跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 00:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪祥豪
研究生(外文):Xiang-Hao Hong
論文名稱:以變流量冷卻改善主軸加工熱變形之研究
論文名稱(外文):Thermal Deformation Improvement of the Spindle with Variable Flow Cooling
指導教授:駱文傑駱文傑引用關係
指導教授(外文):Win-Jet Luo
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:冷凍空調系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:70
中文關鍵詞:熱誤差熱變位熱抑制高轉速主軸
外文關鍵詞:thermal errorthermal displacementthermal suppressionhigh speed spindle
相關次數:
  • 被引用被引用:1
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
工具機加工過程中,主軸的高速旋轉會產生大量的摩擦熱,此些熱量會使得主軸於運轉過程中產生熱偏移的狀況,從而對於加工工件的準確度產生很大的影響。因此,於運轉過程中所產生的熱量,必須透過冷卻系統即時將熱量由運轉中的主軸排除。
本論文中,我們針對工具機使用的直結式主軸做熱變位分析,並使用變流量系統,針對工具機加工過程所產生的熱量進行熱交換冷卻的動作,來達到熱誤差抑制的效果。
從散熱量實驗方面可以發現,變流量系統可隨著工具機加工時的負載狀態進行變流量應變,最多能帶走將近148.66 W的熱量,並做出更有效且立即性的熱抑制,降低熱變形量。
從熱變形量實驗方面可以發現,即使在短時間運轉進行變轉速負載的情況下,變流量系統仍可的有效將Y軸熱變形量降低70.1 %、Z軸向熱變形量降低72 %。
本文中亦針對工具機主軸長時間運轉進行變轉速負載的實驗來進一步驗證其冷卻降低熱變形的效能。其中Y軸向熱變形量降低37.5 %、Z軸向熱變形量降低59 %。

另外,我們亦使用變流量系統來針對工具機主軸進行快速暖機之實驗,在主軸以8000 rpm運轉的情況下,Y軸向時間可縮短28.6 %,主要Z軸向部分甚至可縮短將近60 % 的時間,而三軸向同時達到穩態所需時間可縮短將近50 % 的時間。
During the machining of the tool, the high-speed rotation of the spindle generates a large amount of frictional heat, which causes the spindle to generate a thermal offset during operation, which has a great influence on the accuracy of the workpiece. Therefore, the heat generated during operation must be immediately removed from the running spindle by the cooling system.
In this paper, we perform thermal displacement analysis on the straight-through spindle used in the machine tool, and use the variable flow system to perform the heat exchange cooling action on the heat generated by the tool machining process to achieve the thermal error suppression effect.
From the heat dissipation experiment, it can be found that the variable flow system can change the flow strain with the load state during tool machining, and can take up nearly 148.66 W of heat, and make more effective and immediate thermal suppression, reduce heat. The amount of deformation.
From the experimental results of the thermal deformation amount, it can be found that the variable flow system can effectively reduce the Y-axis thermal deformation amount by 70.1% and the Z-axis thermal deformation amount by 72% even in the case of a variable-speed load operation for a short period of time.
In this paper, the experiment of variable speed load for the long-term operation of the machine tool spindle is also carried out to further verify the effectiveness of cooling to reduce thermal deformation. The Y-axis thermal deformation is reduced by 37.5%, and the Z-axis thermal deformation is reduced by 59%.
In addition, we also use variable flow system to carry out rapid warm-up experiments on the machine tool spindle. In the case of the spindle moving at 8000 rpm, the Y-axis time can be shortened by 28.6%, while the main Z-axis part can be shortened by nearly 60. %time. The time required for the three axes to reach the steady state simultaneously can be reduced by nearly 50% of the time.
摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1研究背景 1
1-2文獻回顧 2
1-3研究動機與目的 9
第二章 實驗基礎與理論 11
2-1 PID控制器基本原理 11
2-2熱變形計算 14
2-2-1線膨脹 14
2-2-2面膨脹 15
2-2-3體膨脹 16
第三章 設備建構與熱變形量測實驗 17
3-1工具機主軸 17
3-1-1實驗機台與直結式主軸 18
3-2 PID控制搭配變流量冷卻系統 20
3-2-1變流量控制 22
3-3冷卻油溫控制說明 26
3-3-1加工溫度點設定 27
3-3-2回油溫度控制 28
3-4實驗規範 29
3-5量測儀器 32
第四章 結果與分析 35
4-1流量與溫差分析 35
4-2散熱量實驗結果 38
4-3短時間下變形量實驗結果 42
4-4長時間下變形量實驗量測結果 49
4-5暖機變形量實驗量測結果 56
4-6暖機穩態分析 63
第五章 結論 65
參考文獻 67
[1] 台灣區工具機暨零組件工業同業公會, “工具機進出口產銷統計,” 2012. [Online]. Available: http://www.tmba.org.tw/.
[2] J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Alkan Donmez, W. Knapp, F. Härtig, et al. "Thermal issues in machine tools,"CIRP Ann-Manuf Techno, vol. 61 , pp. 771–791, 2012
[3] F.J. Hong, D.D. Ma, P. Cheng, H. Ge, Goh Teck Joo, "Conjugate heat transfer in fractal-shaped microchannel network heat sink for integrated microelectronic cooling application," International Journal of Heat and Mass Transfer, vol 50 Issues 25–26, pp. 4986–4998 ,2007
[4] C.H. Chien, J.Y. Jang, "3-D nµmerical and experimental analysis of a built-in motorized high-speed spindle with helical water cooling channel, " I Applied Thermal Engineering, vol 28 ,Issues 17–18 , pp. 2327–2336, 2008
[5] Fajing Li, Jianmin Gao, Xiaojun Shi, Feng Liang, Ke Zhu,” Experimental investigation of single loop thermosyphons utilized in motorized spindle shaft cooling” Applied Thermal Engineering, vol134,pp.229-237,2018
[6] 黃鈞政“環境溫度變化對工具機單軸載台定位精度影響分析,”勤益科技大學碩士論文,2016
[7] 楊孟翰“嵌入式冷卻流道結構對工具機底座定位精度影響分析”勤益科技大學碩士論文,2017
[8] Jenq-Shyong Chen, Yii-Wen Hwang, “Centrifugal force induced dynamics of a motorized high-speed spindle,” Int J Adv Manuf Technol ,vol30, pp.10-19, 2006
[9] J.F. Zhang, P.F. Feng, Z.J. Wu, D.W. Yu, C. Chen, "Thermal structure design and analysis of a machine tool headstock, " ISSN 1392 - 1207. MECHANIKA. vol 19(4) ,pp. 478-485, 2013
[10] Z.Z.Xu, X.J.Liu, H.K.Kim, J.H.Shin, S.K.Lyu, "Thermal error forecast and performance evaluation for an air-cooling ball screw system," International Journal of Machine Tools & Manufacture 51, pp. 605–611, 2011
[11] Florentina Pavliček, Yves Beer, Sascha Weikert, Josef Mayr, Konrad Wegener,"Design of a Measurement Setup and First Experiments on the Influence of CO2-cooling on the Thermal Displacements on a Machine Tool," Procedia CIRP vol 46, pp.23-26, 2016
[12] Chenhui Xia , Jianzhong Fu , Jintao Lai, Xinhua Yao, Zichen Chen,” Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling” Applied Thermal Engineering, vol 90,pp. 1032-1042,2015
[13] Tao Lu,Ravikµmar Kudaravalli,George Georgiou,”Cryogenic Machining through the Spindle and Tool for Improved Machining Process Performance and Sustainability: Pt. I, System Design,”Machining Process Performace and Sustainabikity:Pt.I,System Design”Procedia Manufacturing, vol 21,pp.266-275,2018
[14] 陳紹賢, 蔡一郎, "CNC工具機熱溫升量測與補償," in SME-Conference on Society Of Manufacturing Engineers, pp. 107–112 ,2012
[15] Toshimichi Moriwaki, Eiji Shamoto," Analysis of Thermal Deformation of an Ultraprecision Air Spindle System," CIRP Annals, vol 47,pp.315-319,1998
[16] Yifan Zhang, Teng Liu, Weiguo Gao, Yanling Tian, Xiangyang Qi, Ping Wang, Dawei Zhang, “Active coolant strategy for thermal balance control of motorized spindle unit, ”Applied Thermal Engineering ,vol134,pp.460-468,2018
[17] Teng Liu, Weiguo Gao, Yanling Tian, Dawei Zhang, Yifan Zhang, Wenfen Chang,” Power matching based dissipation strategy onto spindle heat generations, ”Applied Thermal Engineering, vol113,pp.499-507,2017
[18] Josef Mayr, Michael Egeter, Sascha Weikert, Konrad Wegener,” Thermal error compensation of rotary axes and main spindles using cooling power as input parameter ”Applied Thermal Engineering, vol37,pp.542-549,2015
[19] Srinivas N. Grama,Ashvarya Mathur,Ashok N. Badhe,” A model-based cooling strategy for motorized spindle to reduce thermal errors, ”International Journal of Machine Tools and Manufacture, vol132,pp.3-16,2018
[20]  International Standard ISO 230, Part3: Determination of thermal effects, 2001, Switzerland.
電子全文 電子全文(網際網路公開日期:20230827)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top