[1]C. Sun, H. Li, and L. Chen, Nanostructured ceria-based materials: synthesis, properties, and applications, Energy Environ. Sci., 5(9), 8475-8505 (2012).
[2]Y. Kang, M. Sun, and A. Li, Studies of the catalytic oxidation of CO over Ag/CeO2 catalyst, Catal. Lett., 142(12), 1498-1504 (2012).
[3]K. I. Shimizuet al., Carbon oxidation with Ag/ceria prepared by self-dispersion of Ag powder into nano-particles, Catal. Today, 175(1), 93-99 (2011).
[4]L. Liet al., Review of oxygen vacancies in CeO2-doped solid solutions as characterized by Raman spectroscopy, Acta. Phys. Chim. Sin., 28(5), 1012-1020 (2012).
[5]R. Saravanan et al., Line defect Ce3+ induced Ag/CeO2/ZnO nanostructure for visible-light photocatalytic activity, J. Photochem. Photobiol. A Chem., 353, 499-506 (2018).
[6]D. Chenet al., Identification of reaction intermediates and mechanism responsible for highly active HCHO oxidation on Ag/MCM-41 catalysts, Appl. Catal. B, 142-143, 838-848 (2013).
[7]S. Chang et al., Shape-dependent interplay between oxygen vacancies and Ag-CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity, J. Catal., 293, 195-204 (2012).
[8]Z. Quet al., Support effects on the structure and catalytic activity of mesoporous Ag/CeO2 catalysts for CO oxidation, J. Chem. Eng., 229, 522-532 (2013).
[9]S. Liu et al., Soot oxidation over CeO2 and Ag/CeO2: Factors determining the catalyst activity and stability during reaction, J. Catal., 337, 188-198 (2016).
[10]X. Feng et al., SiO2-Ag-SiO2 core/shell structure with a high density of Ag nanoparticles for CO oxidation catalysis, Nanotechnol., 27(45), 455605 (2016).
[11]M. Liu et al., Study of Ag/CeO2 catalysts for naphthalene oxidation: Balancing the oxygen availability and oxygen regeneration capacity, Appl. Catal. B, 219, 231-240 (2017).
[12]T. Kharlamova et al., Silica-supported silver catalysts modified by cerium/manganese oxides for total oxidation of formaldehyde, Appl. Catal. A Gen., 467, 519-529 (2013).
[13]P. H. Rana and P. A. Parikh, Bioethanol selective oxidation to acetaldehyde over Ag-CeO2: role of metal-support interactions, J. Chem., 41(7), 2636-2641 (2017).
[14]V. V. Dutovet al., Low-temperature CO oxidation over Ag/SiO2 catalysts: Effect of OH/Ag ratio, Appl. Catal. B, 221, 598-609 (2018).
[15]K. I. Shimizu, H. Kawachi, and A. Satsuma, Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst, Appl. Catal. B, 96(1-2), 169-175 (2010).
[16]X. Zhang et al., Studies of silver species for low-temperature CO oxidation on Ag/SiO2 catalysts, Sep. Purif. Technol., 72(3), 395-400 (2010).
[17]D. Chen et al., Comparative studies of silver based catalysts supported on different supports for the oxidation of formaldehyde, Catal. Today, 175(1), 338-345 (2011).
[18]D. Chenet al., Effect of oxygen pretreatment on the surface catalytic oxidation of HCHO on Ag/MCM-41 catalysts, J. Mol. Catal. A Chem., 404-405, 98-105 (2015).
[19]H. Wang et al., Activation and deactivation of Ag/CeO2 during soot oxidation: influences of interfacial ceria reduction, Catal. Sci. Technol., 7(10), 2129-2139 (2017).
[20]C. Leeet al., Ag supported on electrospun macro-structure CeO2 fibrous mats for diesel soot oxidation, Appl. Catal. B, 174-175, 185-192 (2015).
[21]L. Yuet al., Ag supported on CeO2 with different morphologies for the catalytic oxidation of HCHO, Chem. Eng. J., 334, 2480-2487 (2018).
[22]G. V. Mamontovet al., Ethanol dehydrogenation over Ag-CeO2/SiO2 catalyst: Role of Ag-CeO2 interface, Appl. Catal. A Gen., 528, 161-167 (2016).
[23]J. Zhang et al., Effect of Support on the Activity of Ag-based Catalysts for Formaldehyde Oxidation, Sci. Rep., 5, 12950-12960 (2015).
[24]F. Wang, Effect of support carbon materials on Ag catalysts used for CO oxidation in the presence and absence of H2, J. Environ. Chem. Eng., 4(4), 4258-4262 (2016).
[25]D. S. Afanasevet al., High activity in CO oxidation of Ag nanoparticles supported on fumed silica, Catal. Commun., 22, 43-47 (2012).
[26]M. Skafet al., Physicochemical characterization and catalytic performance of 10% Ag/CeO2 catalysts prepared by impregnation and deposition–precipitation, J. Catal., 320, 137-146 (2014).
[27]X. Zhanget al., High-temperature diffusion induced high activity of SBA-15 supported Ag particles for low temperature CO oxidation at room temperature, J. Catal., 297, 264-271 (2013).
[28]V. V. Dutovet al., The effect of support pretreatment on activity of Ag/SiO2 catalysts in low-temperature CO oxidation, Catal. Today, 278, 150-156 (2016).
[29]Y. Qinet al., Effect of pretreatment conditions on catalytic activity of Ag/SBA-15 catalyst for toluene oxidation, Chinese J. Catal., 38(9), 1603-1612 (2017).
[30]J. Xu et al., Ag supported on meso-structured SiO2 with different morphologies for CO oxidation: On the inherent factors influencing the activity of Ag catalysts, Microporous Mesoporous Mater., 242, 90-98 (2017).
[31]E. L. Qiet al., Preparation of nanostructured Ag/CeO2 by microwave synthesis and its photocatalysis activity, Adv. Mat. Res., 624, 88-93 (2012).
[32]S. Scire, P. M. Riccobene, and C. Crisafulli, Ceria supported group IB metal catalysts for the combustion of volatile organic compounds and the preferential oxidation of CO, Appl. Catal. B, 101(1-2), 109-117 (2010).
[33]K. Yamazakiet al., The remote oxidation of soot separated by ash deposits via silver-ceria composite catalysts, Appl. Catal. A Gen., 476, 113-120 (2014).
[34]X. Deng et al., Constructing nano-structure on silver/ceria-zirconia towards highly active and stable catalyst for soot oxidation, J. Chem. Eng., 313, 544-555 (2017).
[35]G. Mondragon-Galiciaet al., A novel synthesis method to produce silver-doped CeO2 nanotubes based on Ag nanowire templates, Phys. Chem. Chem. Phys., 13(37), 16756-16761 (2011).
[36]張宏毅。二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性。成功大學博士論文,2005。[37]H. He et al., Controllable synthesis, characterization, and CO oxidation activity of CeO2 nanostructures with various morphologies, Ceram. Int., 42(6), 7810-7818 (2016).
[38]Y. L. Songet al., A DFT+U study of CO oxidation at CeO2(110) and (111) surfaces with oxygen vacancies, Surf. Sci., 618, 140-147 (2013).
[39]Z. Wu, M. Li, and S. H. Overbury, On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes, J. Catal., 285(1), 61-73 (2012).
[40]S. Royer and D. Duprez, Catalytic oxidation of carbon monoxide over transition metal oxides, Chem. Catal. Chem., 3(1), 24-65 (2011).
[41]A. Longoet al., Structure of the metal-support interface and oxidation state of gold nanoparticles supported on ceria, J. Phys. Chem. C, 116(4), 2960-2966 (2012).
[42]J. C. Frost, Junction effect interactions in methanol synthesis catalysts, Nature, 334, 577-580 (1988).
[43]X. S. Huanget al., Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation, Appl. Catal. B, 90(1-2), 224-232 (2009).
[44]L. Fan and K. Fujimoto, Reaction mechanism of methanol synthesis from carbon dioxide and hydrogen on ceria-supported palladium catalysts with SMSI effect, J. Catal., 172, 238-242 (1997).
[45]W. Song, Y. Su, and E. J. M. Hensen, A DFT Study of CO Oxidation at the Pd-CeO2(110) Interface, J. Phys. Chem. C, 119(49), 27505-27511 (2015).
[46]L. H. Chang, Y. W. Chen, and N. Sasirekha, Preferential oxidation of carbon monoxide in hydrogen stream over Au/MgOx-TiO2 catalysts, Ind. Eng. Chem. Res., 47(12), 4098-4105 (2008).
[47]N. Sasirekha, P. Sangeetha, and Y. W. Chen, Bimetallic Au-Ag/CeO2 catalysts for preferential oxidation of CO in hydrogen-rich stream: Effect of calcination temperature, J. Phys. Chem. C, 118(28), 15226-15233 (2014).
[48]H. Ruan et al., Soot oxidation performance with a HZSM-5 supported Ag nanoparticles catalyst and the characterization of Ag species, RSC Adv., 7(69), 43789-43797 (2017).
[49]E. Kolobova et al., Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation, Fuel, 138, 65-71 (2014).
[50]X. Zhanget al., Low temperature CO oxidation over Ag/SBA-15 nanocomposites prepared via in-situ “pH-adjusting method, Catal. Commun., 16(1), 11-14 (2011).
[51]X. Zhanget al., In-situ synthesis of Ag/SBA-15 nanocomposites by the “pH-adjusting method, Mater. Lett., 65(12), 1892-1895 (2011).
[52]X. Zhanget al., Study of catalytic activity at the Ag/Al-SBA-15 catalysts for CO oxidation and selective CO oxidation, J. Chem. Eng., 283, 1097-1107 (2016).
[53]K. Saravanakumaret al., Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants, J. Alloys Compd., 664, 149-160 (2016).
[54]L. Maet al., Ag/CeO2 nanospheres: Efficient catalysts for formaldehyde oxidation, Appl. Catal. B, 148-149, 36-43 (2014).
[55]H. H. Liuet al., Oxygen vacancy promoted CO oxidation over Pt/CeO2 catalysts: A reaction at Pt–CeO2 interface, Appl. Surf. Sci., 314, 725-734 (2014).
[56]G. Jacobset al., Low Temperature Water–Gas Shift Reaction: Interactions of Steam and CO with Ceria Treated with Different Oxidizing and Reducing Environments, Catal. Lett., 145(2), 533-540 (2014).
[57]C. S. Polsteret al., Selectivity loss of Pt/CeO2 PROX catalysts at low CO concentrations: mechanism and active site study, J. Catal., 273(1), 50-58 (2010).
[58]B. J. Hsieh et al., Tuning metal support interactions enhances the activity and durability of TiO2-supported Pt nanocatalysts, Electrochim. Acta, 224, 452-459 (2017).
[59]T. S. Nguyenet al., Trends in the CO oxidation and PROX performances of the platinum-group metals supported on ceria, Catal. Today, 253, 106-114 (2015).
[60]S. Xuet al., Facile synthesis of bimetallic Pt-Ag/graphene composite and its electro-photo-synergistic catalytic properties for methanol oxidation, Catal., 6(9), (2016).
[61]J. Wisniewska and M. Ziolek, Formation of Pt-Ag alloy on different silicas-surface properties and catalytic activity in oxidation of methanol, RSC Adv., 7(16), 9534-9544 (2017).
[62]B. Ruiz-Camachoet al., Simple synthesis of Pt-Ag/SnO2-C for use as a catalyst of methanol oxidation in alkaline media, J. Solid State Electrochem., 21(8), 2449-2456 (2017).
[63]R. Fiorenzaet al., Au-Ag/CeO2 and Au-Cu/CeO2 catalysts for volatile organic compounds oxidation and CO preferential oxidation, Catal. Lett., 145(9), 1691-1702 (2015).
[64]X. Bokhimiet al., Nanocrystalline Ag, and Au-Ag alloys supported on titania for CO oxidation reaction, Mater. Chem. Phys., 138(2-3), 490-499 (2013).
[65]S. Y. Hwanget al., Property of Pt-Ag alloy nanoparticle catalysts in carbon monoxide oxidation, J. Phys. Chem. C, 118(49), 28739-28745 (2014).
[66]M. Breysseet al., Catalysis of carbon monoxide oxidation by cerium dioxide: II. Microcalorimetric investigation of adsorption and catalysis, J. Catal., 28(1), 54-62 (1973).
[67]M. Daniel and S. Loridant, Probing reoxidation sites byin situRaman spectroscopy: differences between reduced CeO2 and Pt/CeO2, J. Raman Spectrosc., 43(9), 1312-1319 (2012).
[68]C. J. Pan et al., Tuning/exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis, J. Taiwan Inst. Chem. Eng., 74, 154-186 (2017).
[69]N. J. Lawrence et al., Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation, Nano. Lett., 11(7), 2666-2671 (2011).
[70]M. Baronet al., Interaction of gold with cerium oxide supports: CeO2(111) thin films vs CeOx nanoparticles, J. Phys. Chem. C, 113(15), 6042-6049 (2009).
[71]J. Pawlonkaet al., Application of microemulsion method for development of methanol steam reforming Pd/ZnO catalysts, J. Therm. Anal. Calorim., 125(3), 1265-1272 (2016).
[72]A. D. Mayernick and M. J. Janik, Methane oxidation on Pd-Ceria: A DFT study of the mechanism over PdxCe1?xO2, Pd, and PdO, J. Catal., 278(1), 16-25 (2011).
[73]M. M. Brandaet al., Density functional theory study of the interaction of Cu, Ag, and Au atoms with the regular CeO2 (111) surface, J. Phys. Chem. C, 114(4), 1934-1941 (2010).
[74]Y. G. Wanget al., Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles, Nat. Commun., 6,6511-6518 (2015).
[75]N. Ta et al., Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring, J. Am. Chem. Soc., 134(51), 20585-20588 (2012).
[76]N. Ta, J. Liu, and W. Shen, Tuning the shape of ceria nanomaterials for catalytic applications, Chinese J. Catal., 34(5), 838-850 (2013).
[77]T. Zhenget al., Precious metal-support interaction in automotive exhaust catalysts, J. Rare Earths, 32(2), 97-107 (2014).
[78]D. Weng and M. Li, Research progress of the precious metal-support interaction in CeO2-based catalysts, Sci. Tech. Rev., 32, 77-83 (2014).
[79]Q. Fu , H. Saltsburg, and M. Flyzani-Stephanopoulos, Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts, Sci., 301, 935-938 (2003).
[80]X. Zhenget al., Base metal catalysts in carbon monoxide oxidation, Progress in chemistry, 18(2/3), 159-167 (2006).
[81]G. N. Vayssilovet al., Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: A combined density functional and infrared spectroscopy investigation, J. Phys. Chem. C, 115(47), 23435-23454 (2011).
[82]G. Li et al., Nanoporous Ag-CeO2 ribbons prepared by chemical dealloying and their electrocatalytic properties, J. Mater. Chem. A Mater., 1(16), 4974-4981 (2013).
[83]C. Schillinget al., Raman spectra of polycrystalline CeO2: A density functional theory study, J. Phys. Chem. C, 121(38), 20834-20849 (2017).
[84]H. Bouzidet al., Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity, Catal. Today, 252, 20-26 (2015).
[85]T. Fuet al., Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction, J. Power Sources, 365,17-25 (2017).
[86]劉育伶。金/二氧化鈰奈米粒子之製備及其催化特性之研究。成功大學碩士論文,2009。[87]彭文郁。奈米結晶性鈀摻雜二氧化鈰觸媒在一氧化碳氧化反應上之研究。成功大學碩士論文,2007。[88]J. Leeet al., How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: The origin of improved thermal stability of Pt/CeO2compared to CeO2, J. Phys. Chem. C, 120(45), 25870-25879 (2016).
[89]G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study, Phy. Chem. Chem. Phy., 3(17), 3838-3845 (2001).
[90]I. T. Liuet al., Structure and optical properties of Ag/CeO2 nanocomposites, Appl. Phys. A, 111(4), 1181-1186 (2012).
[91]I. A. Khanet al., CO oxidation catalyzed by Ag nanoparticles supported on SnO/CeO2, J. Braz. Chem. Soc., 26(4), 695-704 (2015).
[92]M. Happel et al., Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts, J. Catal., 289, 118-126 (2012).
[93]G. Preda and G. Pacchioni, Formation of oxygen active species in Ag-modified CeO2 catalyst for soot oxidation: A DFT study, Catal. Today, 177(1), 31-38 (2011).
[94]J. Lin, X. Wang, and T. Zhang, Recent progress in CO oxidation over Pt?group?metal catalysts at low temperatures, Chinese J. Catal., 37, 1805-1813 (2016).
[95]F. Chenet al., A DFT+U study of the lattice oxygen reactivity toward direct CO oxidation on the CeO2(111) and (110) surfaces, Phys. Chem. Chem. Phys., 14(48), 16573-16580 (2012).
[96]S. H. Zhong, G. Lu, and X. Q. Gong, A DFT+U study of the structures and reactivities of polar CeO2(100) surfaces, Chinese J. Catal., 38(7), 1138-1147 (2017).
[97]D. Tanget al., CO oxidation catalyzed by silver nanoclusters: mechanism and effects of charge, Phys. Chem. Chem. Phys., 14(37), 12829-12387 (2012).
[98]X. Lei, G. Mbamalu, and C. Qin, CO oxidation by molecular and atomic oxygen on Ag(100): A density functional theory study, J. Phys. Chem. C, 121(5), 2635-2642 (2017).
[99]J. S. Du et al., Embedding ultrafine and high-content Pt nanoparticles at ceria surface for enhanced thermal stability, Adv. Sci., 4(9), 1700056 (2017).
[100]G. Ertl and H. J. Freund, Catalysis and surface science, Phy. Today, 52(1), 32-38 (1999).
[101]S. C. Ammal and A. Heyden, Titania-supported single-atom platinum catalyst for water-gas shift reaction, Chemie Ingenieur Technik, 89(10), 1343-1349 (2017).