(18.207.129.82) 您好!臺灣時間:2021/04/19 20:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余紀賢
研究生(外文):Chi-SianYu
論文名稱:以光遺傳學技術揭示鈣離子振盪波對於有絲分裂之調控
論文名稱(外文):Revealing Ca2+ oscillations in regulation of mitosis using optogenetics
指導教授:邱文泰
指導教授(外文):Wen-Tai Chiu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:62
中文關鍵詞:光遺傳學鈣離子有絲分裂期
外文關鍵詞:optogeneticsCa2+mitosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:46
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈣離子是一個重要的訊息傳遞因子調控著許多細胞內的功能與作用,在細胞週期的各個階段中扮演著決定性的重要角色。由於近期的研究指出了一些鈣離子和細胞分裂生長之間的關聯,在本研究中我們要探討鈣離子波對於細胞有絲分裂期的影響。然而要掌握時間和空間的精確性去調控生理反應是很困難的,因此我們會利用光遺傳學這個近期被發展且應用在許多生物醫學研究中的方法來克服這一點。在本研究中我們應用了具有470奈米波長藍光的光遺傳學系統,藉由示波器來調控不同的光波參數在培養箱內外進行觀察。並且使用了穩定表達CatCh蛋白的U2OS人類骨肉瘤細胞可以藉由藍光的激發來引發細胞外不同的鈣離子波流進入細胞。然後再利用RO-3306這個可以有效同步化細胞週期的藥物來將細胞週期停滯在G2晚期,藉此來觀察藥物釋放後進入M期的細胞。本篇的研究發現了在比較高頻率波段的鈣離子波會對細胞造成損壞並使細胞無法進入M期,而在一些特定的低頻率波段則可以促進在M期某些階段的進展。本研究釐清了鈣離子波在細胞週期M期各個階段造成的影響。
Calcium (Ca2+) is a vital signal transduction element involved in the modulation of many cellular functions. In particular, intracellular Ca2+ is crucial for orderly cell cycle progression and plays an essential role in regulation of cell proliferation. Recently, in vivo and in vitro studies have demonstrated that Ca2+ signaling is associated with cell growth. In this study, we propose an investigation of Ca2+ signaling in mitotic progression. However, it is difficult to control biological processes with high spatial and temporal precision. Optogenetic technologies, a new approach to spatial and temporal precision, have been developed and applied to control cell activity in many biomedical studies. Therefore, we set up optogenetic platforms that can be placed in an incubator or on a microscope with 470 nm blue light illumination where the optical parameters (power, frequency, duty cycle) can be modulated using a functional generator. The stable U2OS cell line overexpressing Ca2+ translocating channelrhodopsin (CatCh) is used to control Ca2+ influx using an illuminating 470 nm blue light. Then, we demonstrate a reversible synchronization treatment with RO-3306 in order to provide the late G2 arrest and make sure that cells would enter mitosis immediately after release. Our results showed that high frequency Ca2+ oscillations disturbed mitotic progression. However, some patterns of low frequency Ca2+ oscillations promoted mitosis at specific time points. It is thus possible to clarify the effect of different Ca2+ signals in mitotic progression.
Abstract…………………………………………………………………………………….i
中文摘要…………………………………………………………………………………iii
Acknowledgement………………………………………………………………………iv
Contents……………………………………………………………………………………v
Figure contents…………………………………………………………………………viii
Chapter 1. Introduction…………………………………………………………………1
1.1 The versatility and universality of Ca2+ signaling……………………………………1
1.1.1 Ca2+ oscillation……………………………………………………………………2
1.2 Cell cycle progression………………………………………………………………3
1.2.1 G2/M checkpoint………………………………………………………………4
1.2.2 Mitotic progression……………………………………………………………6
1.2.3 Cytokinesis……………………………………………………………………7
1.3 Ca2+ signals in mitosis………………………………………………………………8
1.3.1 CaMKII regulation in mitosis…………………………………………………10
1.3.2 Ca2+ regulation in cytokinesis…………………………………………………10
1.4 Optical tools of Ca2+ ion……………………………………………………………11
1.5 The specific aim of this study………………………………………………………12
Chapter 2. Materials and Methods……………………………………………………13
2.1 Cell culture…………………………………………………………………………13
2.2 Plasmid transfection…………………………………………………………………13
2.3 Optogenetic platform………………………………………………………………13
2.4 Microscopic image…………………………………………………………………14
2.5 Flow cytometry……………………………………………………………………14
2.6 Immunofluorescence staining………………………………………………………15
2.7 Fluorescence staining………………………………………………………………15
2.8 Western blotting……………………………………………………………………..16
2.9 Statistical analysis…………………………………………………………………...16
Chapter 3. Results………………………………………………………………………18
3.1 Mitotic cells were collected using a synchronization process via an RO-3306 treatment…………………………………………………………………………………18
3.2 High-frequency Ca2+ oscillations induced defect in mitotic progression………..….19
3.3 Low-frequency Ca2+ oscillations promoted the critical step of G2/M transition……20
3.4 Optogenetic-engineered Ca2+ oscillations affect the progression of metaphase/anaphase transition and cytokinesis but do not affect the progression of nuclear envelope breakdown…………………………………………………………21
Chapter 4. Discussion……………………………………………………………………24
References………………………………………………………………………………28
Figures……………………………………………………………………………………36
Supplemental figures……………………………………………………………………59
Berridge MJ. (2012) Calcium signalling remodelling and disease. Biochem Soc Trans 40:297–309.
Berridge MJ. (2014) Cell Cycle and Proliferation (Module 9). Cell Signalling Biology. Portland Press Ltd.
Baitinger C, Alderton J, Poenie M, Schulman H, Steinhardt RA. (1990) Multifunctional Ca2+/calmodulin-dependent protein kinase is necessary for nuclear envelope breakdown. J Cell Biol 111(5 Pt 1):1763-73.
Bunn PA Jr, Dienhart DG, Chan D, Puck TT, Tagawa M, Jewett PB, Braunschweiger E. (1990) Neuropeptide stimulation of calcium flux in human lung cancer cells: delineation of alternative pathways. Proc Natl Acad Sci U S A 87(6):2162-6.
Berridge MJ, Lipp P, Bootman MD. (2000) The versatility and universality of calcium signalling. Nature Rev Mol Cell Biol 1(1):11-21.
Boutros R, Lobjois V, Ducommun B. (2007) CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7(7):495-507.
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263-8.
Cullen PJ. (2003) Calcium signalling: the ups and downs of protein kinase C. Curr Biol 13(18):R699-R701.
Chang YH. (2016) Manipulation of Ca2+-dependent transcription factor activation and cell cycle progression by optogenetics. Master thesis, Department of Biomedical Engineering at National Cheng Kung University.
Cheffings TH, Burroughs NJ, Balasubramanian MK. (2016) Actomyosin ring formation and tension generation in eukaryotic cytokinesis. Curr Biol 26(15):R719-R737.
Chen YF, Chen YT, Chiu WT, Shen MR. (2013) Remodeling of calcium signaling in tumor progression. J Biomed Sci 20:23.
Chen YW, Chen YF, Chen YT, Chiu WT, Shen MR. (2016) The STIM1-Orai1 pathway of store-operated Ca2+ entry controls the checkpoint in cell cycle G1/S transition. Sci Rep 6:22142.
Chen YT, Chen YF, Chiu WT, Liu KY, Liu YL, Chang JY, Chang HC, Shen MR. (2013) Microtubule-associated histone deacetylase 6 supports the calcium store sensor STIM1 in mediating malignant cell behaviors. Cancer Res 73(14):4500-9.
Donzelli M, Draetta GF. (2003) Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep 4(7):671-7.
Dai G, Qian Y, Chen J, Meng FL, Pan FY, Shen WG, Zhang SZ, Xue B, Li CJ. (2013) Calmodulin activation of polo-like kinase 1 is required during mitotic entry. Biochem Cell Biol 91(5):287-94.
Ferenbach DA, Bonventre JV. (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11(5):264-76.
Fattaey A, Booher RN. (1997) Myt1: a Wee1-type kinase that phosphorylates Cdc2 on residue Thr14. Prog Cell Cycle Res 3:233-40.
Fededa JP, Gerlich DW. (2012) Molecular control of animal cell cytokinesis. Nat Cell Biol 14(5):440-7.
Fiume R, Ramazzotti G, Teti G, Chiarini F, Faenza I, Mazzotti G, Billi AM, Cocco L. (2009) Involvement of nuclear PLCbeta1 in lamin B1 phosphorylation and G2/M cell cycle progression. FASEB J 23(3):957-66.
Gould KL, Nurse P. (1989) Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342(6245):39-45.
Hoffman A, Carpenter H, Kahl R, Watt LF, Dickson PW, Rostas JA, Verrills NM, Skelding KA. (2014) Dephosphorylation of CaMKII at T253 controls the metaphase-anaphase transition. Cell Signal 26(4):748-56.
Heald R, McKeon F. (1990) Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61(4):579-89.
Honda R, Ohba Y, Nagata A, Okayama H, Yasuda H. (1993) Dephosphorylation of human p34cdc2 kinase on both Thr-14 and Tyr-15 by human cdc25B phosphatase. FEBS Lett 318(3):331-4.
Hsu JL, Pan SL, Ho YF, Hwang TL, Kung FL, Guh JH. (2011) Costunolide induces apoptosis through nuclear Ca2+ overload and DNA damage response in human prostate cancer. J Urol 185(5):1967-74.
Jackson JR, Patrick DR, Dar MM, Huang PS. (2007) Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 7(2):107-17.
Kao JP, Alderton JM, Tsien RY, Steinhardt RA. (1990) Active involvement of Ca2+ in mitotic progression of Swiss 3T3 fibroblasts. J Cell Biol 111(1):183-96.
Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, Bamann C, Bamberg E. (2011) Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci 14(4):513-8.
Kapur N, Mignery GA, Banach K. (2007) Cell cycle-dependent calcium oscillations in mouse embryonic stem cells. Am J Physiol Cell Physiol 292(4):C1510-C1518.
Kahl CR, Means AR. (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24(6):719-36.
Lolli G, Johnson LN. (2005) CAK-Cyclin-dependent Activating Kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle 4(4):572-7.
Liebel F, Kaur S, Ruvolo E, Kollias N, Southall MD. (2012) Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Invest Dermatol 132(7):1901-7.
Malumbres M, Barbacid M. (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30(11):630-41.
Mall M, Walter T, Gorjánácz M, Davidson IF, Nga Ly-Hartig TB, Ellenberg J, Mattaj IW. (2012) Mitotic lamin disassembly is triggered by lipid-mediated signaling. J Cell Biol 198(6):981-90.
Nilsson I, Hoffmann I. (2000) Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 4:107-14.
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E. (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940-5.
Poenie M, Alderton J, Steinhardt R, Tsien R. (1986) Calcium rises abruptly and briefly throughout the cell at the onset of anaphase. Science 233(4766):886-9.
Poenie M, Alderton J, Tsien RY, Steinhardt RA. (1985) Changes of free calcium levels with stages of the cell division cycle. Nature 315(6015):147-9.
Patel R, Holt M, Philipova R, Moss S, Schulman H, Hidaka H, Whitaker M. (1999) Calcium/calmodulin-dependent phosphorylation and activation of human Cdc25-C at the G2/M phase transition in HeLa cells. J Biol Chem 274(12):7958-68.
Park S, Scheffler TL, Rossie SS, Gerrard DE. (2013) AMPK activity is regulated by calcium-mediated protein phosphatase 2A activity. Cell Calcium 53(3):217-23.
Rauh NR, Schmidt A, Bormann J, Nigg EA, Mayer TU. (2005) Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437(7061):1048-52.
Rey O, Young SH, Jacamo R, Moyer MP, Rozengurt E. (2010) Extracellular calcium sensing receptor stimulation in human colonic epithelial cells induces intracellular calcium oscillations and proliferation inhibition. J Cell Physiol 225(1):73-83.
Rey O, Young SH, Papazyan R, Shapiro MS, Rozengurt E. (2006) Requirement of the TRPC1 cation channel in the generation of transient Ca2+ oscillations by the calcium-sensing receptor. J Biol Chem 281(50):38730-7.
Rey O, Young SH, Yuan J, Slice L, Rozengurt E. (2005) Amino acid-stimulated Ca2+ oscillations produced by the Ca2+-sensing receptor are mediated by a phospholipase C/inositol 1,4,5-trisphosphate-independent pathway that requires G12, Rho, filamin-A, and the actin cytoskeleton. J Biol Chem 280(24):22875-82.
Schafer KA. (1998) The cell cycle: a review. Vet Pathol 35(6):461-78.
Steinhardt RA, Alderton J. (1988) Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo. Nature 332(6162):364-6.
Schwarz DS, Blower MD. (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 73(1):79-94.
Schmidt A, Duncan PI, Rauh NR, Sauer G, Fry AM, Nigg EA, Mayer TU. (2005) Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes Dev 19(4):502-13.
Schroeder P, Haendeler J, Krutmann J. (2008) The role of near infrared radiation in photoaging of the skin. Exp Gerontol 43(7):629-32.
Smedler E, Uhlén P. (2014) Frequency decoding of calcium oscillations. Biochim Biophys Acta 1840(3):964-9.
Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H, Heimbrook DC, Chen L. (2006) Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A 103(28):10660-5.
Whitfield JF, Bird RP, Chakravarthy BR, Isaacs RJ, Morley P. (1995) Calcium-cell cycle regulator, differentiator, killer, chemopreventor, and maybe, tumor promoter. J Cell Biochem Suppl 22:74-91.
Wasilenko WJ, Cooper J, Palad AJ, Somers KD, Blackmore PF, Rhim JS, Wright GL Jr, Schellhammer PF. (1997) Calcium signaling in prostate cancer cells: evidence for multiple receptors and enhanced sensitivity to bombesin/GRP. Prostate 30(3):167-73.
Whitaker M, Larman MG. (2001) Calcium and mitosis. Semin Cell Dev Biol 12(1):53-8.
Xiao D, Qu X, Weber HC. (2003) Activation of extracellular signal-regulated kinase mediates bombesin-induced mitogenic responses in prostate cancer cells. Cell Signal 15(10):945-53.
Young SH, Rozengurt E. (2002) Amino acids and Ca2+ stimulate different patterns of Ca2+ oscillations through the Ca2+-sensing receptor. Am J Physiol Cell Physiol 282(6):C1414-C1422.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔