( 您好!臺灣時間:2021/03/09 06:08
字體大小: 字級放大   字級縮小   預設字形  


論文名稱(外文):Acid mine drainage remediation and recovery of rare earth elements in Chin-Kua-Shih, northern Taiwan
指導教授(外文):Chen-Feng You
外文關鍵詞:acid mine drainagerare earth elementsfluidized bed reactoradsorption
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金瓜石黃金瀑布為典型酸性礦山排水(Acid Mine Drainage),含有過量重金屬及硫酸根的酸性排水,對當地環境產生嚴重的污染。稀土元素(Rare Earth Elements)為重要工業原料之一,且濃度在酸性礦山排水中遠高於其他自然水體(千倍以上),因此酸性礦山排水具提取稀土資源之經濟效益。為降低酸性排水中重金屬濃度及資源化稀土元素,本研究進行兩組實驗,一組為使用流體化床結晶技術進行共沉澱實驗。另一組為使用再生針鐵礦、磷酸鹽類進行吸附實驗。並利用感應耦合電漿光譜儀(ICP-OES)、感應耦合電漿質譜儀(ICP-MS)、離子層析儀(IC)量測黃金瀑布、廢礦坑排水與實驗過後水樣中的主要元素、微量元素以及陰離子濃度,用以評估酸性礦山排水對環境之汙染與稀土元素資源化之成效。研究成果證實,流體化床結晶技術可以提升水樣的pH值,有效降低酸性排水中重金屬濃度並使溶液中的稀土元素以沉澱物的形式存在固體當中。吸附實驗結果顯示,吸附劑BT9M (α-FeOOH-εMnO2)能有效地降低水樣中的稀土元素與重金屬濃度,使其吸附在吸附劑表面,並以Freundlich等溫吸附模式進行吸附,不過在金瓜石水樣的酸性條件下非最佳的吸附狀態。另外,磷酸鹽類中的MgNH4PO4,CaHPO4也具有吸附稀土元素之能力,但在酸性條件下會溶於液體當中,所以不適合應用在金瓜石水體。本實驗的結果將可提供未來酸性礦山排水的整治方向參考,預期在整治的過程中具有回收稀土元素的附加價值。
The acid mine drainage (AMD) is a severe environmental problem in mining areas, e.g., Chin-Kua-Shih, northern Taiwan, because of its high acidity as well as abundant toxic elements, and sulfate contents. Nonetheless, rare earth elements (REEs), popular raw materials for modern industries, are found enriched in AMD. In this study, we provided two remediation methods to neutralize the water acidity and recover the REEs from the Chin-Kua-Shih AMD system. For one hand, laboratory precipitation experiments using fluidized bed reactor had successfully reduced the heavy metals and REEs concentration of AMD waters by adsorption processes; Meanwhile, the inserted carbonate neutralized the water pH from 2.8 to 5.1. On the other hand, laboratory batch adsorption experiments showed that BT9M (α-FeOOH-εMnO2), a by-product of FBR-fenton, could adsorb the REEs and toxic metals from the AMD waters. The adsorption isotherm model of cerium on BT9M fits well with the Freundlich isotherm model. The Freundlich constant, n 〈 1, and zeta potential of εMnO2 indicated that BT9M performed unfavorable adsorption in acidic solutions. Overall, this study has demonstrated reliable remediation and REEs recovery approaches for the AMD waters, that aims for developments in the future remediation projects.
摘要 Ⅰ
誌謝 Ⅵ
目錄 Ⅶ
表目錄 Ⅸ
圖目錄 Ⅹ
第 一 章 緒論 1
1-1 研究動機 1
1-2 研究目的及內容 3
第 二 章 文獻回顧 4
2-1酸性礦山排水的生成及整治 4
2-2 吸附理論 10
2-2-1 吸附作用 10
2-2-2 等溫吸附模式 12
2-2-3 影響吸附作用之因素 17
2-3 流體化床結晶技術簡介 20
2-3-1 流體化床結晶技術之沿革與發展現況 20
2-3-2 流體化床結晶技術之原理 21
第 三 章 研究地區概況 22
第 四 章 研究原理與方法 25
4-1 採樣流程 25
4-2 儀器分析 26
4-2-1 主要元素分析 26
4-2-2 微量元素分析 28
4-2-3 晶相分析 29
4-3 流體化床沉澱實驗 30
4-3-1 流體化床沉澱實驗架構 30
4-3-2 沉澱實驗 31
4-3-3 流體化床沉澱實驗 31
4-4 吸附實驗 33
4-4-1吸附實驗架構 33
4-4-2實驗裝置及步驟 34
第 五 章 結果與討論 35
5-1 金瓜石酸性礦山排水之化學組成 35
5-2 流體化床沉澱實驗 40
5-2-1 水樣濃度與pH值監測 41
5-3 吸附實驗結果 46
5-3-1 各吸附劑之吸附效果 46
5-4 效益評估 53
第 六 章 結論 54
參考文獻 56
附錄一 吸附劑之稀土元素組成 62
Aguiar, A. O., Andrade, L. H., Ricci, B. C., Pires, W. L., Miranda, G. A., & Amaral, M. C. (2016). Gold acid mine drainage treatment by membrane separation processes: an evaluation of the main operational conditions. Separation and Purification Technology, 170, 360-369.
Ayora, C., Macías, F., Torres, E., Lozano, A., Carrero, S., Nieto, J. M., ... & Castillo-Michel, H. (2016). Recovery of rare earth elements and yttrium from passive-remediation systems of acid mine drainage. Environmental science & technology, 50(15), 8255-8262.
Bigham, J. M., & Nordstrom, D. K. (2000). Iron and aluminum hydroxysulfates from acid sulfate waters. Reviews in mineralogy and geochemistry, 40(1), 351-403.
Blodau, C. (2006). A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Science of the total environment, 369(1-3), 307-332.
Brunauer, S., Deming, L. S., Deming, W. E., Teller, E. On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society. 62(7), 1723-1732, 1940.
Cánovas, C. R., Macías, F., & Pérez-López, R. (2016). Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer. Journal of contaminant hydrology, 188, 29-43.
Chen, C. J., & Jiang, W. T. (2012). Influence of waterfall aeration and seasonal temperature variation on the iron and arsenic attenuation rates in an acid mine drainage system. Applied geochemistry, 27(10), 1966-1978.
Chen, M., Lu, G., Guo, C., Yang, C., Wu, J., Huang, W., ... & Dang, Z. (2015). Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China. Chemosphere, 119, 734-743.
Chen, Y. T., Li, J. T., Chen, L. X., Hua, Z. S., Huang, L. N., Liu, J., ... & Shu, W. S. (2014). Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage. Environmental science & technology, 48(10), 5537-5545.
Chu, K. H., Hashim, M. A. Adsorption of copper (II) and EDTA‐chelated copper (II) onto granular activated carbons. Journal of Chemical Technology and Biotechnology. 75(11), 1054-1060, 2000.
Cravotta, C. A. (2010). Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 2. Performance of treatment systems. Mine water and the environment, 29(3), 200-216.
Delgado, J., Sarmiento, A. M., De Melo, M. C., & Nieto, J. M. (2009). Environmental impact of mining activities in the southern sector of the Guadiana Basin (SW of the Iberian Peninsula). Water, air, and soil pollution, 199(1-4), 323-341.
Falayi, T., & Ntuli, F. (2014). Removal of heavy metals and neutralisation of acid mine drainage with un-activated attapulgite. Journal of industrial and Engineering Chemistry, 20(4), 1285-1292.
Foroughi, F., Hassanzadeh-Tabrizi, S. A., Amighian, J., & Saffar-Teluri, A. (2015). A designed magnetic CoFe2O4–hydroxyapatite core–shell nanocomposite for Zn (II) removal with high efficiency. Ceramics International, 41(5), 6844-6850.
Fuge, R., Pearce, F. M., Pearce, N. J., & Perkins, W. T. (1994). Acid mine drainage in Wales and influence of ochre precipitation on water chemistry.
Gómez-Pastora, J., Bringas, E., & Ortiz, I. (2014). Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chemical Engineering Journal, 256, 187-204.
Grawunder, A., Merten, D., & Büchel, G. (2014). Origin of middle rare earth element enrichment in acid mine drainage-impacted areas. Environmental Science and Pollution Research, 21(11), 6812-6823.
Han, Y. S., Youm, S. J., Oh, C., Cho, Y. C., & Ahn, J. S. (2017). Geochemical and eco-toxicological characteristics of stream water and its sediments affected by acid mine drainage. Catena, 148, 52-59.
Huang, Y. H., Hsueh, C. L., Cheng, H. P., Su, L. C., Chen, C. Y. Thermodynamics and kinetics of adsorption of Cu (II) onto waste iron oxide. Journal of hazardous materials. 144(1), 406-411,2007.
Huang, Y. H., Huang, C. P., Lu, Y. W., Lo, C. Y. Oxidation and Immobilization of Iron and Manganese by a Fluidized Bed Reactor Reference. Water Science and Technology: Water Supply. 9(6), 619-625, 2010.
Huang, Y. H., Shih, Y. J., Chang, C. C. Adsorption of fluoride by waste iron oxide: The effects of solution pH, major coexisting anions, and adsorbent calcination temperature. Journal of hazardous materials. 186(2), 1355-1359, 2011a.
Huang, Y. H., Shih, Y. J., Chang, C. C., Chuang, S. H. A comparative study of phosphate removal technologies using adsorption and fluidized bed crystallization process. Desalination and Water Treatment. 32(1-3), 351-356, 2011b.
Huang, Y. H., Shih, Y. J., Cheng, F. J. Novel KMnO4-modified iron oxide for effective arsenite removal. Journal of Hazardous Materials. 198, 1-6, 2011c.
Jamal, H. Y. A. (2015). Removal of Heavy Metals from Acid Mine Drainage: A Review.
Kefeni, K. K., Msagati, T. A., & Mamba, B. B. (2017). Acid mine drainage: prevention, treatment options, and resource recovery: a review. Journal of cleaner production, 151, 475-493.
Lata, S., Singh, P. K., & Samadder, S. R. (2015). Regeneration of adsorbents and recovery of heavy metals: a review. International journal of environmental science and technology, 12(4), 1461-1478.
Masindi, V. (2016). A novel technology for neutralizing acidity and attenuating toxic chemical species from acid mine drainage using cryptocrystalline magnesite tailings. Journal of Water Process Engineering, 10, 67-77.
Masindi, V., Gitari, M. W., Tutu, H., & DeBeer, M. (2015). Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage. Journal of Water Process Engineering, 8, 227-240.
Masukume, M., Onyango, M. S., & Maree, J. P. (2014). Sea shell derived adsorbent and its potential for treating acid mine drainage. International Journal of Mineral Processing, 133, 52-59.
Mohan, D., & Chander, S. (2006). Removal and recovery of metal ions from acid mine drainage using lignite—a low cost sorbent. Journal of hazardous materials, 137(3), 1545-1553.
Murad, E., & Rojik, P. (2005). Iron mineralogy of mine-drainage precipitates as environmental indicators: review of current concepts and a case study from the Sokolov Basin, Czech Republic. Clay Minerals, 40(4), 427-440.
Neculita, C. M., Zagury, G. J., & Bussière, B. (2007). Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. Journal of Environmental Quality, 36(1), 1-16.
Noack, C. W., Dzombak, D. A., & Karamalidis, A. K. (2014). Rare earth element distributions and trends in natural waters with a focus on groundwater. Environmental science & technology, 48(8), 4317-4326.
Ouki, S. K., Kavannagh, M. Performance of natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Management and Research. 15(4), 383-394, 1997.
Parks, G. A., De Bruyn, P. L. The zero point of charge of oxides. Journal of physical chemistry. 66, 967-973, 1962.
Pierre Louis, A. M., Yu, H., Shumlas, S. L., Van Aken, B., Schoonen, M. A., & Strongin, D. R. (2015). Effect of phospholipid on pyrite oxidation and microbial communities under simulated acid mine drainage (AMD) conditions. Environmental science & technology, 49(13), 7701-7708.
Plante, B., Bussière, B., & Benzaazoua, M. (2012). Static tests response on 5 Canadian hard rock mine tailings with low net acid-generating potentials. Journal of Geochemical Exploration, 114, 57-69.
Plante, B., Bussière, B., & Benzaazoua, M. (2014). Lab to field scale effects on contaminated neutral drainage prediction from the Tio mine waste rocks. Journal of Geochemical Exploration, 137, 37-47.
Prudêncio, M. I., Valente, T., Marques, R., Braga, M. A. S., & Pamplona, J. (2015). Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation. Chemosphere, 138, 691-700.
Qureshi, A., Maurice, C., & Öhlander, B. (2016). Potential of coal mine waste rock for generating acid mine drainage. Journal of Geochemical Exploration, 160, 44-54.
Shih, Y. J., Huang, R. L., & Huang, Y. H. (2015). Adsorptive removal of arsenic using a novel akhtenskite coated waste goethite. Journal of Cleaner Production, 87, 897-905.
Smith, J. M. (1981). Chemical engineering kinetics (No. TP149 S58).
Stewart, B. W., Capo, R. C., Hedin, B. C., & Hedin, R. S. (2017). Rare earth element resources in coal mine drainage and treatment precipitates in the Appalachian Basin, USA. International Journal of Coal Geology, 169, 28-39.
Tan, L. P., Chen, C. H., and Yu, B. S. (1993) Native gold of Taiwan. Special Publication of the CentralGeological Survey, no.7, p.79-99
Verplanck, P. L., Nordstrom, D. K., Taylor, H. E., & Kimball, B. A. (2004). Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation. Applied Geochemistry, 19(8), 1339-1354.
Watten, B. J., Sibrell, P. L., & Schwartz, M. F. (2005). Acid neutralization within limestone sand reactors receiving coal mine drainage. Environmental Pollution, 137(2), 295-304.

孫衛玲,倪普仁,泥沙吸附重金屬研究中的若干關鍵問題,泥沙研究,6 期,2002。
陳君榮,江威德. (2013). 金瓜石黃金瀑布酸性礦山排水沉澱物之礦物學研究. 臺灣鑛業, 65(3), 1-12.
鍾全雄, 黃國芳, 王博賢, & 游鎮烽. (2007). 高精密無機質譜儀在地球科學及海洋科學研究上的應用. 化學, 65(2), 113-124.
譚立平、魏稽生(1997)臺灣金屬經濟礦物。經濟部中央地質調查所,臺灣地質系列,10 號,202 頁。
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔