(3.230.173.249) 您好!臺灣時間:2021/04/18 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林家興
研究生(外文):Chia-HsingLin
論文名稱:河道隘口對於重大土砂災害後河道輸砂影響之研究
論文名稱(外文):Effect of a River Notch on Sediment Transport After a Severe Sediment Hazards
指導教授:謝正倫謝正倫引用關係
指導教授(外文):Chjeng-Lun Shieh
學位類別:博士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:83
中文關鍵詞:河道隘口土砂控制功能土砂控制機制囚砂率排砂尖峰折減率
外文關鍵詞:River notchSediment control functionSediment control mechanismSediment trapping rateReduction rate of peak sediment transport
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
莫拉克颱風(2009/08/08)在台灣創下3天3000mm左右的累積雨量記錄,並在多處流域上游誘發了許多山崩。在現場調查中,我們發現有些流域其山崩的土砂快速的往河川中下游運輸,但有些流域的山崩土砂卻淤積於一些天然隘口(River Notch)的上游河道內,並在其後六年間緩緩流出。調查顯示隘口對於河道上游大規模的來水來砂現象產生大量淤積及緩慢排出的效果。
本研究目的主要是探討天然河道隘口土砂調節控制功能與機制。在研究方法上以渠槽實驗及數值模擬來分析兩個代表性的土砂事件:其一為高強度短延時土砂災害事件(Type A),另一個低強度長延時非土砂災害事件(Type B)。再者,本研究並定義二個無因次參數來評估隘口土砂調節功能,其一為隘口的囚砂率 (Sediment Trapping Rate, T),為一個土砂事件中隘口淤砂總量與上游來砂總量的比值;其二為隘口的排砂尖峰折減率 (Reduction Rate of Peak Sediment Transport, D)定義為上游來砂率尖峰值與下游排砂率尖峰值之差值再除以上游來砂率尖峰值。
室內渠道實驗探討天然河道隘口對土砂調節之功能,藉以了解河道隘口對上游來水來砂事件之調節能力。河道隘口對土砂調節控制特性,透過不同比例之隘口模型與上游供砂速率變化,分析隘口上游土砂囚砂能力及下游排砂尖峰折減變化,並進一步探討河道隘口束縮比對囚砂率及排砂折減率之關係。
數值模式對河道天然隘口土砂調節功能評估,改善河道地形寬度突縮模擬準確度,修正動量方程並導入河道寬度突縮時所產生的水壓力變化項。再進行數值實驗測試模式穩定性及守恆性以探討模式之穩定性及準確度。數值模式之驗證,探討定床及動床之水流及土砂堆積縱剖面變化。最後數值模擬進一步探討隘口寬度突縮地形影響下之水理變化及土砂堆積特性。
經由渠槽實驗及數值計算結果,我們發現下列數點結論:(1)此種土砂調節功能受隘口束縮比 (Contraction Ratio) 之影響甚大。束縮比愈大,囚砂效果及土砂排出折減效果也愈大。(2)在相同的束縮比狀況下,上游來水來砂規模愈大(高強度短延時)則隘口的土砂調節功能愈佳,反之,在一般小規模來水來砂事件(低強度長延時)中,隘口的土砂調節功能並不明顯。(3)隘口的土砂調節機制是由於隘口寬度束縮所引起水流、輸砂及河床沖淤此三種之間的交互作用的結果。水流、輸砂及河床沖淤三者間的交互作用在渠槽實驗及數值模擬中明顯可見,此顯示出河道隘口在災害事件中所提供土砂控制重要角色。
The purpose of this study is to investigate the sediment control function and mechanism of natural river notches. Physical and numerical experiments are analyzed in this study for two representative types of sediment events: high intensity and short duration Type A sediment disaster events, and low intensity and long duration Type B moderate non-disaster events. Two dimensionless parameters, sediment trapping rate and reduction rate of peak sediment transport, are defined to evaluate the sediment control function of river notches. All results indicate that the contraction ratio of the notch has a significant influence on sediment control function, with high contraction ratios resulting in both high sediment-trapping and high reduction rates. River notches provide better sediment control during Type A events than Type B events. The sediment control mechanism of river notches is the result of multiple interactions among river flow, sediment transport, and riverbed variation. Analysis of these interactions supports the significant protection role of river notches on sediment control for disaster events.
Table of Contents
List of Figures IV
List of Tables VII
List of Symbols VIII
Chapter 1 Introduction 1
1.1 Research on Study Motivation 1
1.2 Purpose of Study 3
1.3 Scope of Dissertation 4
Chapter 2 Literature Review 6
2.1 Hydraulic Characteristics under River Width Contractions 6
2.2 The Influence of River Contraction on Riverbed Morphology 7
2.3 The Sediment Transport Affects Riverbed Morphology 8
2.4 The Influence of Artificial Structure on Sediment Transport 9
2.5 Summary 10
Chapter 3 Field Investigation and Implementation 12
3.1 Contraction Ratios of River Notches in Taiwan 12
3.2 Case Study of Shoufeng River 13
3.3 Case Study of Taimali River 19
3.4 Summary 23
Chapter 4 Experimental Design and Procedures Determination 24
4.1 Experimental Design 24
4.2 Experimental Procedures and Flow Chart 27
4.3 Experiment Results 32
4.4 Sediment Control Function of River Notch 38
Chapter 5 Mathematic Model Development Based on Numerical Simulations 40
5.1 Governing Equations 40
5.2 Numerical Scheme and Finite Difference Equations 44
5.3 Procedure of Sediment Adjust Simulations 48
5.4 Simulation Results 52
Chapter 6 Discussion and Conclusion 58
6.1 The Mechanism of Sediment Control of River Notches 58
6.2 Conclusion 60
6.3 Suggestion for Future Research 63
Acknowledgements 64
References 65
Appendix A: Results of Experiment Cases 68
Appendix B: Derivation of Flow Momentum Equation 71
Appendix C: The Stability and Conservation Testing of Numerical Model 74
Armanini, A., Dalri, C., & Larcher, M. (2006). Slit-check dams for controlling debris flow and mudflow. Proceeding of 11th Congress INTERPRAEVENT 2006, Niigata, Japan, Vol. 1, 141-148.
Armanini, A., & Larcher, M. (2001). Rational criterion for designing opening of slit-check dam. Journal of Hydraulic Engineering-Asce, 127(2), 94-104.
Bellal, M., Spinewine, B., Savary, C., & Zech, Y. (2003). Morphological evolution of steep-sloped river beds in the presence of a hydraulic jump: Experimental study. Proceedings of the 30th IAHR Congress, Thessaloniki, Greece, Vol. C-II, 133-140.
Busnelli, M. M., Stelling, G. S., & Larcher, M. (2001). Numerical morphological modeling of open-check dams. Journal of Hydraulic Engineering-Asce, 127(2), 105-114.
Campisano, A., Cutore, P., & Modica, C. (2014). Improving the Evaluation of Slit-Check Dam Trapping Efficiency by Using a 1D Unsteady Flow Numerical Model. Journal of Hydraulic Engineering, 140(7), 04014024. doi:10.1061/(ASCE)HY.1943-7900.0000868
Catella, M., Paris, E., & Solari, L. (2005). Case study: Efficiency of slit-check dams in the mountain region of Versilia Basin. Journal of Hydraulic Engineering-Asce, 131(3), 145-152. doi:10.1061/(Asce)0733-9429(2005)131:3(145)
Chen, S.-C., Wu, C.-H., Chao, Y.-C., & Shih, P.-Y. (2013). Long-term impact of extra sediment on notches and incised meanders in the Hoshe River, Taiwan. Journal of Mountain Science, 10(5), 716-723. doi:10.1007/s11629-013-2620-x
Chen, Y. M., Tsai, Y. J., Lin, S. H., and Shieh, C. L. (2015). Numerical Simulation on River Bed and Bank Evolution. Journal of the Taiwan Disaster Prevention Society, 7(1), 51-62.
Chien, N., & Wan, Z. (1983). Sediment Transport Mechanics. Beijing, China: Science Press.
Chow, V. T. (1959). Open-channel hydraulics. New York: McGraw-Hill.
Cunge, J. A., Holly, F. M., & Verwey, A. (1980). Practical aspects of computational river hydraulics. London: Pitman Advanced Publishing Program.
Dey, S., & Raikar, R. V. (2005). Scour in long contractions. Journal of Hydraulic Engineering-Asce, 131(12), 1036-1049.
Dust, D., & Wohl, E. (2012). Conceptual model for complex river responses using an expanded Lane's relation. Geomorphology, 139–140, 109-121. doi:http://dx.doi.org/10.1016/j.geomorph.2011.10.008
Eilon, B. (1972). A Note Concerning the Two-Step Lax-Wendroff Method in Three Dimensions. Mathematics of Computation, 26(117), 41-43. doi:10.2307/2004716
Goutière, L., Zech, Y., Swartenbroekx, C., & Soares-Frazão, S. (2010). Experimental analysis of the morphological evolution induced by a flow in a sudden channel constriction. River Flow 2010 Conference, Braunschweig, Germany, Vol. 2, 1231-1238.
Hager, W. H., & Dupraz, P. A. (1985). Discharge Characteristics of Local, Discontinuous Contractions. Journal of Hydraulic Research, 23(5), 421-433.
Hassan, M. A., & Zimmermann, A. E. (2012). Channel Response and Recovery to Changes in Sediment Supply Gravel-Bed Rivers (pp. 464-473): John Wiley & Sons, Ltd.
Henderson, F. M. (1966). Open channel flow. New York: Macmillan.
Iwagaki, Y. (1956). Hydrodynamical Study on Critical Tractive Force. Transactions of the Japan Society of Civil Engineers, 1956(41), 1-21. doi:10.2208/jscej1949.1956.41_1
Kuo, Y. S., Tsai, Y. J., Chen, Y. S., Shieh, C. L., Miyamoto, K., & Itoh, T. (2013). Movement of deep-seated rainfall-induced landslide at Hsiaolin Village during Typhoon Morakot. Landslides, 10(2), 191-202. doi:10.1007/s10346-012-0315-y
Lapidus, A. (1967). A detached shock calculation by second-order finite differences. Journal of Computational Physics, 2(2), 154-177. doi:http://dx.doi.org/10.1016/0021-9991(67)90032-0
Lax, P. (1973). Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves: Society for Industrial and Applied Mathematics.
Lin, C. H., Shieh, C. L., Liu, C. J., Lin, S. H., & Tsai, Y. J. (2016). Experiment study on sediment control function of river narrow-section River Sedimentation (pp. 140-140): CRC Press.
Lin, C. H., Shieh, C. L., & Lin, S. H. (2015). Numerical Study on Hydraulic Variation of River Narrow-Section. The 22nd Hydrulic Engineering Conference, Tainan, Taiwan.
Meselhe, E. A., Sotiropoulos, F., & Holly, F. M. (1997). Numerical simulation of transcritical flow in open channels. Journal of Hydraulic Engineering-Asce, 123(9), 774-783.
Meyer-Peter, E., & Müller, R. (1948). Formulas for Bed-Load transport. Proc., 2nd Congress of IAHR, Stockholm, Sweden, Vol., 39-64.
Molinas, A., & Marcus, K. B. (1998). Choking in water supply structures and natural channels. Journal of Hydraulic Research, 36(4), 675-694. doi:10.1080/00221689809498615
Negm, A. M. (2001). Flow Characteristics at Asymmetric Sudden Contraction. Proc. of IWTC-VI 2001, Alex., Egypt, March 23-25, 2001, pp.5-19.
Negm, A. M., Elfikv, M. M., Attia, M. I., & Ezzeldin, M. M. (2003). Energy Loss Due to Sudden Contraction Through Transition Length in Sloped Open Channels. Proc. of 7th AEIC 2003, Alazhar University, Naser City, Cairo, Egypt.
Piton, G., & Recking, A. (2015). The Effects of Check Dams on Sediment Transport Dynamics on Steep Slopes. In G. Lollino, M. Arattano, M. Rinaldi, O. Giustolisi, J.-C. Marechal, & G. E. Grant (Eds.), Engineering Geology for Society and Territory - Volume 3: River Basins, Reservoir Sedimentation and Water Resources (pp. 43-47). Cham: Springer International Publishing.
Reisner, J., Serencsa, J., & Shkoller, S. (2013). A space-time smooth artificial viscosity method for nonlinear conservation laws. Journal of Computational Physics, 235, 912-933.
Richtmyer, R. D. (1963). A survey of difference methods for non-steady fluid dynamics (Vol. 63-2). Boulder, Co.: National Center for Atmospheric Research.
Schwindt, S., Franca, M. J., & Schleiss, A. J. (2016). The influence of the opening width of check dams on bedload continuity of mountain rivers River Flow 2016 (pp. 1156-1160): CRC Press.
Shieh, C. L., & Chen, Y. S. (2017). Gravel Riverbed Processes Resulting from Large-Scale Landslides. In D. Tsutsumi & J. Laronne (Eds.), Gravel-Bed Rivers: Process and Disasters (pp. 816): Wiley-Blackwell.
Shieh, C. L., Hwang, J. K., & Liu, C. L. (1992a). One Dimensionally Numerical Simulation of Reservoir Sedimentation in Supercritical Flow. Taiwan Water Conservancy, 40(2), 46-54.
Shieh, C. L., Hwang, J. K., & Liu, C. L. (1992b). One Dimensionally Simulation of Reservoir Sedimentation in Subcritical Flow. Taiwan Water Conservancy, 40(1), 67-78.
Shieh, C. L., Wang, C. M., Chen, Y. S., Tsai, Y. J., & Tseng, W. H. (2010). An Overview of Disasters Resulted from Typhoon Morakot in Taiwan. Journal of Disaster Research, 5(3), 236-244.
Shieh, C. L., Wang, C. M., Lai, W. C., Tseng, Y. C., & Lee, S. P. (2009). The composite hazard resulted from Typhoon Morakot in Taiwan. Journal of the Japan Society of Erosion Control Engineering, 62(4), 61-65.
Sieben, J. (1999). A theoretical analysis of discontinuous flow with mobile bed. Journal of Hydraulic Research, 37(2), 199-212.
Strang, G. (1968). On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical Analysis, 5(3), 506-517. doi:10.1137/0705041
Takahashi, T. (1978). Mechanical characteristics of debris flow. Journal of the Hydraulics Division, ASCE, 104(8), 1153-1169.
Thakkar, S. A., Chanda Rautela, Dave, R. P., & Malekwala F. S. (2014). Numerical Modeling of Degradation Due to Sediment Diminution. International Journal for Scientific Research & Development, 2(1), 215-219.
Tsai, Y.-F., & Shieh, C.-L. (1997). Experimental and Numerical Studies on the Morphological Similarity of Debris-Flow Fans. Journal of the Chinese Institute of Engineers, 20(6), 629-642. doi:10.1080/02533839.1997.9741872
VonNeumann, J., & Richtmyer, R. D. (1950). A Method for the Numerical Calculation of Hydrodynamic Shocks. Journal of Applied Physics, 21(3), 232-237. doi:10.1063/1.1699639
Wu, B. S., & Molinas, A. (2001). Choked flows through short contractions. Journal of Hydraulic Engineering-Asce, 127(8), 657-662.
Wu, B. S., & Molinas, A. (2005). Energy losses and threshold conditions for choking in channel contractions. Journal of Hydraulic Research, 43(2), 139-148.
Yen, C. L., Chang, S. Y., & Lee, H. Y. (1992). Aggradation-Degradation Process in Alluvial Channels. Journal of Hydraulic Engineering-Asce, 118(12), 1651-1669.
Zwas, G. (1972). On two step Lax-Wendroff methods in several dimensions. Numerische Mathematik, 20(5), 350-355. doi:10.1007/bf01402557
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔