( 您好!臺灣時間:2021/04/16 06:45
字體大小: 字級放大   字級縮小   預設字形  


論文名稱(外文):Application of Grey Theory to Forecast Short-Term Sales of Taiwan Fastener Industry
指導教授(外文):Chinho Lin
外文關鍵詞:Short-term ForecastingGrey TheoryFastener IndustryAnt Colony Optimization
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近來扣件業的發展提高興趣於資料探勘與短期預測的關係。先前的研究已經指出台灣扣件業的庫存管理問題,然而卻因資料過少,使其預測準確度與可靠度成為尚待解決的問題。灰預測模型,藉由累加生成方式,提供一個求解方向,而其中影響該模式預測準確度最重要的因素為背景值參數 值。本研究旨於從初期導入少樣數據改善灰色預測模型的準確性與可靠性,因此本研究提出一個基於蟻群演算法(ant colony system, ACS)的改良灰預測模型,找出各期 求出最佳解,亦從加州大學的知識發現資料庫所取得之公開測試資料進行效果驗證並與其他多種改良式灰預測模式進行比較。實驗結果顯示,本研究所提出的ACSGM (1, 1)在預測準確度比較上確實較其他灰預測模式為佳,並能有效增進傳統灰預測模式之預測效能。本研究發現祈能提供個案公司與扣件業高層主管在需求預測的管理決策中作出策略性規劃之參考。
Recent developments in the fastener industry has heightened interest in the relationship between data mining and short-term sales forecasting. Previous studies have reported inventory management problems in Taiwan’s fastener industry. However, important questions remain to be resolved including how to improve the accuracy and reliability of sales forecasting when dealing with short-term limited data. The grey model is proposed to overcome this problem through accumulated generating operations (AGO). The background values represented as coefficient  play a critical role that determines and affects the precision of the GM model. The purpose of this research is to improve the accuracy and reliability of the grey prediction model GM (1, 1) with limited data in the earlier part of the prediction process. Therefore, this study proposes a modified GM (1, 1) based ant colony system (ACS) to obtain the optimal  values. Meanwhile, two kinds of data are employed: the Synthetic Control Chart Time Series dataset (SCCTS) from the Knowledge Discovery Database (KDD) and the fastener industry statistics from Taiwan Customs Import and Export data in order to verify the effectiveness of the ACSGM (1, 1) model. It is compared with two other models, GM (1, 1) and AGM (1, 1). The results reveal that ACSGM (1, 1) significantly improves accuracy. The findings may serve as a guide in strategic planning for support management decisions related to forecasting demand for case companies and for the fastener industry.
摘要 I
Abstract II
Acknowledgements III
Contents IV
List of Figures VI
List of Tables VII
Chapter One Introduction 1
1.1 General background information 3
1.2 Research purpose 4
1.3 Research procedure 4
Chapter Two Review of literature 6
2.1 Fastener industries 6
2.2 Forecasting methods 14
2.2.1 Qualitative forecasting methods 19
2.2.2 Quantitative forecasting methods 22
2.3 Grey theory 27
2.4 Ant colony algorithms 29
2.5 Summary 30
Chapter Three Research methodology 32
3.1 Research structure 34
3.1.1 Research design and subjects 34
3.1.2 Data analysis 35
3.2 Grey Theory and GM (1, 1) forecasting model 35
3.3 Ant colony optimization 38
3.4 The ways of testing the accuracy of the GM (1, 1) 41
3.5 Summary 42
Chapter Four Results and Discussion 44
4.1 Model construction 44
4.1.1 Problem analysis 45
4.1.2 Data collection 46
4.1.3 SCCTS data description 47
4.2 Experimental method 47
4.2.1 Forecasting method 48
4.2.2 Ant colony algorithm parameters set 48
4.3 The Ways of testing the accuracy 49
4.4 Experimental results 50
4.4.1 Fastener industry forecasting results 50
4.4.2 SCCTS dataset 52
4.5 Summary 53
Chapter Five Conclusions and Suggestions 55
5.1 Conclusions 55
5.2 Review of research findings 56
5.3 Limitations of the study 57
5.4 Suggestions for future research 58
References 59
In Chinese
In English
Agrawal, D., & Schorling, C. (1996). Market share forecasting: An empirical comparison of artificial neural networks and multinomial logit model. Journal of Retailing, 72(4), 383-407.
Armstrong, J. S. (2001). Combining forecasts. In Principles of forecasting, Springer US., 417-439.
Armstrong, J. S., & Collopy, F. (1992). Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting, 8(1), 69-80.
Armstrong, P. (1985). Changing management control strategies: the role of competition between accountancy and other organisational professions. Accounting, Organizations and Society, 10(2), 129-148.
Babu, C. N., & Reddy, B. E. (2014). A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data. Applied Soft Computing, 23, 27-38.
Billah, B., King, M. L., Snyder, R. D., & Koehler, A. B. (2006). Exponential smoothing model selection for forecasting. International Journal of Forecasting, 22(2), 239-247.
Brown, R. G. (1959). Statistical Forecasting for Inventory Control. McGraw/Hill.
Brown, R. G. (1963). Smoothing. Forecasting and Prediction of Discrete Time Series, 238.
Byrne, R. F. (2012). Beyond traditional time-series: Using demand sensing to improve forecasts in volatile times. The Journal of Business Forecasting, 31(2), 13-19.
Chambers, J. C., Mullick, S. K., & Smith, D. D. (1971). How to choose right forecasting technique. Harvard Business Review, 49(4), 45.
Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management Science, 9(3), 458-467.
DeLurgio, S. & Bhame, C. (1991). Forecasting systems for operations management. Business One Irwin: Homewood, IL.
Desanctis, G., & Gallupe, R. B. (1987). A foundation for the study of group decision support systems. Management Science, 33(5), 589-609.
Dorigo, M., & Stützle, T. (2003). The ant colony optimization metaheuristic: Algorithms, applications, and advances. In Handbook of metaheuristics, Springer, Boston, MA., 250-285.
Drucker, P. F. (1993). Managing in turbulent Times. Routledge.
Evans, M.K. (2002) Practical Business Forecasting. USA: Wiley-Blackwell.
Fayyad, U. M. (1996). Data mining and knowledge discovery: Making sense out of data. IEEE Expert: Intelligent Systems and Their Applications, 11(5), 20-25.
Finlay, S. (2014). Predictive analytics, data mining and big data: Myths, misconceptions and methods. Springer, 2-15.
Forrester, J.W. (1961). Industrial dynamics. New York: MIT Press, and John Wiley & Sons, Inc.
Fuller, W. A. (2009). Introduction to statistical Time Series (Vol. 428). John Wiley & Sons.
Gardner, E. (1990). Evaluating forecast performance in an inventory control system. Journal of Management Science. 36(4): 490-499.
Green, K. C., & Armstrong, J. S. (2007). Structured analogies for forecasting. International Journal of Forecasting, 23(3), 365-376.
Heizer, J., & Render, B. (2009). Principles of Operations Management. Mexico, DF: Pearson Prentice Hall.
Holden, N., & Freitas, A. A. (2005, June). A hybrid particle swarm/ant colony algorithm for the classification of hierarchical biological data. In Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE, pp. 100-107.
Jatta, J. S., & Krishnan, K. K. (2016). An empirical assessment of an univariate time series for demand planning in a demand-driven supply chain. International Journal of Business Forecasting and Marketing Intelligence, 2(3), 269-290.
Kress, G. (1985). Practical techniques of business forecasting. Quorum Books: Westport, CT.
Li, C., Qin, J., Li, J., & Hou, Q. (2016). The accident early warning system for iron and steel enterprises based on combination weighting and Grey Prediction Model GM (1, 1). Safety Science, 89, 19-27.
Li, D. C., Yeh, C. W., & Chang, C. J., (2009). An improved grey-based approach for early manufacturing data forecasting. Computers & Industrial Engineering, 57(4), 1161-1167.
Lin, Y., Chen, M. Y., & Liu, S. (2004). Theory of grey systems: capturing uncertainties of grey information. Kybernetes, 33(2), 196-218.
Liu, C., Shu, T., Chen, S., Wang, S., Lai, K. K., & Gan, L. (2016). An improved grey neural network model for predicting transportation disruptions. Expert Systems with Applications, 45, 331-340.
Liu, S., Forrest, J., & Yang, Y. (2012). A brief introduction to grey systems theory. Grey Systems: Theory and Application, 2(2), 89-104.
Lu, S. L., & Tsai, C. F. (2016). Petroleum demand forecasting for Taiwan using modified fuzzy‐grey algorithms. Expert Systems, 33(1), 60-69.
Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., ... & Winkler, R. (1982). The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting, 1(2), 111-153.
McHugh, A. K., & Sparkes, J. R. (1983). The forecasting dilemma. Management Accounting, 61(3), 30-34.
McMullen, P. R. (2001). An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives. Artificial Intelligence in Engineering, 15(3), 309-317.
Michis, A. A. (2014). Time scale evaluation of economic forecasts. Economics Letters, 123(3), 279-281.
Niu, D., Wang, Y., & Wu, D. D. (2010). Power load forecasting using support vector machine and ant colony optimization. Expert Systems with Applications, 37(3), 2531-2539.
Ozcan, Y.A. (2009) Quantitative Methods in Health Care Management: Techniques and Applications. 2nd ed. San Francisco: John Wiley and Sons.
Pai, T. Y., Lin, K. L., Shie, J. L., Chang, T. C., & Chen, B. Y. (2011). Predicting the co-melting temperatures of municipal solid waste incinerator fly ash and sewage sludge ash using grey model and neural network. Waste Management & Research, 29(3), 284-293.
Russel, R. S. & Taylor, B. W. (2000). Operations Management. New Jersey, Prentice Hall.
Shaw, J. (2001). Telecommunications deregulation and the information economy. Artech House.
Shiau, J. Y., & Tsou, Y. L. (2015). A decision support module for ERP system under VMI collaboration. In Industrial Engineering and Operations Management (IEOM), 2015 International Conference on IEEE, pp. 1-7.
Snyder, R. D., Koehler, A. B., & Ord, J. K. (2002). Forecasting for inventory control with exponential smoothing. International Journal of Forecasting, 18(1), 5-18.
Waddell, D., and A. S. Sohal. (1994) Forecasting: The Key to Managerial Decision Making, Management Decision, Vol. 32 Issue: 1, 41-49.
Wilson, J. H. & Keating, B. (1990). Business forecasting. Homewood, IL, Irwin.
Wilson, J. H., & Keating, B. John Galt Solutions, Inc. (2007). Business forecasting with accompanying Excel-based ForecastX TM software, 5.
Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324-342.
Wu, L., Liu, S., & Yang, Y. (2016). Grey double exponential smoothing model and its application on pig price forecasting in China. Applied Soft Computing, 39, 117-123.
Xia, M., & Wong, W. K. (2014). A seasonal discrete grey forecasting model for fashion retailing. Knowledge-Based Systems, 57, 119-126.
Yang, Y., Chen, Y., Shi, J., Liu, M., Li, C., & Li, L. (2016). An improved grey neural network forecasting method based on genetic algorithm for oil consumption of China. Journal of Renewable and Sustainable Energy, 8(2), 024104.
Yin, S., Liu, L., & Hou, J. (2016). A multivariate statistical combination forecasting method for product quality evaluation. Information Sciences, 355, 229-236.
Zeng, B., & Li, C. (2016). Forecasting the natural gas demand in China using a self-adapting intelligent grey model. Energy, 112, 810-825.
Zeng, X. Y., Shu, L., Huang, G. M., & Jiang, J. (2016). Triangular fuzzy series forecasting based on grey model and neural network. Applied Mathematical Modelling, 40(3), 1717-1727.
Zhang, Z., & Liu, X. (2017). Prediction of long-term gas load based on particle swarm optimization and gray neural network model. Advances in Mechanical Engineering, 9(7), 1687814017711081.
Commission Implementing Regulation (EU) 2015/519 of 26 March 2015, http://eur-lex.europa.eu/eli/reg_impl/2015/519/oj.
Council Regulation (EC) No 1225/2009 of 30 November 2009, http://trade.ec.europa.eu/doclib/docs/2010/april/tradoc_146035.pdf.
Global Trade Information Service, 2017, http://www.worldtradestatistics.com.
Industrial Development Bereau, Ministry of Economic Affairs, 2017, https://www.moeaidb.gov.tw.
International Trade Center, 2017, http://www.intracen.org.
Metal Industries Research & Development Centre, 2017, http://www.mirdc.org.tw.
Standard Industrial Classification (SIC) System Search, 2017. http://www.osha.gov.
The History of the Bolt, 2017, http://www.nord-lock.com/da/bolted/the-history-of-the-bolt.
University of California Knowledge Discovery Database, 2017, http://www.kdd.ics.uci.edu/databases/synthetic_control/synthetic_control.html
Zion Market Research, 2017, https://www.zionmarketresearch.com.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔