|
[1]M. K. Rahman, A. M. M. Musa, B. Neher, K. A. Patwary, M. A. Rahman, and M. S. Islam, A Review of the Study on the Electromigration and Power Electronics, Journal of Electronics Cooling and Thermal Control, vol. 06, no. 01, 19-31, 2016. [2]J. N. Calata, G.-Q. Lu, K. Ngo, and L. Nguyen, Electromigration in Sintered Nanoscale Silver Films at Elevated Temperature, Journal of Electronic Materials, vol. 43, no. 1, 109-116, 2013. [3]R. Khazaka, L. Mendizabal, and D. Henry, Review on Joint Shear Strength of Nano-Silver Paste and Its Long-Term High Temperature Reliability, Journal of Electronic Materials, vol. 43, no. 7, 2459-2466, 2014. [4]K. Suganuma, S. Nagao, T. Sugahara, E. Yokoi, H. Zhang, and J. Jiu, Silver sinter joining and stress migration bonding for WBG die-attach, in 3D Power Electronics Integration and Manufacturing (3D-PEIM), International Symposium on, 2016, 1-17: IEEE. [5]邱彥睿, 銀奈米漿料熱壓導線之電遷移效應探討, 成功大學材料科學及工程學系學位論文, 1-87, 2017. [6]賴炤銘 and 李錫隆, 奈米材料的特殊效應與應用, CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), vol. 61, no. 4, 585-597, 2003. [7]G. Lövestam et al., Considerations on a definition of nanomaterial for regulatory purposes, Joint Research Centre (JRC) Reference Reports, 7, 2010. [8]R. J. B. Balaguru and B. Jeyaprakash, Melting points, mechanical properties of nanoparticles and Hall Petch relationship for nanostructured materials, NPTEL Google Scholar, 2010. [9]K.-S. Kim, Y. Kim, and S.-B. Jung, Microstructure and adhesion characteristics of a silver nanopaste screen-printed on Si substrate, Nanoscale research letters, vol. 7, no. 1, 49, 2012. [10]L. Navarro, X. Perpiñà, M. Vellvehi, and X. Jordà, Silver nano-particles sintering process for the die-attach of power devices for high temperature applications, Ingeniería mecánica, tecnología y desarrollo, vol. 4, no. 3, 97-102, 2012. [11]劉彥群 , 功率模組用導熱封裝材料應用與發展. [12]R. Kisiel and Z. Szczepański, Die-attachment solutions for SiC power devices, Microelectronics reliability, vol. 49, no. 6, 627-629, 2009. [13]H. D. Goldberg, R. B. Brown, D. P. Liu, and M. E. Meyerhoff, Screen printing: a technology for the batch fabrication of integrated chemical-sensor arrays, Sensors and Actuators B: Chemical, vol. 21, no. 3, 171-183, 1994. [14]S. H. Ko, Low temperature thermal engineering of nanoparticle ink for flexible electronics applications, Semiconductor Science and Technology, vol. 31, no. 7, 073003, 2016. [15]F. Le et al., Through silicon underfill dispensing for 3D die/interposer stacking, in Electronic Components and Technology Conference (ECTC), 2014 IEEE 64th, 2014, 919-924: IEEE. [16]D. Rose, Microdispensing technologies in drug discovery, Drug discovery today, vol. 4, no. 9, 411-419, 1999. [17]R. L. Coble, Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models, Journal of Applied Physics, vol. 32, no. 5, 787-792, 1961. [18]H. Tanaka, A. Yamamoto, J.-i. Shimoyama, H. Ogino, and K. Kishio, Strongly connected ex situ MgB2 polycrystalline bulks fabricated by solid-state self-sintering, Superconductor Science and Technology, vol. 25, no. 11, 115022, 2012. [19]K.-S. Moon et al., Thermal behavior of silver nanoparticles for low-temperature interconnect applications, Journal of Electronic Materials, vol. 34, no. 2, 168-175, 2005. [20]A. Patterson, The Scherrer formula for X-ray particle size determination, Physical review, vol. 56, no. 10, 978, 1939. [21]Z. Zhang and G.-Q. Lu, Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow, IEEE Transactions on electronics packaging manufacturing, vol. 25, no. 4, 279-283, 2002. [22]鍾朝安, 銀導體連線技術, 國家奈米元件實驗室奈米通訊, vol. 20, no. 1, 26-33, 2013. [23]S. A. Wild, Silver metallization for ULSI circuit interconnect applications, 1997. [24]A. Mansourian et al., Tunable ultra-high aspect ratio nanorod architectures grown on porous substrate via electromigration, Scientific reports, vol. 6, 22272, 2016. [25]I. A. Blech, Electromigration in thin aluminum films on titanium nitride, Journal of Applied Physics, vol. 47, no. 4, 1203-1208, 1976. [26]J. R. Black, Electromigration—A brief survey and some recent results, IEEE Transactions on Electron Devices, vol. 16, no. 4, 338-347, 1969. [27]S. K. Lin, Y. C. Liu, S. J. Chiu, Y. T. Liu, and H. Y. Lee, The electromigration effect revisited: non-uniform local tensile stress-driven diffusion, Sci Rep, vol. 7, no. 1, 3082, Jun 08 2017. [28]I. Blech and C. Herring, Stress generation by electromigration, Applied Physics Letters, vol. 29, no. 3, 131-133, 1976. [29]A. Mansourian, S. A. Paknejad, Q. Wen, K. Khtatba, A. V. Zayats, and S. H. Mannan, Internal Structure Refinement of Porous Sintered Silver via Electromigration, Additional Papers and Presentations, vol. 2016, no. HiTEC, 190-195, 2016. [30]S. Hirata, K. Hirose, Y. Irie, and H. Aoyama, Improvement of the needle-type dispenser for precise micro-droplet dispensation–Gap measurement between the needle tip and the target surface based on needle vibration–, Journal of Robotics and Mechatronics, vol. 24, no. 2, 284-290, 2012. [31]Y.-c. Liu and S.-k. Lin, Electric current-induced plastic deformation: An in situ experimental study, in Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), 2018 International Conference on, 2018, 197-198: IEEE. [32]L. Gao et al., Thermal stability of titanium nitride diffusion barrier films for advanced silver interconnects, Microelectronic Engineering, vol. 76, no. 1-4, 76-81, 2004. [33]M. M. Hilali, Understanding and development of manufacturable screen-printed contacts on high sheet-resistance emitters for low-cost silicon solar cells, Georgia Institute of Technology, 2005.
|