|
[1]A. Manz, N. Gra ber, and H. M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sensors and Actuators B: Chemical, vol. 1, pp. 244-248, 1// 1990. [2]A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, Patterned paper as a platform for inexpensive, low-volume, portable bioassays, Angewandte Chemie-International Edition, vol. 46, pp. 1318-1320, 2007 2007. [3]D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, Recent Developments in Paper-Based Microfluidic Devices, Analytical Chemistry, vol. 87, pp. 19-41, Jan 6 2015. [4]Y. Lu, W. Shi, L. Jiang, J. Qin, and B. Lin, Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay, Electrophoresis, vol. 30, pp. 1497-1500, May 2009. [5]V. Leung, A.-A. M. Shehata, C. D. Filipe, and R. Pelton, Streaming potential sensing in paper-based microfluidic channels, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 364, pp. 16-18, 2010. [6]E. Carrilho, A. W. Martinez, and G. M. Whitesides, Understanding wax printing: a simple micropatterning process for paper-based microfluidics, Analytical chemistry, vol. 81, pp. 7091-7095, 2009. [7]W. Dungchai, O. Chailapakul, and C. S. Henry, A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing, Analyst, vol. 136, pp. 77-82, 2011 2011. [8]X. Li, J. F. Tian, T. Nguyen, and W. Shen, Paper-Based Microfluidic Devices by Plasma Treatment, Analytical Chemistry, vol. 80, pp. 9131-9134, Dec 2008. [9]X. Li, J. Tian, and W. Shen, Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors, Cellulose, vol. 17, pp. 649-659, 2010. [10]D. A. Bruzewicz, M. Reches, and G. M. Whitesides, Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper, Analytical chemistry, vol. 80, pp. 3387-3392, 2008. [11]K. Abe, K. Suzuki, and D. Citterio, Inkjet-printed microfluidic multianalyte chemical sensing paper, Analytical Chemistry, vol. 80, pp. 6928-6934, Sep 15 2008. [12]K. Abe, K. Kotera, K. Suzuki, and D. Citterio, Inkjet-printed paperfluidic immuno-chemical sensing device, Analytical and bioanalytical chemistry, vol. 398, pp. 885-893, 2010. [13]J. L. Delaney, C. F. Hogan, J. Tian, and W. Shen, Electrogenerated chemiluminescence detection in paper-based microfluidic sensors, Analytical chemistry, vol. 83, pp. 1300-1306, 2011. [14]X. Li, J. Tian, G. Garnier, and W. Shen, Fabrication of paper-based microfluidic sensors by printing, Colloids and Surfaces B: Biointerfaces, vol. 76, pp. 564-570, 4/1/ 2010. [15]W. Wang, W.-Y. Wu, and J.-J. Zhu, Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration, Journal of Chromatography A, vol. 1217, pp. 3896-3899, 2010. [16]E. M. Fenton, M. R. Mascarenas, G. P. Lopez, and S. S. Sibbett, Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping, Acs Applied Materials & Interfaces, vol. 1, pp. 124-129, Jan 2009. [17]E. Fu, P. Kauffman, B. Lutz, and P. Yager, Chemical signal amplification in two-dimensional paper networks, Sensors and Actuators B: Chemical, vol. 149, pp. 325-328, 8/6/ 2010. [18]Akyazi, Tugce; Basabe-Desmonts, Lourdes; Benito-Lopez, Fernando, Review on microfluidic paper-based analytical devices towards commercialization, Analytica Chimica Acta, vol. 1001, pp. 1-17, 2018 [19]G. Chitnis, Z. Ding, C.-L. Chang, C. A. Savran, and B. Ziaie, Laser-treated hydrophobic paper: an inexpensive microfluidic platform, Lab on a Chip, vol. 11, pp. 1161-1165, 2011. [20]Y. Zhang, C. Zhou, J. Nie, S. Le, Q. Qin, F. Liu, et al., Equipment-Free Quantitative Measurement for Microfluidic PaperBased Analytical Devices Fabricated Using the Principles of MovableType Printing, Analytical Chemistry, vol. 86, pp. 2005-2012, 2014. [21]P. d. T. Garcia, T. M. Garcia Cardoso, C. D. Garcia, E. Carrilho, and W. K. Tomazelli Coltro, A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays, Rsc Advances, vol. 4, pp. 37637-37644, 2014. [22]T. Songjaroen, W. Dungchai, O. Chailapakul, and W. Laiwattanapaisal, Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping, Talanta, vol. 85, pp. 2587-2593, Oct 15 2011. [23]C. Renault, M. J. Anderson, and R. M. Crooks, Electrochemistry in hollow-channel paper analytical devices, Journal of the American Chemical Society, vol. 136, pp. 4616-4623, 2014. [24]J. Olkkonen, K. Lehtinen, and T. Erho, Flexographically printed fluidic structures in paper, Analytical chemistry, vol. 82, pp. 10246-10250, 2010. [25]Shin, Joong Ho; Park, Juhwan; Park, Je-Kyun, Organic Solvent and Surfactant Resistant Paper-Fluidic Devices Fabricated by One-Step Embossing of Nonwoven Polypropylene Sheet, Micromachines, vol. 8, 2017 [26]C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, et al., Paper‐Based ELISA, Angewandte Chemie International Edition, vol. 49, pp. 4771-4774, 2010. [27]Y. Zhu, X. Xu, N. D. Brault, A. J. Keefe, X. Han, Y. Deng, et al., Cellulose paper sensors modified with zwitterionic poly (carboxybetaine) for sensing and detection in complex media, Analytical chemistry, vol. 86, pp. 2871-2875, 2014. [28]G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey, Analytical and bioanalytical chemistry, vol. 393, pp. 569-582, 2009. [29]M. Sajid, A.-N. Kawde, and M. Daud, Designs, formats and applications of lateral flow assay: A literature review, Journal of Saudi Chemical Society, vol. 19, pp. 689-705, 11// 2015. [30]W.-J. Zhu, D.-Q. Feng, M. Chen, Z.-D. Chen, R. Zhu, H.-L. Fang, et al., Bienzyme colorimetric detection of glucose with self-calibration based on tree-shaped paper strip, Sensors and Actuators B: Chemical, vol. 190, pp. 414-418, 1// 2014. [31]M. He and Z. Liu, Paper-based microfluidic device with upconversion fluorescence assay, Analytical chemistry, vol. 85, pp. 11691-11694, 2013. [32]A. M. Rosa, A. F. Louro, S. A. Martins, J. o. Inácio, A. M. Azevedo, and D. M. F. Prazeres, Capture and detection of DNA hybrids on paper via the anchoring of antibodies with fusions of carbohydrate binding modules and ZZ-domains, Analytical chemistry, vol. 86, pp. 4340-4347, 2014. [33]K. Scida, B. Li, A. D. Ellington, and R. M. Crooks, DNA detection using origami paper analytical devices, Analytical chemistry, vol. 85, pp. 9713-9720, 2013. [34]W. Dungchai, O. Chailapakul, and C. S. Henry, Electrochemical detection for paper-based microfluidics, Analytical chemistry, vol. 81, pp. 5821-5826, 2009. [35]R. F. Carvalhal, M. Simão Kfouri, M. H. de Oliveira Piazetta, A. L. Gobbi, and L. T. Kubota, Electrochemical detection in a paper-based separation device, Analytical chemistry, vol. 82, pp. 1162-1165, 2010. [36]Z. Nie, F. Deiss, X. Liu, O. Akbulut, and G. M. Whitesides, Integration of paper-based microfluidic devices with commercial electrochemical readers, Lab on a Chip, vol. 10, pp. 3163-3169, 2010. [37]J. Lu, S. Ge, L. Ge, M. Yan, and J. Yu, Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing, Electrochimica Acta, vol. 80, pp. 334-341, 2012. [38]T. Nurak, N. Praphairaksit, and O. Chailapakul, Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water, Talanta, vol. 114, pp. 291-296, 2013. [39]C. Hu, X. Bai, Y. Wang, W. Jin, X. Zhang, and S. Hu, Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes, Analytical chemistry, vol. 84, pp. 3745-3750, 2012. [40]G. Demirel and E. Babur, Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications, Analyst, vol. 139, pp. 2326-2331, 2014 2014. [41]D. M. Cate, W. Dungchai, J. C. Cunningham, J. Volckens, and C. S. Henry, Simple, distance-based measurement for paper analytical devices, Lab on a Chip, vol. 13, pp. 2397-2404, 2013. [42]W. Liu, C. L. Cassano, X. Xu, and Z. H. Fan, Laminated Paper-Based Analytical Devices (LPAD) with Origami-Enabled Chemiluminescence Immunoassay for Cotinine Detection in Mouse Serum, Analytical Chemistry, vol. 85, pp. 10270-10276, Nov 5 2013. [43]P. Rattanarat, W. Dungchai, D. Cate, J. Volckens, O. Chailapakul, and C. S. Henry, Multilayer Paper-Based Device for Colorimetric and Electrochemical Quantification of Metals, Analytical Chemistry, vol. 86, pp. 3555-3562, Apr 1 2014. [44]O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, and A. Kahru, Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review, Archives of Toxicology, vol. 87, pp. 1181-1200, 2013. [45]B. M. Jayawardane, L. d. Coo, R. W. Cattrall, and S. D. Kolev, The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu(II), Analytica Chimica Acta, vol. 803, pp. 106-112, 11/25/ 2013. [46]G. J. Brewer, Copper toxicity in Alzheimer's disease: Cognitive loss from ingestion of inorganic copper, Journal of Trace Elements in Medicine and Biology, vol. 26, pp. 89-92, 6// 2012. [47]A. Sadollahkhani, A. Hatamie, O. Nur, M. Willander, B. Zargar, and I. Kazeminezhad, Colorimetric Disposable Paper Coated with ZnO@ZnS Core-Shell Nanoparticles for Detection of Copper Ions in Aqueous Solutions, Acs Applied Materials & Interfaces, vol. 6, pp. 17694-17701, Oct 22 2014. [48]B. M. Jayawardane, S. Wei, I. D. McKelvie, and S. D. Kolev, Microfluidic paper-based analytical device for the determination of nitrite and nitrate, Analytical chemistry, vol. 86, pp. 7274-7279, 2014. [49]J. Jokerst, J. Adkins, B. Bisha, M. Mentele, L. Goodridge, and C. Henry, Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens, Analytical chemistry, vol. 84, pp. 2900-2907, 2012. [50]J. Shi, F. Tang, H. Xing, H. Zheng, B. Lianhua, and W. Wei, Electrochemical detection of Pb and Cd in paper-based microfluidic devices, Journal of the Brazilian Chemical Society, vol. 23, pp. 1124-1130, 2012. [51]V. Mani, K. Kadimisetty, S. Malla, A. A. Joshi, and J. F. Rusling, Paper-based electrochemiluminescent screening for genotoxic activity in the environment, Environmental science & technology, vol. 47, pp. 1937-1944, 2013. [52]W. Liu, J. Kou, H. Xing, and B. Li, Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables, Biosensors and Bioelectronics, vol. 52, pp. 76-81, 2/15/ 2014. [53]Cummins, B. M., Chinthapatla, R., Ligler, F. S., Walker, G. M., 2017. Anal. Chem. 89, 4377-4381. [54]Hsieh, Y. L. 1995. Textile Res. J. 65(5), 299-307. [55]Chang, S., Seo, J., Hong, S., Lee, D. G., Kim, W. 2018. J. Fluid Mech. 845, 36-50. [56]Zheng, M., Du, W. 2006. Vib. Spectrosc. 40, 219-224. [57]Coccato, A., Jehlicka, J., Moens, L., Vandenabeele, P., 2015. J. Raman Spectrosc. 46, 1003-1015. [58]Wiley, J. H., Atalla, R. H., 1987. Carbohyd. Res. 160, 113-129. [59]Rasi, M. 2013. PhD Dissertation. University of Jyväskylä, Finland.
|