(3.238.7.202) 您好!臺灣時間:2021/03/04 03:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李美萱
研究生(外文):Mei-HsuanLee
論文名稱:銀-鉑/二氧化鈰觸媒之合成及其催化一氧化碳氧化之研究
論文名稱(外文):Synthesis of Silver-Platinum Supported on Ceria for Catalytic CO Oxidation
指導教授:陳慧英陳慧英引用關係
指導教授(外文):Huey-Ing Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:110
中文關鍵詞:銀-鉑/二氧化鈰奈米粉體沉澱法微濕含浸法一氧化碳氧化
外文關鍵詞:Ag-Pt/CeO2nanoparticleprecipitationincipient wetness impregnationCO oxidation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在製備銀-鉑/二氧化鈰奈米粉體以應用於催化CO氧化上。實驗中,首先以沉澱法合成顆粒狀(P-)及針狀(N-)CeO2擔體,接著,以微濕含浸法將銀、鉑和銀-鉑擔載於CeO2粉體上,製得銀/二氧化鈰、鉑/二氧化鈰及銀-鉑/二氧化鈰觸媒。文中針對擔體?燒還原條件、金屬含量及擔體晶形來加以探討,並利用TEM、BET、XRD、DRIFT、Raman、XPS及H2-TPR等技術來進行觸媒特性分析。另外,將觸媒填充於反應器中進行CO氧化反應,以探討各觸媒之催化活性。
在製備Ag/N-CeO2觸媒中,針對未含浸銀時擔體是否?燒以及含浸後之?燒還原條件來加以比較,結果發現,含浸銀後經?燒500 oC、2 h,再在300 oC下氫氣還原3 h,所得觸媒之催化活性最高。當銀擔載量在0.05%~5%之間時,隨著銀含量由0%增加至3 %時,CO轉化率明顯隨之增高,且半轉化溫度(T50)由270 oC降至50 oC;此結果與H2-TPR分析一致。此外,由Raman結果證實,銀可促進CeO2氧空缺之形成,進而增加CO之吸附量;另一方面,由於銀之電子遷移至CeO2上,使銀對氧分子之親和力增大;由銀與CeO2之協同作用(synergistic effect)造成觸媒催化CO氧化之活性提高,進一步比較擔體晶形之影響,發現當銀擔載量小(〈0.5%)時,因擔體本身即具有催化能力,故觸媒活性受擔體所主導,而N-CeO2較P-CeO2擁有較高表面能,因此Ag/N-CeO2之活性優於Ag/P-CeO2。反之,當銀擔載量大(〉 0.5 %)時,由於銀之催化主導觸媒活性,故擔體晶形之影響可忽略,兩者催化活性相當。
比較Ag/N-CeO2、Pt/N-CeO2、Ag/N-CeO2+Pt/N-CeO2及Ag-Pt/N-CeO2四種觸媒之催化活性,結果發現其 CO氧化之活性依序為Ag-Pt/N-CeO2〉Pt/N-CeO2〉Ag/N-CeO2+Pt/N-CeO2〉Ag/N-CeO2,由此結果可知Ag-Pt/N-CeO2觸媒擁有最高之催化活性,其T50由原先Pt/N-CeO2(130 oC)及Ag/N-CeO2(250 oC)大幅降低至83 oC,推測係因銀-鉑雙金屬間之電子轉移,加上金屬與擔體間之協同作用所致。
Silver and platinum nanoparticles prepared by incipient wetness impregnation were employed as catalysts for CO oxidation. The physiochemical properties of nanoparticles including shape, particle size, surface area, crystalline structure, oxygen vacancies, and reducible ability are characterized using TEM, BET, XRD, Raman spectroscopy, DRIFT, XPS, ICP-AES and H2-TPR techniques. From the experimental results, it reveals that the optimized condition for Ag/N-CeO2 catalyst prepared via one-pot calcination and then reduced at 300 oC for 3h. As comparing activities of four catalysts, i.e. Ag/N-CeO2, Pt/N-CeO2, Ag-Pt/N-CeO2 and Ag/N-CeO2+Pt/N-CeO2, it was found that the activity was in the sequence of Ag-Pt/N-CeO2 〉 Pt/N-CeO2 〉 Ag/N-CeO2+Pt/N-CeO2 〉 Ag/N-CeO2. This indicated that Ag-Pt/N-CeO2 catalyst showed the Ag-Pt bimetallic interaction and highest activity on CO oxidation. This was attributed from synergistic effect of metal-support. Due to the transfer of electrons from Ag to Pt, the Ag and Pt grains exhibited higher adsorption affinity toward oxygen and carbon monoxide, respectively, which might further promote the oxidation of CO. Furthermore, the loading of Ag and Pt can facilitate the formation of oxygen vacancies of CeO2 nanoparticles, resulting in the enhancement of CO oxidation activity.
摘要 I
Extended Abstract III
誌謝 XI
目錄 XII
表目錄 XVI
圖目錄 XVIII
第一章 緒論 1
1.1 前言 1
1.2 CO來源與毒害 2
1.3 二氧化鈰之簡介 4
1.3.1 CeO2性質 4
1.3.1.1 物理性質 4
1.3.1.2 化學性質 4
1.3.1.3 光學性質 6
1.4 金屬/二氧化鈰觸媒製備 6
1.5 以金屬/CeO2觸媒催化之CO氧化 7
1.5.1 CeO2之觸媒 7
1.5.2 金屬/ CeO2之觸媒 8
1.5.3 雙金屬/CeO2觸媒 9
1.6 研究目的及概要 10
第二章 原理 19
2.1 CO氧化反應 19
2.1.1 CeO2晶面之影響 19
2.1.2 CO吸附 19
2.1.3 O2吸附 20
2.1.4 M-CeO2間之作用力 21
2.2 CO氧化之催化機制 22
第三章 實驗步驟與方法 26
3.1 實驗藥品 26
3.1.1 藥品 26
3.1.2 氣體 26
3.2 實驗設備與儀器 27
3.2.1 實驗設備 27
3.2.2 分析儀器 27
3.3 觸媒製備 28
3.3.1 二氧化鈰奈米擔體之製備 28
3.3.1.1 恆溫沉澱法 28
3.3.1.2 非恆溫沉澱法 29
3.3.2 金屬觸媒之擔載 29
3.4 觸媒特性分析 30
3.4.1 BET分析 30
3.4.2 TPR分析 30
3.4.3 TEM/HRTEM分析 31
3.4.4 ICP-OES分析 31
3.4.5 FT-IR分析 32
3.4.6 Raman分析 32
3.4.7 XPS分析 32
3.4.8 XRD分析 32
3.5 觸媒活性測試 33
3.5.1 反應條件之選擇 33
3.5.2 CO氧化反應 34
3.5.2.1 進料氣體組成之控制 35
3.5.2.2 產物氣體組成之分析 35
第四章 Ag/CeO2觸媒製備條件之影響 47
4.1 前言 47
4.2 Ag/CeO2觸媒製程變因之影響 47
4.2.1 擔體煅燒溫度之影響 47
4.2.1.1 CO氧化反應 47
4.2.1.2 BET分析結果 48
4.2.1.3 XRD分析結果 48
4.2.2 還原製程變因之影響 48
4.2.2.1 CO氧化反應 48
4.2.3 Ag擔載量之影響 49
4.2.3.1 CO氧化反應 49
4.2.3.2 TEM分析結果 50
4.2.3.3 XRD分析結果 50
4.2.3.4 BET分析結果 51
4.2.3.5 H2-TPR分析結果 51
4.2.3.6 DRIFT分析結果 52
4.2.3.7 Raman分析結果 53
4.2.3.8 XPS分析結果 54
4.2.3.8.1 Ce3d圖譜分析 55
4.2.3.8.2 O1s圖譜分析 55
4.2.3.8.3 Ag3d圖譜分析 56
4.2.3.8.4 Ag/CeO2之電子能帶階 56
4.3 DFT模擬 56
4.4 綜合討論 57
第五章 Pt/CeO2及Ag-Pt/CeO2觸媒製備條件之影響 79
5.1 前言 79
5.2 Pt/CeO2觸媒之Pt含量對活性之影響 79
5.2.1 CO氧化反應 79
5.2.2 BET分析 79
5.2.3 XRD分析 80
5.2.4 H2-TPR分析 80
5.2.5 Raman分析 81
5.2.6 Pt/CeO2之電子能帶階 81
5.2.7 DFT模擬 82
5.3 Ag-Pt/CeO2觸媒之活性探討 82
5.3.1 CO氧化反應 83
5.3.2 XRD分析 83
5.3.3 H2-TPR分析 84
5.3.4 Raman分析 84
5.4 綜合討論 84
第六章 結論與建議 97
6.1 結論 97
6.2 建議 98
參考文獻 100
[1]C. Sun, H. Li, and L. Chen, Nanostructured ceria-based materials: synthesis, properties, and applications, Energy Environ. Sci., 5(9), 8475-8505 (2012).
[2]Y. Kang, M. Sun, and A. Li, Studies of the catalytic oxidation of CO over Ag/CeO2 catalyst, Catal. Lett., 142(12), 1498-1504 (2012).
[3]K. I. Shimizuet al., Carbon oxidation with Ag/ceria prepared by self-dispersion of Ag powder into nano-particles, Catal. Today, 175(1), 93-99 (2011).
[4]L. Liet al., Review of oxygen vacancies in CeO2-doped solid solutions as characterized by Raman spectroscopy, Acta. Phys. Chim. Sin., 28(5), 1012-1020 (2012).
[5]R. Saravanan et al., Line defect Ce3+ induced Ag/CeO2/ZnO nanostructure for visible-light photocatalytic activity, J. Photochem. Photobiol. A Chem., 353, 499-506 (2018).
[6]D. Chenet al., Identification of reaction intermediates and mechanism responsible for highly active HCHO oxidation on Ag/MCM-41 catalysts, Appl. Catal. B, 142-143, 838-848 (2013).
[7]S. Chang et al., Shape-dependent interplay between oxygen vacancies and Ag-CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity, J. Catal., 293, 195-204 (2012).
[8]Z. Quet al., Support effects on the structure and catalytic activity of mesoporous Ag/CeO2 catalysts for CO oxidation, J. Chem. Eng., 229, 522-532 (2013).
[9]S. Liu et al., Soot oxidation over CeO2 and Ag/CeO2: Factors determining the catalyst activity and stability during reaction, J. Catal., 337, 188-198 (2016).
[10]X. Feng et al., SiO2-Ag-SiO2 core/shell structure with a high density of Ag nanoparticles for CO oxidation catalysis, Nanotechnol., 27(45), 455605 (2016).
[11]M. Liu et al., Study of Ag/CeO2 catalysts for naphthalene oxidation: Balancing the oxygen availability and oxygen regeneration capacity, Appl. Catal. B, 219, 231-240 (2017).
[12]T. Kharlamova et al., Silica-supported silver catalysts modified by cerium/manganese oxides for total oxidation of formaldehyde, Appl. Catal. A Gen., 467, 519-529 (2013).
[13]P. H. Rana and P. A. Parikh, Bioethanol selective oxidation to acetaldehyde over Ag-CeO2: role of metal-support interactions, J. Chem., 41(7), 2636-2641 (2017).
[14]V. V. Dutovet al., Low-temperature CO oxidation over Ag/SiO2 catalysts: Effect of OH/Ag ratio, Appl. Catal. B, 221, 598-609 (2018).
[15]K. I. Shimizu, H. Kawachi, and A. Satsuma, Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst, Appl. Catal. B, 96(1-2), 169-175 (2010).
[16]X. Zhang et al., Studies of silver species for low-temperature CO oxidation on Ag/SiO2 catalysts, Sep. Purif. Technol., 72(3), 395-400 (2010).
[17]D. Chen et al., Comparative studies of silver based catalysts supported on different supports for the oxidation of formaldehyde, Catal. Today, 175(1), 338-345 (2011).
[18]D. Chenet al., Effect of oxygen pretreatment on the surface catalytic oxidation of HCHO on Ag/MCM-41 catalysts, J. Mol. Catal. A Chem., 404-405, 98-105 (2015).
[19]H. Wang et al., Activation and deactivation of Ag/CeO2 during soot oxidation: influences of interfacial ceria reduction, Catal. Sci. Technol., 7(10), 2129-2139 (2017).
[20]C. Leeet al., Ag supported on electrospun macro-structure CeO2 fibrous mats for diesel soot oxidation, Appl. Catal. B, 174-175, 185-192 (2015).
[21]L. Yuet al., Ag supported on CeO2 with different morphologies for the catalytic oxidation of HCHO, Chem. Eng. J., 334, 2480-2487 (2018).
[22]G. V. Mamontovet al., Ethanol dehydrogenation over Ag-CeO2/SiO2 catalyst: Role of Ag-CeO2 interface, Appl. Catal. A Gen., 528, 161-167 (2016).
[23]J. Zhang et al., Effect of Support on the Activity of Ag-based Catalysts for Formaldehyde Oxidation, Sci. Rep., 5, 12950-12960 (2015).
[24]F. Wang, Effect of support carbon materials on Ag catalysts used for CO oxidation in the presence and absence of H2, J. Environ. Chem. Eng., 4(4), 4258-4262 (2016).
[25]D. S. Afanasevet al., High activity in CO oxidation of Ag nanoparticles supported on fumed silica, Catal. Commun., 22, 43-47 (2012).
[26]M. Skafet al., Physicochemical characterization and catalytic performance of 10% Ag/CeO2 catalysts prepared by impregnation and deposition–precipitation, J. Catal., 320, 137-146 (2014).
[27]X. Zhanget al., High-temperature diffusion induced high activity of SBA-15 supported Ag particles for low temperature CO oxidation at room temperature, J. Catal., 297, 264-271 (2013).
[28]V. V. Dutovet al., The effect of support pretreatment on activity of Ag/SiO2 catalysts in low-temperature CO oxidation, Catal. Today, 278, 150-156 (2016).
[29]Y. Qinet al., Effect of pretreatment conditions on catalytic activity of Ag/SBA-15 catalyst for toluene oxidation, Chinese J. Catal., 38(9), 1603-1612 (2017).
[30]J. Xu et al., Ag supported on meso-structured SiO2 with different morphologies for CO oxidation: On the inherent factors influencing the activity of Ag catalysts, Microporous Mesoporous Mater., 242, 90-98 (2017).
[31]E. L. Qiet al., Preparation of nanostructured Ag/CeO2 by microwave synthesis and its photocatalysis activity, Adv. Mat. Res., 624, 88-93 (2012).
[32]S. Scire, P. M. Riccobene, and C. Crisafulli, Ceria supported group IB metal catalysts for the combustion of volatile organic compounds and the preferential oxidation of CO, Appl. Catal. B, 101(1-2), 109-117 (2010).
[33]K. Yamazakiet al., The remote oxidation of soot separated by ash deposits via silver-ceria composite catalysts, Appl. Catal. A Gen., 476, 113-120 (2014).
[34]X. Deng et al., Constructing nano-structure on silver/ceria-zirconia towards highly active and stable catalyst for soot oxidation, J. Chem. Eng., 313, 544-555 (2017).
[35]G. Mondragon-Galiciaet al., A novel synthesis method to produce silver-doped CeO2 nanotubes based on Ag nanowire templates, Phys. Chem. Chem. Phys., 13(37), 16756-16761 (2011).
[36]張宏毅。二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性。成功大學博士論文,2005。
[37]H. He et al., Controllable synthesis, characterization, and CO oxidation activity of CeO2 nanostructures with various morphologies, Ceram. Int., 42(6), 7810-7818 (2016).
[38]Y. L. Songet al., A DFT+U study of CO oxidation at CeO2(110) and (111) surfaces with oxygen vacancies, Surf. Sci., 618, 140-147 (2013).
[39]Z. Wu, M. Li, and S. H. Overbury, On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes, J. Catal., 285(1), 61-73 (2012).
[40]S. Royer and D. Duprez, Catalytic oxidation of carbon monoxide over transition metal oxides, Chem. Catal. Chem., 3(1), 24-65 (2011).
[41]A. Longoet al., Structure of the metal-support interface and oxidation state of gold nanoparticles supported on ceria, J. Phys. Chem. C, 116(4), 2960-2966 (2012).
[42]J. C. Frost, Junction effect interactions in methanol synthesis catalysts, Nature, 334, 577-580 (1988).
[43]X. S. Huanget al., Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation, Appl. Catal. B, 90(1-2), 224-232 (2009).
[44]L. Fan and K. Fujimoto, Reaction mechanism of methanol synthesis from carbon dioxide and hydrogen on ceria-supported palladium catalysts with SMSI effect, J. Catal., 172, 238-242 (1997).
[45]W. Song, Y. Su, and E. J. M. Hensen, A DFT Study of CO Oxidation at the Pd-CeO2(110) Interface, J. Phys. Chem. C, 119(49), 27505-27511 (2015).
[46]L. H. Chang, Y. W. Chen, and N. Sasirekha, Preferential oxidation of carbon monoxide in hydrogen stream over Au/MgOx-TiO2 catalysts, Ind. Eng. Chem. Res., 47(12), 4098-4105 (2008).
[47]N. Sasirekha, P. Sangeetha, and Y. W. Chen, Bimetallic Au-Ag/CeO2 catalysts for preferential oxidation of CO in hydrogen-rich stream: Effect of calcination temperature, J. Phys. Chem. C, 118(28), 15226-15233 (2014).
[48]H. Ruan et al., Soot oxidation performance with a HZSM-5 supported Ag nanoparticles catalyst and the characterization of Ag species, RSC Adv., 7(69), 43789-43797 (2017).
[49]E. Kolobova et al., Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation, Fuel, 138, 65-71 (2014).
[50]X. Zhanget al., Low temperature CO oxidation over Ag/SBA-15 nanocomposites prepared via in-situ “pH-adjusting method, Catal. Commun., 16(1), 11-14 (2011).
[51]X. Zhanget al., In-situ synthesis of Ag/SBA-15 nanocomposites by the “pH-adjusting method, Mater. Lett., 65(12), 1892-1895 (2011).
[52]X. Zhanget al., Study of catalytic activity at the Ag/Al-SBA-15 catalysts for CO oxidation and selective CO oxidation, J. Chem. Eng., 283, 1097-1107 (2016).
[53]K. Saravanakumaret al., Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants, J. Alloys Compd., 664, 149-160 (2016).
[54]L. Maet al., Ag/CeO2 nanospheres: Efficient catalysts for formaldehyde oxidation, Appl. Catal. B, 148-149, 36-43 (2014).
[55]H. H. Liuet al., Oxygen vacancy promoted CO oxidation over Pt/CeO2 catalysts: A reaction at Pt–CeO2 interface, Appl. Surf. Sci., 314, 725-734 (2014).
[56]G. Jacobset al., Low Temperature Water–Gas Shift Reaction: Interactions of Steam and CO with Ceria Treated with Different Oxidizing and Reducing Environments, Catal. Lett., 145(2), 533-540 (2014).
[57]C. S. Polsteret al., Selectivity loss of Pt/CeO2 PROX catalysts at low CO concentrations: mechanism and active site study, J. Catal., 273(1), 50-58 (2010).
[58]B. J. Hsieh et al., Tuning metal support interactions enhances the activity and durability of TiO2-supported Pt nanocatalysts, Electrochim. Acta, 224, 452-459 (2017).
[59]T. S. Nguyenet al., Trends in the CO oxidation and PROX performances of the platinum-group metals supported on ceria, Catal. Today, 253, 106-114 (2015).
[60]S. Xuet al., Facile synthesis of bimetallic Pt-Ag/graphene composite and its electro-photo-synergistic catalytic properties for methanol oxidation, Catal., 6(9), (2016).
[61]J. Wisniewska and M. Ziolek, Formation of Pt-Ag alloy on different silicas-surface properties and catalytic activity in oxidation of methanol, RSC Adv., 7(16), 9534-9544 (2017).
[62]B. Ruiz-Camachoet al., Simple synthesis of Pt-Ag/SnO2-C for use as a catalyst of methanol oxidation in alkaline media, J. Solid State Electrochem., 21(8), 2449-2456 (2017).
[63]R. Fiorenzaet al., Au-Ag/CeO2 and Au-Cu/CeO2 catalysts for volatile organic compounds oxidation and CO preferential oxidation, Catal. Lett., 145(9), 1691-1702 (2015).
[64]X. Bokhimiet al., Nanocrystalline Ag, and Au-Ag alloys supported on titania for CO oxidation reaction, Mater. Chem. Phys., 138(2-3), 490-499 (2013).
[65]S. Y. Hwanget al., Property of Pt-Ag alloy nanoparticle catalysts in carbon monoxide oxidation, J. Phys. Chem. C, 118(49), 28739-28745 (2014).
[66]M. Breysseet al., Catalysis of carbon monoxide oxidation by cerium dioxide: II. Microcalorimetric investigation of adsorption and catalysis, J. Catal., 28(1), 54-62 (1973).
[67]M. Daniel and S. Loridant, Probing reoxidation sites byin situRaman spectroscopy: differences between reduced CeO2 and Pt/CeO2, J. Raman Spectrosc., 43(9), 1312-1319 (2012).
[68]C. J. Pan et al., Tuning/exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis, J. Taiwan Inst. Chem. Eng., 74, 154-186 (2017).
[69]N. J. Lawrence et al., Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation, Nano. Lett., 11(7), 2666-2671 (2011).
[70]M. Baronet al., Interaction of gold with cerium oxide supports: CeO2(111) thin films vs CeOx nanoparticles, J. Phys. Chem. C, 113(15), 6042-6049 (2009).
[71]J. Pawlonkaet al., Application of microemulsion method for development of methanol steam reforming Pd/ZnO catalysts, J. Therm. Anal. Calorim., 125(3), 1265-1272 (2016).
[72]A. D. Mayernick and M. J. Janik, Methane oxidation on Pd-Ceria: A DFT study of the mechanism over PdxCe1?xO2, Pd, and PdO, J. Catal., 278(1), 16-25 (2011).
[73]M. M. Brandaet al., Density functional theory study of the interaction of Cu, Ag, and Au atoms with the regular CeO2 (111) surface, J. Phys. Chem. C, 114(4), 1934-1941 (2010).
[74]Y. G. Wanget al., Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles, Nat. Commun., 6,6511-6518 (2015).
[75]N. Ta et al., Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring, J. Am. Chem. Soc., 134(51), 20585-20588 (2012).
[76]N. Ta, J. Liu, and W. Shen, Tuning the shape of ceria nanomaterials for catalytic applications, Chinese J. Catal., 34(5), 838-850 (2013).
[77]T. Zhenget al., Precious metal-support interaction in automotive exhaust catalysts, J. Rare Earths, 32(2), 97-107 (2014).
[78]D. Weng and M. Li, Research progress of the precious metal-support interaction in CeO2-based catalysts, Sci. Tech. Rev., 32, 77-83 (2014).
[79]Q. Fu , H. Saltsburg, and M. Flyzani-Stephanopoulos, Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts, Sci., 301, 935-938 (2003).
[80]X. Zhenget al., Base metal catalysts in carbon monoxide oxidation, Progress in chemistry, 18(2/3), 159-167 (2006).
[81]G. N. Vayssilovet al., Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: A combined density functional and infrared spectroscopy investigation, J. Phys. Chem. C, 115(47), 23435-23454 (2011).
[82]G. Li et al., Nanoporous Ag-CeO2 ribbons prepared by chemical dealloying and their electrocatalytic properties, J. Mater. Chem. A Mater., 1(16), 4974-4981 (2013).
[83]C. Schillinget al., Raman spectra of polycrystalline CeO2: A density functional theory study, J. Phys. Chem. C, 121(38), 20834-20849 (2017).
[84]H. Bouzidet al., Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity, Catal. Today, 252, 20-26 (2015).
[85]T. Fuet al., Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction, J. Power Sources, 365,17-25 (2017).
[86]劉育伶。金/二氧化鈰奈米粒子之製備及其催化特性之研究。成功大學碩士論文,2009。
[87]彭文郁。奈米結晶性鈀摻雜二氧化鈰觸媒在一氧化碳氧化反應上之研究。成功大學碩士論文,2007。
[88]J. Leeet al., How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: The origin of improved thermal stability of Pt/CeO2compared to CeO2, J. Phys. Chem. C, 120(45), 25870-25879 (2016).
[89]G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study, Phy. Chem. Chem. Phy., 3(17), 3838-3845 (2001).
[90]I. T. Liuet al., Structure and optical properties of Ag/CeO2 nanocomposites, Appl. Phys. A, 111(4), 1181-1186 (2012).
[91]I. A. Khanet al., CO oxidation catalyzed by Ag nanoparticles supported on SnO/CeO2, J. Braz. Chem. Soc., 26(4), 695-704 (2015).
[92]M. Happel et al., Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts, J. Catal., 289, 118-126 (2012).
[93]G. Preda and G. Pacchioni, Formation of oxygen active species in Ag-modified CeO2 catalyst for soot oxidation: A DFT study, Catal. Today, 177(1), 31-38 (2011).
[94]J. Lin, X. Wang, and T. Zhang, Recent progress in CO oxidation over Pt?group?metal catalysts at low temperatures, Chinese J. Catal., 37, 1805-1813 (2016).
[95]F. Chenet al., A DFT+U study of the lattice oxygen reactivity toward direct CO oxidation on the CeO2(111) and (110) surfaces, Phys. Chem. Chem. Phys., 14(48), 16573-16580 (2012).
[96]S. H. Zhong, G. Lu, and X. Q. Gong, A DFT+U study of the structures and reactivities of polar CeO2(100) surfaces, Chinese J. Catal., 38(7), 1138-1147 (2017).
[97]D. Tanget al., CO oxidation catalyzed by silver nanoclusters: mechanism and effects of charge, Phys. Chem. Chem. Phys., 14(37), 12829-12387 (2012).
[98]X. Lei, G. Mbamalu, and C. Qin, CO oxidation by molecular and atomic oxygen on Ag(100): A density functional theory study, J. Phys. Chem. C, 121(5), 2635-2642 (2017).
[99]J. S. Du et al., Embedding ultrafine and high-content Pt nanoparticles at ceria surface for enhanced thermal stability, Adv. Sci., 4(9), 1700056 (2017).
[100]G. Ertl and H. J. Freund, Catalysis and surface science, Phy. Today, 52(1), 32-38 (1999).
[101]S. C. Ammal and A. Heyden, Titania-supported single-atom platinum catalyst for water-gas shift reaction, Chemie Ingenieur Technik, 89(10), 1343-1349 (2017).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔