跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳泳潤
研究生(外文):Yung-Jun Chen
論文名稱:工具機切削穩定性分析及其影響因素之研究
論文名稱(外文):Study on the Influence Factors and Analysis of Machining Stability of the Milling Machine
指導教授:洪瑞斌洪瑞斌引用關係
指導教授(外文):Jui-Pin Hung
學位類別:博士
校院名稱:國立勤益科技大學
系所名稱:精密製造科技研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
論文頁數:111
中文關鍵詞:動態特性切削性能切削穩定性
外文關鍵詞:dynamic characteristicscutting performancecutting stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究為探討工具機之切削動態特性。工具機由五大鑄件組裝而成(底座、鞍座、立柱、主軸頭和工作台),每一塊組件都有其本身的振動模態,因此,組裝後之工具機最終所表現出的切削動態特性與每一部件都有互相之關聯性。本研究將探討結構、線性元件、主軸以及刀具之動態特性,利用有限元素分析以及振動敲擊試驗,分別進行動態分析,評估每一部件本身之動態特性對工具機切削特性之影響,再將所得之結果相互整合,藉此了解各部件之動態特性互相耦合後對整機切削特性之影響。
工具機結構中,分析模型須包括機柱結構、主軸頭部、進給系統與主軸等關鍵組件。模態分析中可以發現,結構所產生之模態頻率多屬低頻,故在進行低頻切削時,機台之切削特性會受到機柱結構動剛性影響。另外,主軸鎖固部位之結構在影響機台切削特性因素上亦佔有一定程度之影響,若其搭配不同預壓之線性滑軌將改變機台切削特性。
線性滑軌已廣泛應用在各式各樣工具機之進給導軌系統中,其內部滾動鋼珠與滑槽之間的接觸力與接觸點之變形量為非線性關係,將導致鋼珠接觸剛性與阻尼性隨預壓之調整而改變,從而影響工具機平台系統結構之動態特性。對主軸頭部進給系統而言,線軌滑塊預壓等級將是影響刀具對切削力之動態響特性與切削穩定性之重要設計參數。為評估線軌預壓所產生之力學效應,本研究應用振動實驗與切削顫振理論,評估具有不同預壓線軌之主軸刀具系統之動態特性與切削穩定性範圍。研究結果顯示,調整滑軌預壓等級確實會改變刀具端動態響應特性及臨界切深。以本案立式銑床主軸頭進給系統為例,相較於高預壓滑塊,組裝低預壓滑塊反而可以增加刀具動剛性,約4-11%左右,並提升刀具切削穩定性範圍與臨界切深,約增加57%。
主軸系統是工具機重要組件之一,其性能之優劣直接影響到工具機的加工能力與精密度。主軸中接觸介面之強度將影響主軸模態以及整機切削特性之表現,如主軸軸承支滾動接觸介面、刀柄-主軸結合介面、筒夾-刀具夾持介面。結合介面之剛性影響兩個部件結合後其模態之耦合結果。研究中將分別針對刀柄以及刀具進行分析以及實驗,並利用實驗找出刀柄-主軸以及刀具-套筒之振動響應耦合相關性,再將其相關性導入模型進行分析。利用有限元素法與振動實驗分析法探討結合介面對於主軸切削特性之影響,並經由切削實驗來驗證分析之準確性以及對機台實際切削之影響。
完成上述之各部件動態特性分析後,將其結果整合並導入工具機整機實體模型中,搭配整機實際切削實驗,預測刀具之全角度切削穩定性範圍,建立整機分析法則後,將可評估整台機台之全角度切削穩定性,並提供機台設計者對設計中機台之整機動態穩定性的掌握,提升機台加工之效能與穩定性。
This thesis investigates the dynamic characteristics of the machine tool by means of experimental techniques and the finite element method. The results show the greatest impact on the machine’s cutting stability to be from improving the overall stiffness of the spindle-tool holder-tool system, which contributes to the cutting performance.
The machine tool assembly comprises five principle castings: base, table, column, spindle head and spindle. Each module has independent vibration modes, but all the vibration modes are coupled when the machine tool is assembled. This thesis presents the dynamic characteristics of the structure, linear guideway, spindle and tool using the finite element method and vibration tests. We investigate the effect on the machine tool when the components are coupled, assess the effect on the dynamic characteristics of the machine tool of each module and integrate the results.
The analysis of the machine tool model includes the structure of the column, spindle head, feeding system and spindle, which are its key components. Our findings show that the modal frequencies from the machine structure are usually not over 1000 Hz. When the machine tool is cutting workpieces at a low spindle rotating speed, the machine’s structure modal characteristic influences its dynamic characteristics. In addition, the preload of the linear guideway assembly between the column and the spindle head influences the machine tool’s cutting performance; thus, changes to the preload of the linear guideway can either improve or worsen the machine tool’s cutting performance.
The result shows that the overhang of the holder has an amplification effect on the mode amplitude and that the contact stiffness of the interface between the spindle and the holder affects the mode frequency. Choosing a shorter tool holder and increasing the contact area of the interface (using BBT tool holder) can up the dynamic characteristic of the tool holder end. Also, a longer holder overhang negatively affects the cutting stability. In this study, the critical cutting depth is reduced 4.1% in the X-direction and 19.2% in the Y-direction when the tool overhang is increased from 68 to 78 mm.
In addition, the machine positioning affects the accuracy and performance of machine tool during processing. When the spindle head is set in a low position, in the X-direction the critical cutting depth is 13.4% more than in a high position; and in the Y-direction, the critical cutting depth is 3.4% more than in a high position.
ABSTRACT ii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF NOMENCLATURE x
CHAPTER 1. INTRODUCTION 1
1.1 Structural Design of Machine Tool 1
1.2 Spindle-bearing System 2
1.3 Linear Feeding Mechanism (linear guides and ball screw) 3
1.4 Research Objective 4
1.5 Organization of the Thesis 4
CHAPTER 2. LITERATURE REVIEW 6
2.1 Spindle 6
2.2 Modeling Analysis of Machine Tool 12
2.3 Cutting Performance of Machine Tool 14
2.4 Interface Coupling 15
CHAPTER 3. FINITE ELEMENT METHOD 20
3.1 Modal Analysis 21
3.2 Modeling of the Rolling Interface 24
3.3 Spindle Model 29
3.4 Response of Spindle Nose and Tool End 31
CHAPTER 4. MODEL ANALYSIS 36
4.1 Spindle Model 36
4.2 Spindle Modal Analysis 38
4.3 Machine Tool Model and Analysis 42
4.4 Spindle-Tool Holder Interface Analysis 50
CHAPTER 5. VIBRATION EXPERIMENT 54
5.1 Spindle Vibration Response 54
5.2 Machine Tool Vibration Response 58
5.3 FRF of Spindle Head in Different Positions 73
CHAPTER 6. RESULTS AND DISCUSSION 76
6.1 Spindle Analysis and Experiment 76
6.2 Machine Tool Analysis and Experiment 78
6.3 Coupling Effect (Spindle and Tool Holder) 81
6.4 Coupling Effect (Tool Holder and Tool) 84
6.5 Tool Effect (Overhang) 86
6.6 Tool Effect (Number of edge) 90
6.7 Spindle Head Position 93
CHAPTER 7. CONCLUSION 96
7.1 Conclusion 96
7.2 Future Work 98
REFERENCE 100
1. Y. Ito, Modular design for machine tool, McGraw Hill Company, 2008.
2. Y. Altintas, C. Brecher, M. Weck, S. Witt, Virtual machine tool, CIRP Annals, Manufacturing Technology, 54(2) (2005)115-138.
3. R. Neugebauer, S. Ihlenfeldta, U. Frießb, M. Wabnera, S. RauhbR. New high-speed machine tool structure by holistic mechatronic systems design. Procedia CIRP 1 (2012) 307-312.
4. F. Alessandro, A. Ascari. The virtual design of machining centers for HSM: Towards new integrated tools. Mechatronics 23 (2013) 264–278.
5. C. F. Beards, The damping of structural vibration by controlled interfacial slip in joints,ASME Publication., 81-DET-86, (1986).
6. NSK Technologies Company. NSK super precision bearings Part 5: Technical guides. 2003. http://www.nsk.com/products/spb/
7. Yoshimi Ito, Modular Design for Machine Tool, McGraw-Hill Company, 2008.
8. Y. Seo, D.P. Hong, I. Kim, T. Kim, D. Sheen, G.B. Lee, Structure modeling of machine tools and Internet-based implementation, in: Proceedings of the 2005 Winter Simulation Conference, Orlando, Florida, USA, December 2005.
9. H. Ohta, Sound of linear guideway type recirculating linear ball bearings, Transactions of the ASME, Journal of Tribology 121 (1999) 678–685.
10. H. Ohta, E. Hayashi, Vibration of linear guideway type recirculating linear ball bearings, Journal of Sound and Vibration 235 (5) (2000) 847–861.
11. J.P. Hung, Load effect on the vibration characteristics of a stage with rolling guides, Journal of Mechanical Science and Technology 23 (1) (2009) 92–102.
12. C.Y. Lin, J.P. Hung, T.L. Lo, Effect of preload of linear guides on dynamic characteristics of a vertical column-spindle system, International Journal of Machine Tools & Manufacture 5 (8) (2010) 741–746.
13. J. Tlusty, F. Ismail, Basic nonlinearity in machining chatter, Annals of the CIRP, 30 (1981) 121-125.
14. S. Smith, J. Tlusty, Efficient simulation programs for chatter in milling, Annals of the CIRP, 42/1 (1993) 463-466.
15. Y. Altintas, P. Lee, A general mechanics and dynamics model for helical end mills, Annals of CIRP 45 (1996) 59-64.
16. I. Minis, T. Yanushevsky, A new theoretical approach for the prediction of machine tool chatter in milling, ASME Journal of Engineering for Industry, 18 (1993) 1-8.
17. Y. Altintas, E. Budak, Analytical prediction of stability lobes in milling, Annals of the CIRP, 44 (1995) 357-362.
18. S. Khachan, F. Ismail, Machining chatter simulation in multi-axis milling using graphical method, International Journal of Machine Tools and Manufacture, 49 (2009) 163-170.
19. E. Ozturk, E. Ozlu, E. Budak, Modeling dynamics and stability of 5-axis milling processes. Proceedings of 10th CIRP Workshop on Modeling of Machining Operations, Calabria, Italy, (2007) 469-476.
20. E. Ozturk, L. T. Tunc, E. Budak, Investigation of lead and tilt angle effects in 5-axis ball-end milling processes”, International Journal of Machine Tools and Manufacture,49 (2009) 1053-1062.
21. A. E. Ertu¨rk, H. N. O¨zgu¨ven, E. Budak, Analytical modeling of spindle–tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF, Int. J. of Machine Tools & Manufacture, 46 (2006) 1901-1912.
22. E. Ertu¨rk, H. N. O¨zgu¨ven, E. Budak, Effect analysis of bearing and interface dynamics on tool point FRF for chatter stability in machine tools by using a new analytical model for spindle – tool assemblies, Int. J. of Machine Tools & Manufacture, 47 (9) (2007) 23-32.
23. Cao, Y., Altintas, Y. “Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations”, International Journal of Machine Tools and Manufacturing 47 (2007) 1342-1350.
24. Jorgensen, B. R., Shin, Y. C., “Dynamics of machine tool spindle/bearing systems under thermal growth,” ASME Trans. Journal of Tribology. 119; (1997): 875–882.
25. Stein, J.L., Tu, J.F., “A state-space model for monitoring thermally induced preload in anti-friction spindle bearings of high-speed machine tools,” Journal of Dynamic Systems,Measurement and Control, Transactions of the ASME,116 (1994):372–386.
26. Lynagh, N., Rahnejat, H., Ebrahimi, M,. Aini, R., “Bearing induced vibration in precision high speed routing spindles,” International Journal of Machine Tools & Manufacture. 40; (2000): 561-577.
27. Alfares, M. A., Elsharkawy, A. A. “Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system,” Journal of Materials Processing Technology. 136(1-3); (2003): 48-59.
28. Choi, J. K., Lee, D. G. “Characteristics of spindle bearing system with a gear located on the bearingspan,” International Journal of Machine Tools Manufacturing, 37(2), (1994): 171-181.
29. Filiz, I.H., Gorur, G., “Analysis of preload bearing under combined axial and radial loading,” International Journal of Machine Tools Manufacturing, 34(1), (1994):1-11.
30. Harris, T.A., Rolling Bearing Analysis, 3rd edition, John Wiley&Sons, 1991.
31. Kim, K. and Kim, S. S., “Effect of preload on running accuracy of spindle,” International Journal of Machine Tools and Manufacturing, 29(1),(1989):99-105.
32. Reddy, V.R. and Sharan, A.M., “Design of machine tool spindles based on transient analysis,” ASME Journal of Mechanisms, Transmissions and Automation in Design, 107(1985):346-352.
33. Reddy, V.R. and Sharan, A.M., “The finite element modeled design of lathe spindles: the static and dynamic analysis,” ASME Journal of Vibrations, Acoustics Stress and Reliability in Design, 109, (1987):407-415.
34. Li, H. and Shin, Y.C., "Analysis of Bearing configuration effects on high speed spindles Using an Integrated Dynamic Thermo-mechanical Spindle Model”, International Journal of Machine Tools and Manufacture, 44, (2004):347-364.
35. Yamamoto, T., “On critical speeds of a shaft supported by a ball bearing,” Journal of Applied Mechanics, (1959):199~204.
36. Harris, T. A., “How to compute the effects of preloaded bearings,” Prod. Eng. 19; (1965):84–93.
37. Jorgensen, B. R., Shin, Y. C., “Dynamics of machine tool spindle/bearing systems under thermal growth,” ASME Trans. Journal of Tribology. 119; (1997): 875–882.
38. Y. Cao, Y., Altintas, Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations, International Journal of Machine Tools & Manufacture. 47; (2007): 1342-350.
39. Stein, J.L., Tu, J.F., “A state-space model for monitoring thermally induced preload in anti-friction spindle bearings of high-speed machine tools,” Journal of Dynamic Systems,Measurement and Control, Transactions of the ASME,116 (1994):372–386.
40. Lynagh, N., Rahnejat, H., Ebrahimi, M,. Aini, R., “Bearing induced vibration in precision high speed routing spindles,” International Journal of Machine Tools & Manufacture. 40; (2000): 561-577.
41. Alfares, M. A., Elsharkawy, A. A. “Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system,” Journal of Materials Processing Technology. 136(1-3); (2003): 48-59.
42. Hung, J. P., Lai, Y.L., Lin, C. Y, and Lou, T. L., “Modeling the machining stability of vertical milling machine under the influence of the preloaded linear guide”, International Journal of Machine Tools and Manufacture. 51(9)(2011)731-739.
43. M. Zatarain, E. Lejardi, F. Egana, and R. Bueno, Evaluation of modelling approaches for machine tool design Precision Engineering, 34(3)(2010)399-407.
44. A. Daisuke Kono, Sascha Weikert, Atsushi Matsubara, and Kazuo Yamazaki, Estimation of dynamic mechanical error for evaluation of machine tool structures, Int. J. of Automation Technology, 6(2) (2012)147-153.
45. M. Zaeh and D. Siedl, A new method for simulation of machining performance by integrating finite element and multi-body simulation for machine tools, Annals of the CIRP, 56(1)(2007)383-386.
46. D. Silva, M. M., et al., Computer-aided integrated design for machines with varying dynamics, Mechanism and Machine Theory, 44 (2009)1733-1745.
47. P. De Fonseca, D. Vandepitte, H. Van Brussel, P. Sas, Dynamic model reduction of a flexible three-axis milling machine, Proceedings of the International Conference on Noise and Vibration Engineering, (I) (1998)185-194.
48. L, Mohit. Position-dependent dynamics and stability of machine tools. (2013) Doctoral dissertation, The University of British Columbia.
49. L. Mohit, Y. Altintas, and A. Srikantha Phani, Rapid evaluation and optimization of machine tools with position-dependent stability. International Journal of Machine Tools and Manufacture 68 (2013) 81-90.
50. M. E. Martellotti, An analysis of the milling process, Transaction of ASME, 63 (1941) 677-700.
51. M. E. Martellotti, An analysis of the milling process, part 2: down milling, Transaction of ASME, 67 (1945) 233-251.
52. F. Koenigsberger, A. J. P. Sabberwal, An investigation into the cutting force pulsations during milling operations, International Journal of Machine Tool Design and Research, 1 (1961)15-33.
53. J. Tlusty, P. MacNeil, Dynamics of cutting force in end milling, Annals of CIRP, 24 (1975) 21-25.
54. F.W. Taylor, On the Art of Cutting Metals, New York, American society of mechanical engineers, 1907.
55. R.N. Arnold, The mechanism of tool vibration in the cutting of steel, Proc. Instn. Mech. Engrs., 15(1946) 261-284.
56. R. S. Hahn, On the theory of regenerative chatter in precision grinding operation, ASME, 76 (1954) 593.
57. S. A. Tobias, W. Fishwick, Theory of regenerative machine tool chatter, The Engineer, 205 (1958) 199-203.
58. J. Tlusty, F. Ismail, Basic nonlinearity in machining chatter, Annals of the CIRP, 30 (1981) 121-125.
59. S. Smith, J. Tlusty, Efficient simulation programs for chatter in milling, Annals of the CIRP, 42/1 (1993) 463-466.
60. Y. Altintas, P. Lee, A general mechanics and dynamics model for helical end mills, Annals of CIRP 45 (1996) 59-64.
61. A. Larue, Y. Altintas, Simulation of flank milling processes. International Journal of Machine Tools and Manufacture 45 (2005) 549-559.
62. E. Shamoto, K. Akazawa, Analytical prediction of chatter stability in ball end milling with tool inclination, CIRP Annals -Manufacturing Technology, 58 (2009) 351-354.
63. E. Budak, E. Ozturk, L. T. Tunc, Modeling and simulation of 5-axis milling processes, Annals of the CIRP, 58/1(2009) 347-350.
64. M. Sulitka, P., Kolar, Calculation of spindle compliance considering it’s interaction with machine frame, Modern Machinery (MM) Science Journal, 6;(2010):180-185.
65. P. Kolar, M. Sulitka, M. Janota, Simulation of dynamic properties of a spindle and tool system coupled with a machine tool frame, International Journal of Advanced Manufacturing Technology, 54 ;(2011):11–20.
66. T. Schmitz, R. Donaldson, predicting high-speed machining dynamics by substructure analysis, Annals of the CIRP, 49 (1) (2000) 303-308.
67. T. Schmitz, M. Davies, Tool point frequency response prediction for high-speed machining by RCSA. Journal of Manufacturing Science and Engineering, 123 (2001) 700-707.
68. T. T. Schmitz, K. Davies, J. S. Medicus, Improving high-speed machining material removal rates by rapid dynamic analysis, Annals of the CIRP 50 (1) (2001) 263-268.
69. K. Ahmadi, H. Ahmadian, Modeling machine tool dynamics using a distributed parameter tool–holder joint interface, International Journal of Machine Tools and Manufacture 47 (2007) 1916-1928.
70. C. Xu, J. F. Zhang, P. F. Feng, D. W. Yu, Characteristics of stiffness and contact stress distribution of a spindle–holder taper joint under clamping and centrifugal forces. International Journal of Machine Tools and Manufacture 82 (2014): 21-28.
71. O. Ozsahin, A. Erturk, H. N. Ozguven, E. Budak, A closed-form approach for identification of dynamical contact parameters in spindle-holder-tool assemblies, International Journal of Machine Tools and Manufacture, 49 (2009) 25-35.
72. E. E. Budak, A. Ertu¨rk, H. N. O¨zguven, A modeling approach for analysis and improvement of spindle-holder-tool assembly dynamics, Annals of the CIRP, 55 (2006) 369-372.
73. W B. Wang, W. Sun, K. Xu, J. Zhang, B. Wen, The Nonlinear Stability Prediction and FEM Modeling of High-Speed Spindle System with Joints Dynamic Characteristics. Shock and Vibration, 2014 (2014) 1-12.
74. M. Namazi, Mechanics and dynamics of the tool holder-spindle interface, University of British Columbia, 2006.
75. S. A. Jensen, Y. C. Shin, Stability analysis in face milling operations.Part2: experimental validation and influencing factors, Journal of Manufacturing Science and Engineering- Transactions of the ASME, 121(4)(1999) 606–615.
76. V. Gagnola, B.C. Bouzgarroua, P. Raya, B. Barra, Model-based chatter stability prediction for high-speed spindles, International Journal of Machine Tools and Manufacture 47 (2007) 1176–1186.
77. V. Gagnola, B.C. Bouzgarroua, P. Raya, B. Barra, Stability-based spindle design optimization, Journal of Manufacturing Science, 129 (2) (2007) 407-415.
78. J. Dhupia, B. Powalka, R. Katz, A. G. Ulsoy, Dynamics of the arch-type reconfigurable machine tool International Journal of Machine Tools & Manufacture 47 (2007) 326-334.
79. O. Özşahin, E. Budak, H. N. Özgüven, In-process tool point FRF identification under operational conditions using inverse stability solution. International Journal of Machine Tools and Manufacture 89 (2015): 64-73.
80. L.T. Tunc, E.Budak, Effect of cutting conditions and tool geometry on process damping in machining, International Journal of Machine Tools & Manufacture 57 (2012) 10–19.
81. K. Ahmadi, F. Ismail, Analytical stability lobes including nonlinear process damping effect on machining chatter, International Journal of Machine Tools & Manufacture 51 (2011) 296–308.
82. T.H.K.C.O. Ltd., Features of the LM Guide /http://www.thk.com/online_catS.
83. Brewe, D. E., Hamrock, B. J., “Simplified solution for elliptical-contact deformation between two elastic solid”, Trans. ASME, Journal of Lubrication Technology. 99 (1997) 485-487.
84. Greenwood, J. A., “Analysis of elliptical Herztian contacts”, Tribology International. 30(1997) 235-237.
電子全文 電子全文(全文開放日期20230813,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top