(3.237.20.246) 您好!臺灣時間:2021/04/15 19:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張鈞
研究生(外文):ChunChang
論文名稱:單剪狀態下麥寮砂液化特性
論文名稱(外文):Liquefaction characteristics of Mai-Liao sand under simple shear conditions
指導教授:張文忠張文忠引用關係
指導教授(外文):Wen-Jong Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:157
中文關鍵詞:粉土質細砂霧式霣落法Ko狀態單剪液化試驗細粒料含量液化行為液化強度
外文關鍵詞:silty sandmist pluviationcyclic simple shear testfines contentliquefaction resistenceliquefaction behavior
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣因地理位置處於歐亞大陸板塊與菲律賓海板塊交界處,地震活動頻繁帶來許多災害,其中地震所導致的土壤液化即為其中一個例子,台灣中西部沖積平原多為粉土質砂土,其液化行為與乾淨砂有明顯的不同,且粉土質細砂受到顆粒排列與組成結構的影響,導致在相同的試驗條件下,以不同的試體重模方法或細粒料含量進行液化試驗可產生不同的結果,本研究以取自雲林麥寮台塑六輕的麥寮砂(Mai-Liao Sand, MLS)來代表台灣中西部粉土質砂土進行液化強度試驗,以霧式霣落法(mist pluviation)重模不同細粒料含量試體施做Ko狀態單剪液化試驗,以得到模擬現地應力條件與堆積情形下不同細粒料含量的粉土質砂液化行為與強度,並以取自彰化外海離岸風力發電場址之現地粉土質砂試體液化結果進行比較,藉此驗證以重模試體得到之試體細粒料含量與液化行為間關係,以便於協助台灣對粉土質細砂液化強度與液化特性之推估。
Taiwan is located at the junction of the Eurasian Plate and the Philippine Sea Plate, result in frequent earthquakes and relevent disasters like liquefaction. The type of sand at southwest Taiwan is silty sand, and its liquefaction behavior is significantly different from clean sand because of the effect of particle arrangement and compositional structure, which lead to different results in liquefaction test with different reconstitute method or fines content. To simulate liquefaction resistence and behavior under in-situ stress conditions and accumulation conditions in different fines content. Not only use Mai-Liao sand to represent silty sand from Taiwan southwest, this study also prepare specimens with different fines content by mist pluviation and conduct cyclic simple shear liquefaction test at Ko condition. Comparing test results to undisturbed specimen, which is taken from Changhua offshore wind power site. In order to estimate liquefaction strength and liquefaction properties of silty sand, Discuss the difference of soil liquefaction behavior between undisturbed soil and remolded specimens.
摘要 I
EXTENDED ABSTRACT II
誌謝 XIV
目錄 1
表目錄 5
圖目錄 6
第一章 緒論 12
1-1 研究背景 12
1-2 研究動機與目的 13
1-3 研究方法與流程 14
1-4 論文架構 17
第二章 文獻回顧 18
2-1 土壤液化 18
2-2 影響液化之因素 20
2-2-1 孔隙比與相對密度 20
2-2-2 有效圍壓 22
2-2-3 土壤顆粒特性 24
2-2-4 應力歷史 24
2-3 細粒料含量對液化強度之影響 26
2-3-1 試體乾密度 27
2-3-2 試體總體孔隙比 28
2-3-3 試體相對密度 29
2-3-4 試體砂結構孔隙比 30
2-4 試體製作方式及製作方式對液化強度之影響 32
2-4-1 濕夯法(Moist Tamping, MT) 33
2-4-2 氣霣法(Air Pluviation, AP) 33
2-4-3 濕霣法(Water Pluviation, WP) 34
2-4-4 霧式霣落法(Mist Pluviation, MP) 34
2-4-5 試體重模方法對液化強度的影響 35
2-5 液化後的體積應變 37
2-6 反覆單剪試驗與反覆三軸試驗 39
第三章 試驗儀器 42
3-1 動態單剪試驗儀架構 42
3-1-1 伺服馬達 (Servo motor) 43
3-1-2 電動缸 (Electronic cylinder) 44
3-1-3 液壓缸 (Hydraulic cylinder) 46
3-1-4 雙向剪力架 47
3-1-5 水平反覆剪力加載裝置 47
3-1-6 垂直荷重加載裝置 48
3-1-7 反水壓施加及試體體積變化量測裝置 50
3-2 儀器率定 50
3-2-1 荷重計率定 51
3-2-2 位移傳感器率定 53
3-3-3 壓力傳感器率定 56
3-3 伺服控制與自動擷取系統 58
3-3-1 伺服控制系統 59
3-3-2 自動擷取系統 61
3-3-3 系統程式 62
3-4 霧式霣落裝置 62
第四章 試驗內容 66
4-1 動態單剪試驗儀系統驗證 66
4-1-1 試驗材料性質 66
4-1-2 試驗流程 67
4-1-3 驗證結果 72
4-2 麥寮砂霣落試體液化試驗 80
4-2-1 麥寮砂基本物理性質 80
4-2-2 霣落試體架設流程 82
4-3 現地薄管試體液化試驗 87
4-3-1 現地薄管試體基本物理性質 88
4-3-2 現地薄管試體架設流程 90
4-4 資料處理 92
4-5 霧式霣落設備驗證 95
4-5-1 驗證試體均質性 95
4-5-2 均質性驗證結果 97
4-5-3 驗證試體重複性 100
4-5-4 重複性驗證結果 102
第五章 試驗結果與分析 104
5-1 液化判定準則 104
5-2 麥寮砂霣落試體試驗結果 105
5-2-1 剪應變行為 106
5-2-2 孔隙水壓激發行為 106
5-2-3 剪應力與剪應變關係 108
5-2-4 液化阻抗比 110
5-2-5 液化後體積應變量 112
5-3 現地薄管試體試驗結果 114
5-3-1 剪應變行為 115
5-3-2 孔隙水壓激發行為 115
5-3-3 剪應力與剪應變關係 117
5-3-4 液化阻抗比 118
5-4 麥寮砂霣落試體試體與現地薄管試體液化行為比較 119
5-4-1 剪應變比較 119
5-4-2 孔隙水壓激發比較 120
5-4-3 剪應力與剪應變關係比較 124
5-4-3 液化阻抗比比較 125
第六章 結論與建議 127
6-1 結論 127
6-2 建議 128
參考文獻 129
附錄 134
1. 張嘉偉(1997)“圓錐貫入試驗在粉砂中之標定國立交通大學土木工程學系,碩士論文。
2. 王統立(2000)“高細料含量粉土細砂中CPT 之標定試驗國立交通大學土木工程學系,碩士論文。
3. 蔡明道(2002)“細粒料含量對粉土細砂不排水強度之影響國立交通大學土木工程學系,碩士論文。
4. 孫家雯(2003) “砂土細粒料界定對液化強度之影響 國立交通大學土木工程學系,碩士論文。
5. 郭毓真(2004) “細粒料含量對麥寮砂動態行為之影響國立交通大學土木工程學系,碩士論文。
6. 黃俞傑(2006) “濕噴法粉土細砂試體之製作國立交通大學土木工程學系,碩士論文
7. 闕慎佑(2010) “K_0狀態下低塑性粉質砂土原樣與重模試驗之液化行為與動態特性比較 國立暨南大學土木工程學系,碩士論文
8. 黃信博(2016) “應用非飽和單剪於降雨入滲引至淺層邊坡滑動模擬之研究 國立成功大學土木工程學系,碩士論文
9. Amini, F., and Qi, Z. (2000). “Liquefaction testing of stratified silty sands., Jour. of the Geotech. Eng., Vol. 126(3), pp. 208–217.
10. De Alba, P.A., H.B. Seed and C.K. Chan (1976). “Sand Liquefaction in Large Simple Shear Tests , Jour. of the Geotech. Eng., ASCE, Vol. 102, pp. 909-927.
11. Finn, W.O. Liam, J.J. Emery and Y.P. Gupta (1970). “A Shake Table Study of the Liquefaction of Saturated Sands During Earthquakes, Earthquake Engineering, pp. 253-262.
12. Finn, W.O. Liam, L. Bransby and D.J. Pickering (1970). “Effect of Strain History on Lique faction of Sand , Jour. of the Soil Mech. and Found. Div. , ASCE, pp. 1917-1934.
13. Finn, W.O. Liam, D.J. Pickering and P.L. Bransby (1971). “Sand Liquefaction in Triaxial and Simple Shear Tests, Jour. of the Soil Mech. and Found. Div. , ASCE, Vol. 97, pp. 639-659.
14. Finn, W.D. Liam, Y.P. Vaid and S.K. Bhatia (1978). “Constant Volume Cyclic Simple Shear Testing .
15. Frost, J.D., Park, J.-Y. (2003). “A critical assessment of the moist tamping technique Geotech. Test. , ASTM 26 (1), pp. 57–70.
16. Høeg, K., Dyvik, R., Sandbaekken, G. (2000). “Strength of undisturbed versus reconstituted silt and silty sand specimens, Jour. of the Geotech. Eng., ASCE, Vol. 126 (7), pp. 606–617.
17. Huang, A.B., Chang, W.J., Hsu, H.H., Huang, Y.J. (2015). “A mist pluviation method for reconstituting silty sand specimens., Engineering Geology, Vol. 188, pp. 1-9.
18. Ishihara, K. and S-I. Li (1972). “Liquefaction of Saturated Sand in Triaxial Torsion Shear Test, Soils and Foundation Jour., Vol. 12, pp. 19-39.
19. Ishihara, K. and Yoshimine, M. (1992). “Evaluation of Settlement in Sand Deposits Following Liquefaction during Earthquakes., Soils and Foundation Jour.,Vol. 32, pp. 173-188.
20. Ishihara, K. (1993). “Liquefaction and flow failure during earthquakes., Geotechnique Vol. 43(3), pp. 351-415.
21. Kuerbis, R. H., Negussey, D., and Vaid, Y. P. (1988). “Effect of gradation and fines content on the undrainedresponse of sand., Geotechnical Spec. Publ., Vol. 21, pp. 330–345.
22. Kammerer, A., Pestana, J., and Seed, R. (2002). “Undrained Response of 0/30 Sand Under Multidirectional Cyclic Simple Shear Loading Conditions., Geotechnical Engineering Research Report No. UCB/GT/02-01.
23. Lee, K.L. and J.A. Fitton (1968). “Factors Affecting the Dynamic Strength of Soil, Vibration Effects on Soils and Foundations, STP450.
24. Lee,K.L.,and Albaisa,A. (1974). “Earthquake Induced Settlements in Saturated Sand, ASTM, STP450, pp. 71-96.
25. Lo Presti, D., Pedroni, S., Crippa, V. (1992). “Maximum dry density of cohesionless soils, J. ASTM, Vol. 15(2), pp. 180–189.
26. Mulilis, J.P., Seed, H.B., Chan, C.K., Mitchell, J.K., Arulanandan, K. (1977). “Effects of sample preparation on sand liquefaction., Jour. of the Geotech. Eng., ASCE, Vol. 103 (2), pp. 91–108.
27. Marshall L.Silver , Fumio Tatsuoka , Apichart Phukunhaphan and Anestis S.Avramidis (2007).“Cyclic undrained strength of sand by triaxial test and simple shear test.
28. Oda, M., Koishikawa, I., Higuchi, T. (1978). “Experimental study of anisotropic shear strength of sand by plane strain test., Soils Found. Vol. 18 (1), pp. 25–38.
29. Peacock, W.H. and H.B., Seed (1968). “Sand Lique faction Under Cyclic Loading Simple Shear Conditions, Jour. of the Soil Mech. and Found. Div. , ASCE, Vol. 94, pp. 689-708.
30. Polito, C. P., and Martin, J. R. (2001). “Effects of non-plastic fines on the liquefaction resistance of sands., Jour. of the Geotech. Eng., Vol. 127(5), pp. 408–415.
31. Seed, H.B., and Lee,K.L. (1966). “Liquefaction of Saturated Sands During Cyclic Loading, Jour. of the Soil Mech. and Found. Div., ASCE, Vol. 92, pp. 105-134.
32. Seed,H.B., and Peacock,W.H. (1971). “The Procedure for Measuring Soil Liquefacton Characteristics, Jour. of the Soil Mech. and Found. Div. , ASCE, Vol. 97, pp. 1099-111.
33. Seed, H.B. (1976). “Evaluation of Soil Liquefaction Effects of Level Ground During Earthquakes, ASCE Annual Convention and Exposition.
34. Seed, H.B., K. Mori and C.K. Chan (1977). “Influence of Seismic History on Liquefaction, Jour. of the Geotech. Eng. , ASCE, Vol. 103, pp. 246-270.
35. Seed, H.B., Pyke, R.M., and Martin, G.R. (1978). “Effects of multidirectional shaking on pore pressure development in sands., Jour. of the Geotech. Eng. , ASCE, Vol. 104, pp. 27-44.
36. Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M. (1985). “Influence of SPT Procedures in soil liquefaction resistance evaluations., Jour. of the Geotech. Eng. , ASCE, Vol. 111(12), pp. 1425-1445.
37. Singh, S. (1994). “Liquefaction characteristics of silts., Geotech. Spec. Publ., Vol. 44, pp. 105–116.
38. Tatsuoka, F., Ochi, K., Fujii, S., Okamoto, M. (1986). “Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods. , Soils Found. , Vol. 26(3), pp. 23–41.
39. Yoshimi, Y., Tokimatsu, K., Kaneko, O., Makihara, Y. (1984). “Undrained cyclic shear strength of a dense Niigata sand. Soils Found., Vol. 24 (4), pp. 131–145.
40. Yamamuro, J.A., Wood, F.M. (2004). “Effects of depositional method on the undrained be havior and microstructure of sand with silt., Soil Dyn. Earthq. Eng. Vol. 24 (9–10), pp. 754-760.
電子全文 電子全文(網際網路公開日期:20230225)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔