 2003, 82(6): 607-631. [8]. B.Liu , Y.Chai , Y.Li . Kinetic investigation of the effect of H2S in the hydrodesulfurization of FCC gasoline[J]. Fuel, 2014, 123: 43-51. [9]. B.Pawelec, R.M.Navarro, P. Castano . Role of the Ru and support in sulfided RuNiMo catalysts in simultaneous hydrodearomatization (HDA), hydrodesulfurization (HDS), and hydrodenitrogenation (HDN) reactions[J]. Energy & Fuels, 2009, 23(3): 1364-1372 [10]. Toshiki. Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium phlei WU-F1.FEMS Microbiology Letters.2001,204(1):129-133. [11]. R.Abro, A.A Abdeltawab, S.S Al-Deyab . A review of extractive desulfurization of fuel oils using ionic liquids[J]. RSC Advances, 2014, 4(67): 35302-35317. [12]. D.Julião ,A.C Gomes, M.Pillinger. Desulfurization of model diesel by extraction/oxidation using a zinc-substituted polyoxometalate as catalyst under homogeneous and heterogeneous (MIL-101 (Cr) encapsulated) conditions[J]. Fuel Processing Technology, 2015, 131: 78-86. [13]. 李寶忠, 張忠清, 王風秀. 汽油與柴油吸附脫硫技術研究與開發(I)-國内外發展現狀[J], 2002, 15 (3): 31~35c [14]. Y. Shi, G. Liu, L. Wang. Efficient adsorptive removal of dibenzothiophene from model fuel over heteroatom-doped porous carbons by carbonization of an organic salt[J]. Chemical Engineering Journal, 2015, 259: 771-778. [15]. N. Farzin Nejad, E.Shams, M.KAmini. Ordered mesoporous carbon CMK-5 as a potential sorbent for fuel desulfurization: application to the removal of dibenzothiophene and comparison with CMK-3[J]. Microporous and Mesoporous Materials, 2013, 168: 239-246.
[16]. T. Nunthaprechachan, S. Pengpanich , M. Hunsom. Adsorptive desulfurization of dibenzothiophene by sewage sludge-derived activated carbon[J]. Chemical Engineering Journal, 2013, 228: 263-271. [17]. S. Kumar, V.C Srivastava, R.P Badoni. Studies on adsorptive desulfurization by zirconia based adsorbents[J]. Fuel, 2011, 90(11): 3209-3216. [18]. Cigdem and Saha. Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel. [19]. G. Shan, H. Liu, J. Xing. Separation of Polycyclic Aromatic Compounds from Model Gasoline by Magnetic Alumina Sorbent Based on π-Complexation. Ind. Eng. Chem. Res. 2004, 43 (3): 758~761. [20]. P. Jeevanandam, K. J. Klabunde, S. H. Tetzler. Adsorption of thiophenes out of hydrocarbons using metal impregnated nanocrystalline aluminum oxide. Microporous and Mesoporous Materials. 2005, 79 (1-3): 101~110. [21]. Yang, Yao, Zhang, Jia. Bamboo-derived porous biochar for efficient adsorption removal of dibenzothiophene from model.Fuel.,January 2018,121-129. [22]. Nunthaprechachan, Pengpanich. Adsorptive desulfurization of dibenzothiophene by sewage sludge-derived activated carbon.Chemical Engineering Journal,July 2013,263-271. [23]. Pallares, Gonzalez-Cencerrado, Arauzo.Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam.Biomass and Bioenergy.115(2018),64-73 [24]. F.Molina, M. Sabio, Rodrigueznoso. Preparation of activated carbon by chemical activation with ZnCl2.Carbon.1991,999-1007. [25]. Molina2Sabio M. Rodriguez2Reinoso F. Development of porosity in combined acid carbon dioxide activation. Carbon.1996,34(4):457-462. [26]. C.O Ania, T.J Bandosz . Importance of structural and chemical heterogen of activated carbon surfaces for adsorption of dibenzothiophene. Langmuir ,21(2005),7752-7759. [27]. Deng, Lu and Li. Effect of pore structure and oxygen-containing groups on adsorption of dibenzothiophene over activated carbon. Fuel.200(2017)54-61. [28]. A.Saleh and Gaddafi I.Damaliki. Adsorptive desulfurization of dibenzothiophene from by rubber tyres-derived carbons:Kintics and isotherms evaluation. Precess Safety and Environmental.102(2016)9-19. [29]. Syed Sikandar Shah,Imtiaz Ahmad,Waqas Ahmad.Adsorptive desulphurization study of liquid fuels using Tin(Sn) impregnated activated charcoal.Journal of Hazard Materials.304(2016),205-213. [30]. Al.Swat, A. Saleh, A. Ganiyu and Mohammad N.Siddiqui. Preparation of avtivated carbon,zinc oxide and nickel oxide composites for potential application in the desulfurization of model diesel fuels.Jour of Analytical and Applied Pyrolysis,128(2017),246-256
[31]. A. Saleh, A.Al-Hammadi, Tanimu and Alhooshani. Ultra-deep adsorptive desulfurization of fuels on cobalt and molybdenum nanoparticles loaded on activated carbon derived from waste rubber.Joural of Colloid and Interface Science,513(2018),779-787. [32]. L. Mao, Y. Wang, X. Hu. π-π stacking interactions in the peridinin-chlorophyll-protein of amphidinium carterae , J Phys Chem B ,107(2013),3963-3971. [33]. A.N. Zhou, X.L. Ma, C.S Song. Effect of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fule. Appl Catal B:Enviro ,23(2009),190-199. [34]. A. Saleh, O. Sulaiman and A.AL-Hammadi. Adsorptive desulfurization of thiopgene,benzothiophene and dibenzothiophene over avtivated carbon manganese oxide nanocomposite:with column system evaluation. Journal of Cleaner Production.154(2017)401-412. [35]. I. Danmaliki and A. Saleh. Effects of bimetallic Ce/Fe nanoparticles on the desulfurization do thiophenes using activated carbon. Chemical Engineering Journal.307(2017)914-927. [36]. G.S. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, Harcourt Brace Jovanovich, London,94,(1978),597. [37]. M. Suzuki, Adsorption Engineering, Kodansha Ltd,1990,245-249. [38]. Huang and Rubin.The Surfaces Acidity of Hydrous Soilds.Adsorption of Inorganic at Soild/Liquid Interfaces(1981).54-79. [39]. Hayes and Leckie.Modeling Ionic Strength Effect on Anion Adsorption at Hydrous/Soluton Interfaces.Colloid Interface(1987).564-572. [40]. Hayes and Leckie.Modeling Ionic Strength Effect on Anion Adsorption at Hydrous/Soluton Interfaces.Colloid Interface(1988).717-726. [41]. Hearly and Fuerstenau.The Effect of Crystal Structure on The Surface Properties of A Series of Manganese Dioxides.Colloid Interface(1966).435-444. [42]. S. Kenneth ,W. Sing. Adsorption by Actived Carbons.Adsorption by Powders and Porous Soilds(2014).321-391. [43]. Kumar and Chandra. Kinetics and Equilibrium Isotherm Modeling:Graphene-Based Nanomaterials for the Removal of Heavy Metals From Water.Nanomaterials for Wastewater Remediation(2016),79-109. [44]. 顏冠忠,以吸脫附動力曲線探討土壤吸附特性,南亞技術學院土木與環境工程碩士論文,2008年. [45]. IUPAC. Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 31(1972).578. [46]. Y. S. Ho, and G. Mckay, “ Pseudo-second order model for sorption process,” Process Biochemistry, 34, (1999),451-465. [47]. Y. S. Ho, and G. Mckay, “ Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash,” J. Environmental Science and Health, A34,(1999),1179-1204. [48]. G. Ertl, H. Knozinger, F. Schuth, and J.Weitkamp. Handbook of heterogeneous catalysis.WILET-VCH Press.3(1997)1308-1338. [49]. 黃宣宜,白金/中孔碳觸媒之製備及其氧化還原反應特性與穩定性探討,2011年。 [50]. 羅聖文,掃描式電子顯微鏡,科學研習,2013,NO.52-5. [51]. 許樹恩、吳泰伯,X光繞射原理與材料結構分析,1992 [52]. L. Goertzen, D. Kim, M. Oickle, C. Tarasuk. Standardization of the Boehm titration.Part I.CO2 expulsion and endpoint determination.Carbon.48(2010)1252-1261. [53]. Sarah L.Goertzen, Kim D. Theriault, Alicia M .Oickle , Anthony C.Tarasuk. Standardization of the Boehm titration . Part I. Method of agitation effect of filtering and dilute titrant. Carbon .48(2010)3313-3322. [54]. H. Scott Fogler , Essentials of chemical reaction engineering , 2011.
|