|
1.Cavalieri, Ercole, et al. Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1766.1 (2006): 63-78. 2.Fang, Chieh-Ming, et al. Identification of endogenous site-specific covalent binding of catechol estrogens to serum proteins in human blood. Toxicological Sciences 148.2 (2015): 433-442. 3.Ku, Ming-Chun, et al. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes. Scientific reports 6 (2016): 28804. 4.Liang, Huei-Chen, et al. In-situ Click Reaction Coupled with Quantitative Proteomics for Identifying Protein Targets of Catechol Estrogens. Journal of proteome research (2018). 5.Wilkins, Marc R., et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology and genetic engineering reviews 13.1 (1996): 19-50. 6.Chait, Brian T. Mass spectrometry: bottom-up or top-down?. Science 314.5796 (2006): 65-66. 7.Huisgen, Rolf, et al. 1.3‐Dipolare Additionen der Azomethin‐imine. Angewandte Chemie 72.12 (1960): 416-417. 8.Kolb, Hartmuth C., M. G. Finn, and K. Barry Sharpless. Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition 40.11 (2001): 2004-2021. 9.Hein, Jason E., and Valery V. Fokin. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper (I) acetylides. Chemical Society Reviews 39.4 (2010): 1302-1315. 10.Presolski, Stanislav I., Vu Phong Hong, and M. G. Finn. Copper‐Catalyzed Azide–Alkyne Click Chemistry for Bioconjugation. Current protocols in chemical biology (2011): 153-162. 11.Kolb, Hartmuth C., and K. Barry Sharpless. The growing impact of click chemistry on drug discovery. Drug discovery today 8.24 (2003): 1128-1137. 12.Moses, John E., and Adam D. Moorhouse. The growing applications of click chemistry. Chemical Society Reviews 36.8 (2007): 1249-1262. 13.Baskin, Jeremy M., et al. Copper-free click chemistry for dynamic in vivo imaging. Proceedings of the National Academy of Sciences 104.43 (2007): 16793-16797. 14.Speers, Anna E., Gregory C. Adam, and Benjamin F. Cravatt. Activity-based protein profiling in vivo using a copper (I)-catalyzed azide-alkyne [3+ 2] cycloaddition. Journal of the American Chemical Society 125.16 (2003): 4686-4687. 15.Tron, Gian Cesare, et al. Click chemistry reactions in medicinal chemistry: Applications of the 1, 3‐dipolar cycloaddition between azides and alkynes. Medicinal research reviews 28.2 (2008): 278-308. 16.Hein, Christopher D., Xin-Ming Liu, and Dong Wang. Click chemistry, a powerful tool for pharmaceutical sciences. Pharmaceutical research 25.10 (2008): 2216-2230. 17.Hong, Vu, et al. Labeling live cells by copper-catalyzed alkyne− azide click chemistry. Bioconjugate chemistry 21.10 (2010): 1912-1916. 18.Hong, Vu, et al. Analysis and Optimization of Copper‐Catalyzed Azide–Alkyne Cycloaddition for Bioconjugation. Angewandte Chemie International Edition 48.52 (2009): 9879-9883. 19.Singh, Serena, et al. Subunit-directed click coupling via doubly cross-linked hemoglobin efficiently produces readily purified functional bis-tetrameric oxygen carriers. Organic & biomolecular chemistry 13.45 (2015): 11118-11128. 20.Tornøe, Christian W., Caspar Christensen, and Morten Meldal. Peptidotriazoles on solid phase:[1, 2, 3]-triazoles by regiospecific copper (I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. The Journal of organic chemistry 67.9 (2002): 3057-3064. 21.Chan, Timothy R., et al. Polytriazoles as copper (I)-stabilizing ligands in catalysis. Organic letters 6.17 (2004): 2853-2855. 22.Hong, Vu, et al. Analysis and Optimization of Copper‐Catalyzed Azide–Alkyne Cycloaddition for Bioconjugation. Angewandte Chemie International Edition 48.52 (2009): 9879-9883. 23.Gavrieli, Yael, Yoav Sherman, and Shmuel A. Ben-Sasson. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of cell biology 119.3 (1992): 493-501. 24.Amann, Rudolf I., Wolfgang Ludwig, and Karl-Heinz Schleifer. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological reviews 59.1 (1995): 143-169. 25.Ong, Shao-En, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & cellular proteomics 1.5 (2002): 376-386. 26.Aragão-Leoneti, Valquiria, et al. Application of copper (I)-catalysed azide/alkyne cycloaddition (CuAAC)‘click chemistry’in carbohydrate drug and neoglycopolymer synthesis. Tetrahedron 66.49 (2010): 9475-9492. 27.Weber, Patricia C., et al. Structural origins of high-affinity biotin binding to streptavidin. Science 243.4887 (1989): 85-88. 28.Hutchens, T. W., and J. O. Porath. Protein recognition of immobilized ligands: promotion of selective adsorption. Clinical chemistry 33.9 (1987): 1502-1508. 29.Holmberg, Anders, et al. The biotin‐streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26.3 (2005): 501-510. 30.Gygi, Steven P., et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature biotechnology 17.10 (1999): 994. 31.Li, Chen, et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Molecular & Cellular Proteomics 3.4 (2004): 399-409. 32.Martell, Julianne, and Eranthie Weerapana. Applications of copper-catalyzed click chemistry in activity-based protein profiling. Molecules 19.2 (2014): 1378-1393. 33.Baskin, Jeremy M., and Carolyn R. Bertozzi. Bioorthogonal click chemistry: covalent labeling in living systems. Molecular Informatics 26.11‐12 (2007): 1211-1219. 34.Patterson, David M., Lidia A. Nazarova, and Jennifer A. Prescher. Finding the right (bioorthogonal) chemistry. ACS chemical biology 9.3 (2014): 592-605. 35.Zhang, Yaoyang, et al. Protein analysis by shotgun/bottom-up proteomics. Chemical reviews 113.4 (2013): 2343-2394. 36.Cravatt, Benjamin F., Aaron T. Wright, and John W. Kozarich. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77 (2008): 383-414. 37.Speers, Anna E., and Benjamin F. Cravatt. Profiling enzyme activities in vivo using click chemistry methods. Chemistry & biology 11.4 (2004): 535-546. 38.Hsu, Jue-Liang, et al. Stable-isotope dimethyl labeling for quantitative proteomics. Analytical chemistry 75.24 (2003): 6843-6852. 39.Huang, Sheng‐Yu, et al. Quantitation of protein phosphorylation in pregnant rat uteri using stable isotope dimethyl labeling coupled with IMAC. Proteomics 6.6 (2006): 1722-1734. 40.Shen, Po-Tsun, Jue-Liang Hsu, and Shu-Hui Chen. Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using LC− MS/MS. Analytical chemistry 79.24 (2007): 9520-9530. 41.Wu, Chin-Jen, et al. Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC− MS/MS for estrogen-induced transcriptional regulation. Journal of proteome research 10.3 (2011): 1088-1097. 42.Tang, Bo, et al. Stable isotope dimethyl labeling combined with LTQ mass spectrometric detection, a quantitative proteomics technology used in liver cancer research. Biomedical reports 1.4 (2013): 549-554. 43.Okoh, Victor O., et al. Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells. PLoS One 8.2 (2013): e54206. 44.Hoopmann, Michael R., et al. Post analysis data acquisition for the iterative MS/MS sampling of proteomics mixtures. Journal of proteome research 8.4 (2009): 1870-1875. 45.Shechter, David, et al. Extraction, purification and analysis of histones. Nature protocols 2.6 (2007): 1445. 46.McAnena, Peter, James AL Brown, and Michael J. Kerin. Circulating nucleosomes and nucleosome modifications as biomarkers in cancer. Cancers 9.1 (2017): 5. 47.Negrini, Simona, Vassilis G. Gorgoulis, and Thanos D. Halazonetis. Genomic instability—an evolving hallmark of cancer. Nature reviews Molecular cell biology 11.3 (2010): 220. 48.Kornberg, Roger D., and Yahli Lorch. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98.3 (1999): 285-294. 49.Khorasanizadeh, Sepideh. The nucleosome: from genomic organization to genomic regulation. Cell 116.2 (2004): 259-272. 50.Schneider, Robert, and Rudolf Grosschedl. Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes & development 21.23 (2007): 3027-3043. 51.Kouzarides, Tony. Chromatin modifications and their function. Cell 128.4 (2007): 693-705. 52.Fraga, Mario F., et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature genetics 37.4 (2005): 391. 53.Elsheikh, Somaia E., et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer research 69.9 (2009): 3802-3809. 54.Trelle, Morten B., et al. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum. Journal of proteome research 8.7 (2009): 3439-3450. 55.Fenn, John B., et al. Electrospray ionization for mass spectrometry of large biomolecules. Science 246.4926 (1989): 64-71. 56.Hillenkamp, Franz, et al. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Analytical chemistry 63.24 (1991): 1193A-1203A.
|