(44.192.112.123) 您好!臺灣時間:2021/03/07 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳青峰
研究生(外文):Ching-FengWu
論文名稱:探討高分子相分佈對鈣鈦礦晶相成長與分佈的影響
論文名稱(外文):Effects of the polymer phase distribution on perovskite crystal growth and dispersion
指導教授:阮至正
指導教授(外文):Jrjeng Ruan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:77
中文關鍵詞:選擇性分布無機有機混成鈣鈦礦共軛高分子
外文關鍵詞:selectively depositioninorganic-organic hybrid perovskiteconjugated polymer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
以有機成份的分佈調控無機晶相的析出,所形成的複合材料,有機會對光電元件的性質帶來突破,但是這樣的現象尚未被探討過。於共軛高分子(Conjugated polymer) 與絕緣高分子PMMA (Poly(methyl methacrylate))所形成的二元薄膜上,此研究觀察CH3NH3PbI3鈣鈦礦晶相前驅物PbI2的析出結晶,並探索影響的機制。
此研究分別以溶劑性質、薄膜結構與共軛高分子的種類等因素,來探索PbI2晶相於二元薄膜上的選擇性分佈。當溶劑與PMMA成份的親和性較好時,由於PbI2分子與PMMA分子亦有不錯的交互作用,可以觀察到PbI2晶相普遍傾向於PMMA區域析出。但當PMMA分佈於薄膜中凹陷的團狀區域時,若團狀區域直徑小於1.0 um,則會因溶液無法浸潤,而於旋轉塗佈的過程直接被甩開薄膜表面。僅有少數的PbI2晶相可以於PMMA區域上析出。若溶劑與共軛高分子有較好的親和性,則可以觀察到PbI2晶相於共軛高分子區域的析出,雖然PbI2分子傾向於PMMA區域析出。推論溶劑與PbI2可以形成錯合物,而影響PbI2晶相的析出分佈。以電腦模擬的計算發現於共軛高分子PBTTT晶相表面,側鏈的排列會形成鋸齒狀 (Saw-like)的起伏形貌。此結構會使得PbI2分子與側鏈有較大的接觸面積,增加側鏈與PbI2分子之間的交互作用,因而使得PbI2分子傾向於PBTTT晶相表面析出,即使溶劑與PMMA的親和性較佳。
CH3NH3+離子嵌入PbI2 晶相的(001)面之間,迫使結構中的[PbI6]四面體旋轉以提供足夠的空間,使得原本晶格排列的 (001)面,轉換為CH3NH3PbI3晶相的 (110)面。這個嵌入的過程,會使得結晶膨脹接近一倍。晶粒膨脹造成的推擠,會使得晶粒的排列更混亂。若增加CH3NH3I蒸氣源與PbI2薄膜的距離,晶相的轉變會較慢,晶粒膨脹造成的推擠較為溫和而使鈣鈦礦表面較為平整。
The phase distribution of semiconductive conjugated polymers and insulating poly(methyl methacrylate) (PMMA) results in the patterns of chemical affinity, crystalline regions, and glassy regions. The patterned surfaces with disparate chemical and physical properties are likely to influence the deposition of functional components during solvent evaporation and therefore the later crystallization behaviors on patterned surfaces. Hence, the templating effect of phase distribution on the growth of functional organic/inorganic crystals is expected to reach the patterned growth of functional crystals within thin film as the approach to enhance the significance of crystalline phases on desired thin-film properties.
The precursor of perovskite crystals PbI2 is able to form complex with solvent molecules in solutions. As the solvent/PMMA interactions are stronger, the deposition of PbI2 on the surface of PMMA phase domains was found much favorable. Nevertheless, depending on the spatial distribution of aliphatic side chains of studied conjugated polymers, favored deposition of PbI2 on the surface of poly[2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene] (PBTTT) phase domains has been identified as well due to the interactions between PbI2 and aliphatic side chains. Depending on the deposition of PbI2, both vertical cylinder-like growth of perovskite crystals from the valley granular domains of PMMA and the continuous horizontal stacking of perovskite crystals on the surface of PBTTT phase domains are feasible. These results therefore illustrate the development of patterned crystal growth upon the templating effect of phase distributions.
摘要 I
英文延伸摘要 II
致謝 XI
目錄 XIII
圖目錄 XV
表目錄 XXIV
第一章 緒論 1
1.1 前言與研究動機 1
第二章 文獻回顧 2
2.1 鈣鈦礦材料簡介 2
2.1.1 鈣鈦礦材料結構 2
2.1.2 鈣鈦礦材料應用於壓電元件 3
2.1.3 三鹵化鉀胺鉛(CH3NH3PbI3)結構特色 5
2.1.4 有機無機混合鈣鈦礦材料在光電材料元件上的應用 7
2.1.5 一步驟法製備鈣鈦礦薄膜 9
2.1.6 兩步驟法製備鈣鈦礦薄膜 (連續沉澱法) 10
2.1.7 兩步驟法製備鈣鈦礦薄膜 (氣相製程) 14
2.2 成份與晶相成長的選擇性分佈 16
2.2.1 金屬元素的選擇性分佈與析出 16
2.2.2 無機成份的選擇性分佈 18
2.3 鈣鈦礦晶相的選擇性分佈 20
第三章 材料與實驗方法 23
3.1 實驗材料 23
3.2 實驗儀器 28
3.3 實驗步驟與分析 31
3.3.1 高分子相分佈薄膜製備 31
3.3.2 鈣鈦礦(CH3NH3PbI3)的製備 31
3.3.3 實驗分析 32
3.4 實驗流程 33
第四章 結果與討論 35
4.1 鈣鈦礦前驅物的析出與分佈 35
4.1.1 薄膜結構與成份分佈對PbI2晶相析出的引導作用 35
4.1.2 溶劑對PbI2晶相析出分佈的影響—溶劑對薄膜成份的辨認 44
4.1.3 共軛高分子與PbI2之間的作用力—溶質對薄膜成份的辨認 49
4.2 鈣鈦礦晶相的成長 58
第五章 結論 69
第六章 參考文獻 71
1.Wenk, H.-R.; Bulakh, A., Minerals: their constitution and origin, Cambridge University Press, 2016.
2.Im, J.-H.; Chung, J.; Kim, S.-J.; Park, N.-G. Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer CH3NH3PbI3, Nanoscale research letters, 2012, 7, 353.
3.Han, Q.; Bae, S.H.; Sun, P.; Hsieh, Y.T.; Yang, Y.M.; Rim, Y.S.; Zhao, H.; Chen, Q.; Shi, W.; Li, G. Single crystal formamidinium lead iodide (FAPbI3): Insight into the structural, optical, and electrical properties, Advanced Materials, 2016, 28, 2253-2258.
4.Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-hole diffusion lengths) 175 μm in solution-grown CH3NH3PbI3 single crystals, Science, 2015, 347, 967-970.
5.Barrows, A.T.; Pearson, A.J.; Kwak, C.K.; Dunbar, A.D.; Buckley, A.R.; Lidzey, D.G. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition, Energy & Environmental Science, 2014, 7, 2944-2950.
6.Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G. MAPbI3-xCl x Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties, Chemistry of Materials, 2013, 25, 4613-4618.
7.Galkowski, K.; Mitioglu, A.; Miyata, A.; Plochocka, P.; Portugall, O.; Eperon, G.E.; Wang, J.T.-W.; Stergiopoulos, T.; Stranks, S.D.; Snaith, H.J. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors, Energy & Environmental Science, 2016, 9, 962-970.
8.Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J.T.-W.; Stranks, S.D.; Snaith, H.J.; Nicholas, R.J. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites, Nature Physics, 2015, 11, 582-587.
9.Li, P.; Chen, Y.; Yang, T.; Wang, Z.; Lin, H.; Xu, Y.; Li, L.; Mu, H.; Shivananju, B.N.; Zhang, Y. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers, ACS applied materials & interfaces, 2017, 9, 12759-12765.
10.Kwei, G.; Lawson, A.; Billinge, S.; Cheong, S. Structures of the ferroelectric phases of barium titanate, The Journal of Physical Chemistry, 1993, 97, 2368-2377.
11.Frost, J.M.; Walsh, A. What is moving in hybrid halide perovskite solar cells?, Accounts of chemical research, 2016, 49, 528-535.
12.Frost, J.M.; Butler, K.T.; Walsh, A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells, Apl Materials, 2014, 2, 081506.
13.Kim, H.-S.; Im, S.H.; Park, N.-G. Organolead halide perovskite: new horizons in solar cell research, The Journal of Physical Chemistry C, 2014, 118, 5615-5625.
14.Li, B.; Kawakita, Y.; Liu, Y.; Wang, M.; Matsuura, M.; Shibata, K.; Ohira-Kawamura, S.; Yamada, T.; Lin, S.; Nakajima, K. Polar rotor scattering as atomic-level origin of low mobility and thermal conductivity of perovskite CH3NH3PbI3, Nature communications, 2017, 8, 16086.
15.Kawamura, Y.; Mashiyama, H.; Hasebe, K. Structural study on cubic–tetragonal transition of CH3NH3PbI3, Journal of the Physical Society of Japan, 2002, 71, 1694-1697.
16.Wang, Q.; Lyu, M.; Zhang, M.; Yun, J.-H.; Chen, H.; Wang, L. Transition from the tetragonal to cubic phase of organohalide perovskite: The role of chlorine in crystal formation of CH3NH3PbI3 on TiO2 substrates, The Journal of Physical Chemistry Letters, 2015, 6, 4379-4384.
17.Wang, Y.; Gould, T.; Dobson, J.F.; Zhang, H.; Yang, H.; Yao, X.; Zhao, H. Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3, Physical Chemistry Chemical Physics, 2013, 16, 1424-1429.
18.Oku, T. Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solar cells, Solar Cells-New Approaches and Reviews, 2015, InTech.
19.Whitfield, P.; Herron, N.; Guise, W.; Page, K.; Cheng, Y.; Milas, I.; Crawford, M. Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide, Scientific reports, 2016, 6, 35685.
20.Quarti, C.; Mosconi, E.; Ball, J.M.; D'Innocenzo, V.; Tao, C.; Pathak, S.; Snaith, H.J.; Petrozza, A.; De Angelis, F. Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells, Energy & Environmental Science, 2016, 9, 155-163.
21.Baikie, T.; Fang, Y.; Kadro, J.M.; Schreyer, M.; Wei, F.; Mhaisalkar, S.G.; Graetzel, M.; White, T.J. Synthesis and crystal chemistry of the hybrid perovskite CH3NH3PbI3 for solid-state sensitised solar cell applications, Journal of Materials Chemistry A, 2013, 1, 5628-5641.
22.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, 2009, 131, 6050-6051.
23.Yang, W.S.; Park, B.-W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; Seok, S.I. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells, Science, 2017, 356, 1376-1379.
24.Xiao, Z.; Zhou, Y.; Hosono, H.; Kamiya, T.; Padture, N.P. Bandgap optimization of perovskite semiconductors for photovoltaic applications, Chemistry–A European Journal, 2018, 24, 2305-2316.
25.Gao, P.; Grätzel, M.; Nazeeruddin, M.K. Organohalide lead perovskites for photovoltaic applications, Energy & Environmental Science, 2014, 7, 2448-2463.
26.Bae, S.; Han, S.J.; Shin, T.J.; Jo, W.H. Two different mechanisms of CH3NH3PbI3 film formation in one-step deposition and its effect on photovoltaic properties of OPV-type perovskite solar cells, Journal of Materials Chemistry A, 2015, 3, 23964-23972.
27.Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray‐Weale, A.; Bach, U.; Cheng, Y.B.; Spiccia, L. A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells, Angewandte Chemie, 2014, 126, 10056-10061.
28.Snaith, H.J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells, The Journal of Physical Chemistry Letters, 2013, 4, 3623-3630.
29.Zhao, Y.; Zhu, K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells, The Journal of Physical Chemistry C, 2014, 118, 9412-9418.
30.Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 2013, 499, 316.
31.Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition, Energy & Environmental Science, 2014, 7, 2934-2938.
32.Schlipf, J.; Docampo, P.; Schaffer, C.J.; Körstgens, V.; Bießmann, L.; Hanusch, F.; Giesbrecht, N.; Bernstorff, S.; Bein, T.; Müller-Buschbaum, P. A closer look into two-step perovskite conversion with X-ray scattering, The journal of physical chemistry letters, 2015, 6, 1265-1269.
33.Murugadoss, G.; Mizuta, G.; Tanaka, S.; Nishino, H.; Umeyama, T.; Imahori, H.; Ito, S. Double functions of porous TiO2 electrodes on CH3NH3PbI3 perovskite solar cells: Enhancement of perovskite crystal transformation and prohibition of short circuiting, APL Materials, 2014, 2, 081511.
34.Jo, Y.; Oh, K.S.; Kim, M.; Kim, K.H.; Lee, H.; Lee, C.W.; Kim, D.S. High performance of planar perovskite solar cells produced from PbI2 (DMSO) and PbI2 (NMP) complexes by intramolecular exchange, Advanced Materials Interfaces, 2016, 3.
35.Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 2015, 348, 1234-1237.
36.Hao, F.; Stoumpos, C.C.; Liu, Z.; Chang, R.P.; Kanatzidis, M.G. Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%, Journal of the American Chemical Society, 2014, 136, 16411-16419.
37.Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process, Journal of the American Chemical Society, 2013, 136, 622-625.
38.Ono, L.K.; Leyden, M.R.; Wang, S.; Qi, Y. Organometal halide perovskite thin films and solar cells by vapor deposition, Journal of Materials Chemistry A, 2016, 4, 6693-6713.
39.Nakanishi, T.; Masuda, Y.; Koumoto, K. Site-selective deposition of magnetite particulate thin films on patterned self-assembled monolayers, Chemistry of materials, 2004, 16, 3484-3488.
40.Cao, J.; Wu, Z.; Yang, J.; Li, S.; Tang, H.; Xie, G. Site-selective electroless plating of copper on a poly (ethylene terephthalate) surface modified with a self-assembled monolayer, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 374-379.
41.Dai, L.; Griesser, H.J.; Mau, A.W. Surface modification by plasma etching and plasma patterning, The Journal of Physical Chemistry B, 1997, 101, 9548-9554.
42.Chu, P.K.; Chen, J.; Wang, L.; Huang, N. Plasma-surface modification of biomaterials, Materials Science and Engineering: R: Reports, 2002, 36, 143-206.
43.Lee, J.; Hwang, S.; Cho, D.-H.; Hong, J.; Shin, J.H.; Byun, D. RF plasma based selective modification of hydrophilic regions on super hydrophobic surface, Applied Surface Science, 2017, 394, 543-553.
44.Kim, K.; Park, S.Y.; Lim, K.-H.; Shin, C.; Myoung, J.-M.; Kim, Y.S. Low temperature and solution-processed Na-doped zinc oxide transparent thin film transistors with reliable electrical performance using methanol developing and surface engineering, Journal of Materials Chemistry, 2012, 22, 23120-23128.
45.Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells, Nature communications, 2015, 6, 7747.
46.Wang, G.; Li, D.; Cheng, H.-C.; Li, Y.; Chen, C.-Y.; Yin, A.; Zhao, Z.; Lin, Z.; Wu, H.; He, Q. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics, Science advances, 2015, 1, e1500613.
47.Bi, D.; Yi, C.; Luo, J.; Décoppet, J.-D.; Zhang, F.; Zakeeruddin, Shaik M.; Li, X.; Hagfeldt, A.; Grätzel, M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%, Nature Energy, 2016, 1, 16142.
48.Zhao, K.; Zhou, G.; Wang, Q.; Han, Y.; Wang, L.; Ma, D. Phase Separation in Poly (9, 9‐dioctylfluorene)/Poly (methyl methacrylate) Blends, Macromolecular Chemistry and Physics, 2010, 211, 313-320.
49.Li, Y.; Hu, K.; Han, X.; Yang, Q.; Xiong, Y.; Bai, Y.; Guo, X.; Cui, Y.; Yuan, C.; Ge, H. Phase Separation of Silicon-Containing Polymer/Polystyrene Blends in Spin-Coated Films, Langmuir, 2016, 32, 3670-3678.
50.Whyman, G.; Bormashenko, E.; Stein, T. The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon, Chemical Physics Letters, 2008, 450, 355-359.
51.Murakami, D.; Jinnai, H.; Takahara, A. Wetting transition from the Cassie–Baxter state to the Wenzel state on textured polymer surfaces, Langmuir, 2014, 30, 2061-2067.
52.Ishino, C.; Okumura, K. Wetting transitions on textured hydrophilic surfaces, The European Physical Journal E, 2008, 25, 415-424.
53.Bico, J.; Thiele, U.; Quéré, D. Wetting of textured surfaces, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 41-46.
54.Szostak, R.; Castro, J.A.P.; Marques, A.S.; Nogueira, A.F. Understanding perovskite formation through the intramolecular exchange method in ambient conditions. 2017. SPIE.
55.Cao, X.; Li, C.; Li, Y.; Fang, F.; Cui, X.; Yao, Y.; Wei, J. Enhanced performance of perovskite solar cells by modulating the Lewis acid–base reaction, Nanoscale, 2016, 8, 19804-19810.
56.Machui, F.; Abbott, S.; Waller, D.; Koppe, M.; Brabec, C.J. Determination of solubility parameters for organic semiconductor formulations, Macromolecular chemistry and Physics, 2011, 212, 2159-2165.
57.Miranda, R.; Jason, H.; David, B. Solubility characteristics of poly(3‐hexylthiophene), Journal of Polymer Science Part B: Polymer Physics, 2017, 55, 1075-1087.
58.Chang, M.; Choi, D.; Fu, B.; Reichmanis, E. Solvent Based Hydrogen Bonding: Impact on Poly(3-hexylthiophene) Nanoscale Morphology and Charge Transport Characteristics, ACS Nano, 2013, 7, 5402-5413.
59.Cho, E.; Risko, C.; Kim, D.; Gysel, R.; Cates Miller, N.; Breiby, D.W.; McGehee, M.D.; Toney, M.F.; Kline, R.J.; Bredas, J.-L. Three-Dimensional Packing Structure and Electronic Properties of Biaxially Oriented Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) Films, Journal of the American Chemical Society, 2012, 134, 6177-6190.
60.Lim, J.A.; Liu, F.; Ferdous, S.; Muthukumar, M.; Briseno, A.L. Polymer semiconductor crystals, Materials Today, 2010, 13, 14-24.
61.Buono, A.; Son, N.H.; Raos, G.; Gila, L.; Cominetti, A.; Catellani, M.; Meille, S.V. Form II Poly(3-butylthiophene): Crystal Structure and Preferred Orientation in Spherulitic Thin Films, Macromolecules, 2010, 43, 6772-6781.
62.Brenner, T.M.; Rakita, Y.; Orr, Y.; Klein, E.; Feldman, I.; Elbaum, M.; Cahen, D.; Hodes, G. Conversion of Single Crystalline PbI2 to CH3NH3PbI3: Structural Relations and Transformation Dynamics, Chemistry of Materials, 2016, 28, 6501-6510.
63.Luo, S.; Daoud, W., Crystal structure formation of CH3NH3Pbi3-xClx perovskite, Materials, 9(3), 123.2016, 9, 123.
64.Binek, A.; Hanusch, F.C.; Docampo, P.; Bein, T. Stabilization of the trigonal high-temperature phase of formamidinium lead iodide, The journal of physical chemistry letters, 2015, 6, 1249-1253.
65.Shen, D.; Yu, X.; Cai, X.; Peng, M.; Ma, Y.; Su, X.; Xiao, L.; Zou, D. Understanding the solvent-assisted crystallization mechanism inherent in efficient organic–inorganic halide perovskite solar cells, Journal of Materials Chemistry A, 2014, 2, 20454-20461.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔