|
1. Y. Ito, Modular design for machine tool, McGraw Hill Company, 2008. 2. Y. Altintas, C. Brecher, M. Weck, S. Witt, Virtual machine tool, CIRP Annals, Manufacturing Technology, 54(2) (2005)115-138. 3. R. Neugebauer, S. Ihlenfeldta, U. Frießb, M. Wabnera, S. RauhbR. New high-speed machine tool structure by holistic mechatronic systems design. Procedia CIRP 1 (2012) 307-312. 4. F. Alessandro, A. Ascari. The virtual design of machining centers for HSM: Towards new integrated tools. Mechatronics 23 (2013) 264–278. 5. C. F. Beards, The damping of structural vibration by controlled interfacial slip in joints,ASME Publication., 81-DET-86, (1986). 6. NSK Technologies Company. NSK super precision bearings Part 5: Technical guides. 2003. http://www.nsk.com/products/spb/ 7. Yoshimi Ito, Modular Design for Machine Tool, McGraw-Hill Company, 2008. 8. Y. Seo, D.P. Hong, I. Kim, T. Kim, D. Sheen, G.B. Lee, Structure modeling of machine tools and Internet-based implementation, in: Proceedings of the 2005 Winter Simulation Conference, Orlando, Florida, USA, December 2005. 9. H. Ohta, Sound of linear guideway type recirculating linear ball bearings, Transactions of the ASME, Journal of Tribology 121 (1999) 678–685. 10. H. Ohta, E. Hayashi, Vibration of linear guideway type recirculating linear ball bearings, Journal of Sound and Vibration 235 (5) (2000) 847–861. 11. J.P. Hung, Load effect on the vibration characteristics of a stage with rolling guides, Journal of Mechanical Science and Technology 23 (1) (2009) 92–102. 12. C.Y. Lin, J.P. Hung, T.L. Lo, Effect of preload of linear guides on dynamic characteristics of a vertical column-spindle system, International Journal of Machine Tools & Manufacture 5 (8) (2010) 741–746. 13. J. Tlusty, F. Ismail, Basic nonlinearity in machining chatter, Annals of the CIRP, 30 (1981) 121-125. 14. S. Smith, J. Tlusty, Efficient simulation programs for chatter in milling, Annals of the CIRP, 42/1 (1993) 463-466. 15. Y. Altintas, P. Lee, A general mechanics and dynamics model for helical end mills, Annals of CIRP 45 (1996) 59-64. 16. I. Minis, T. Yanushevsky, A new theoretical approach for the prediction of machine tool chatter in milling, ASME Journal of Engineering for Industry, 18 (1993) 1-8. 17. Y. Altintas, E. Budak, Analytical prediction of stability lobes in milling, Annals of the CIRP, 44 (1995) 357-362. 18. S. Khachan, F. Ismail, Machining chatter simulation in multi-axis milling using graphical method, International Journal of Machine Tools and Manufacture, 49 (2009) 163-170. 19. E. Ozturk, E. Ozlu, E. Budak, Modeling dynamics and stability of 5-axis milling processes. Proceedings of 10th CIRP Workshop on Modeling of Machining Operations, Calabria, Italy, (2007) 469-476. 20. E. Ozturk, L. T. Tunc, E. Budak, Investigation of lead and tilt angle effects in 5-axis ball-end milling processes”, International Journal of Machine Tools and Manufacture,49 (2009) 1053-1062. 21. A. E. Ertu¨rk, H. N. O¨zgu¨ven, E. Budak, Analytical modeling of spindle–tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF, Int. J. of Machine Tools & Manufacture, 46 (2006) 1901-1912. 22. E. Ertu¨rk, H. N. O¨zgu¨ven, E. Budak, Effect analysis of bearing and interface dynamics on tool point FRF for chatter stability in machine tools by using a new analytical model for spindle – tool assemblies, Int. J. of Machine Tools & Manufacture, 47 (9) (2007) 23-32. 23. Cao, Y., Altintas, Y. “Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations”, International Journal of Machine Tools and Manufacturing 47 (2007) 1342-1350. 24. Jorgensen, B. R., Shin, Y. C., “Dynamics of machine tool spindle/bearing systems under thermal growth,” ASME Trans. Journal of Tribology. 119; (1997): 875–882. 25. Stein, J.L., Tu, J.F., “A state-space model for monitoring thermally induced preload in anti-friction spindle bearings of high-speed machine tools,” Journal of Dynamic Systems,Measurement and Control, Transactions of the ASME,116 (1994):372–386. 26. Lynagh, N., Rahnejat, H., Ebrahimi, M,. Aini, R., “Bearing induced vibration in precision high speed routing spindles,” International Journal of Machine Tools & Manufacture. 40; (2000): 561-577. 27. Alfares, M. A., Elsharkawy, A. A. “Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system,” Journal of Materials Processing Technology. 136(1-3); (2003): 48-59. 28. Choi, J. K., Lee, D. G. “Characteristics of spindle bearing system with a gear located on the bearingspan,” International Journal of Machine Tools Manufacturing, 37(2), (1994): 171-181. 29. Filiz, I.H., Gorur, G., “Analysis of preload bearing under combined axial and radial loading,” International Journal of Machine Tools Manufacturing, 34(1), (1994):1-11. 30. Harris, T.A., Rolling Bearing Analysis, 3rd edition, John Wiley&Sons, 1991. 31. Kim, K. and Kim, S. S., “Effect of preload on running accuracy of spindle,” International Journal of Machine Tools and Manufacturing, 29(1),(1989):99-105. 32. Reddy, V.R. and Sharan, A.M., “Design of machine tool spindles based on transient analysis,” ASME Journal of Mechanisms, Transmissions and Automation in Design, 107(1985):346-352. 33. Reddy, V.R. and Sharan, A.M., “The finite element modeled design of lathe spindles: the static and dynamic analysis,” ASME Journal of Vibrations, Acoustics Stress and Reliability in Design, 109, (1987):407-415. 34. Li, H. and Shin, Y.C., "Analysis of Bearing configuration effects on high speed spindles Using an Integrated Dynamic Thermo-mechanical Spindle Model”, International Journal of Machine Tools and Manufacture, 44, (2004):347-364. 35. Yamamoto, T., “On critical speeds of a shaft supported by a ball bearing,” Journal of Applied Mechanics, (1959):199~204. 36. Harris, T. A., “How to compute the effects of preloaded bearings,” Prod. Eng. 19; (1965):84–93. 37. Jorgensen, B. R., Shin, Y. C., “Dynamics of machine tool spindle/bearing systems under thermal growth,” ASME Trans. Journal of Tribology. 119; (1997): 875–882. 38. Y. Cao, Y., Altintas, Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations, International Journal of Machine Tools & Manufacture. 47; (2007): 1342-350. 39. Stein, J.L., Tu, J.F., “A state-space model for monitoring thermally induced preload in anti-friction spindle bearings of high-speed machine tools,” Journal of Dynamic Systems,Measurement and Control, Transactions of the ASME,116 (1994):372–386. 40. Lynagh, N., Rahnejat, H., Ebrahimi, M,. Aini, R., “Bearing induced vibration in precision high speed routing spindles,” International Journal of Machine Tools & Manufacture. 40; (2000): 561-577. 41. Alfares, M. A., Elsharkawy, A. A. “Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system,” Journal of Materials Processing Technology. 136(1-3); (2003): 48-59. 42. Hung, J. P., Lai, Y.L., Lin, C. Y, and Lou, T. L., “Modeling the machining stability of vertical milling machine under the influence of the preloaded linear guide”, International Journal of Machine Tools and Manufacture. 51(9)(2011)731-739. 43. M. Zatarain, E. Lejardi, F. Egana, and R. Bueno, Evaluation of modelling approaches for machine tool design Precision Engineering, 34(3)(2010)399-407. 44. A. Daisuke Kono, Sascha Weikert, Atsushi Matsubara, and Kazuo Yamazaki, Estimation of dynamic mechanical error for evaluation of machine tool structures, Int. J. of Automation Technology, 6(2) (2012)147-153. 45. M. Zaeh and D. Siedl, A new method for simulation of machining performance by integrating finite element and multi-body simulation for machine tools, Annals of the CIRP, 56(1)(2007)383-386. 46. D. Silva, M. M., et al., Computer-aided integrated design for machines with varying dynamics, Mechanism and Machine Theory, 44 (2009)1733-1745. 47. P. De Fonseca, D. Vandepitte, H. Van Brussel, P. Sas, Dynamic model reduction of a flexible three-axis milling machine, Proceedings of the International Conference on Noise and Vibration Engineering, (I) (1998)185-194. 48. L, Mohit. Position-dependent dynamics and stability of machine tools. (2013) Doctoral dissertation, The University of British Columbia. 49. L. Mohit, Y. Altintas, and A. Srikantha Phani, Rapid evaluation and optimization of machine tools with position-dependent stability. International Journal of Machine Tools and Manufacture 68 (2013) 81-90. 50. M. E. Martellotti, An analysis of the milling process, Transaction of ASME, 63 (1941) 677-700. 51. M. E. Martellotti, An analysis of the milling process, part 2: down milling, Transaction of ASME, 67 (1945) 233-251. 52. F. Koenigsberger, A. J. P. Sabberwal, An investigation into the cutting force pulsations during milling operations, International Journal of Machine Tool Design and Research, 1 (1961)15-33. 53. J. Tlusty, P. MacNeil, Dynamics of cutting force in end milling, Annals of CIRP, 24 (1975) 21-25. 54. F.W. Taylor, On the Art of Cutting Metals, New York, American society of mechanical engineers, 1907. 55. R.N. Arnold, The mechanism of tool vibration in the cutting of steel, Proc. Instn. Mech. Engrs., 15(1946) 261-284. 56. R. S. Hahn, On the theory of regenerative chatter in precision grinding operation, ASME, 76 (1954) 593. 57. S. A. Tobias, W. Fishwick, Theory of regenerative machine tool chatter, The Engineer, 205 (1958) 199-203. 58. J. Tlusty, F. Ismail, Basic nonlinearity in machining chatter, Annals of the CIRP, 30 (1981) 121-125. 59. S. Smith, J. Tlusty, Efficient simulation programs for chatter in milling, Annals of the CIRP, 42/1 (1993) 463-466. 60. Y. Altintas, P. Lee, A general mechanics and dynamics model for helical end mills, Annals of CIRP 45 (1996) 59-64. 61. A. Larue, Y. Altintas, Simulation of flank milling processes. International Journal of Machine Tools and Manufacture 45 (2005) 549-559. 62. E. Shamoto, K. Akazawa, Analytical prediction of chatter stability in ball end milling with tool inclination, CIRP Annals -Manufacturing Technology, 58 (2009) 351-354. 63. E. Budak, E. Ozturk, L. T. Tunc, Modeling and simulation of 5-axis milling processes, Annals of the CIRP, 58/1(2009) 347-350. 64. M. Sulitka, P., Kolar, Calculation of spindle compliance considering it’s interaction with machine frame, Modern Machinery (MM) Science Journal, 6;(2010):180-185. 65. P. Kolar, M. Sulitka, M. Janota, Simulation of dynamic properties of a spindle and tool system coupled with a machine tool frame, International Journal of Advanced Manufacturing Technology, 54 ;(2011):11–20. 66. T. Schmitz, R. Donaldson, predicting high-speed machining dynamics by substructure analysis, Annals of the CIRP, 49 (1) (2000) 303-308. 67. T. Schmitz, M. Davies, Tool point frequency response prediction for high-speed machining by RCSA. Journal of Manufacturing Science and Engineering, 123 (2001) 700-707. 68. T. T. Schmitz, K. Davies, J. S. Medicus, Improving high-speed machining material removal rates by rapid dynamic analysis, Annals of the CIRP 50 (1) (2001) 263-268. 69. K. Ahmadi, H. Ahmadian, Modeling machine tool dynamics using a distributed parameter tool–holder joint interface, International Journal of Machine Tools and Manufacture 47 (2007) 1916-1928. 70. C. Xu, J. F. Zhang, P. F. Feng, D. W. Yu, Characteristics of stiffness and contact stress distribution of a spindle–holder taper joint under clamping and centrifugal forces. International Journal of Machine Tools and Manufacture 82 (2014): 21-28. 71. O. Ozsahin, A. Erturk, H. N. Ozguven, E. Budak, A closed-form approach for identification of dynamical contact parameters in spindle-holder-tool assemblies, International Journal of Machine Tools and Manufacture, 49 (2009) 25-35. 72. E. E. Budak, A. Ertu¨rk, H. N. O¨zguven, A modeling approach for analysis and improvement of spindle-holder-tool assembly dynamics, Annals of the CIRP, 55 (2006) 369-372. 73. W B. Wang, W. Sun, K. Xu, J. Zhang, B. Wen, The Nonlinear Stability Prediction and FEM Modeling of High-Speed Spindle System with Joints Dynamic Characteristics. Shock and Vibration, 2014 (2014) 1-12. 74. M. Namazi, Mechanics and dynamics of the tool holder-spindle interface, University of British Columbia, 2006. 75. S. A. Jensen, Y. C. Shin, Stability analysis in face milling operations.Part2: experimental validation and influencing factors, Journal of Manufacturing Science and Engineering- Transactions of the ASME, 121(4)(1999) 606–615. 76. V. Gagnola, B.C. Bouzgarroua, P. Raya, B. Barra, Model-based chatter stability prediction for high-speed spindles, International Journal of Machine Tools and Manufacture 47 (2007) 1176–1186. 77. V. Gagnola, B.C. Bouzgarroua, P. Raya, B. Barra, Stability-based spindle design optimization, Journal of Manufacturing Science, 129 (2) (2007) 407-415. 78. J. Dhupia, B. Powalka, R. Katz, A. G. Ulsoy, Dynamics of the arch-type reconfigurable machine tool International Journal of Machine Tools & Manufacture 47 (2007) 326-334. 79. O. Özşahin, E. Budak, H. N. Özgüven, In-process tool point FRF identification under operational conditions using inverse stability solution. International Journal of Machine Tools and Manufacture 89 (2015): 64-73. 80. L.T. Tunc, E.Budak, Effect of cutting conditions and tool geometry on process damping in machining, International Journal of Machine Tools & Manufacture 57 (2012) 10–19. 81. K. Ahmadi, F. Ismail, Analytical stability lobes including nonlinear process damping effect on machining chatter, International Journal of Machine Tools & Manufacture 51 (2011) 296–308. 82. T.H.K.C.O. Ltd., Features of the LM Guide /http://www.thk.com/online_catS. 83. Brewe, D. E., Hamrock, B. J., “Simplified solution for elliptical-contact deformation between two elastic solid”, Trans. ASME, Journal of Lubrication Technology. 99 (1997) 485-487. 84. Greenwood, J. A., “Analysis of elliptical Herztian contacts”, Tribology International. 30(1997) 235-237.
|