(3.237.20.246) 您好!臺灣時間:2021/04/15 09:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊霈于
研究生(外文):Pei-YuChuang
論文名稱:以角解析光電子能譜術探討新穎拓樸材料晶體與電子結構之物理特性
論文名稱(外文):The novel topological insulator materials of crystal and electronic structure studied by angle-resolved photoemission spectroscopy
指導教授:黃榮俊黃榮俊引用關係
指導教授(外文):Jung-Chun-Andrew Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:96
中文關鍵詞:二維材料拓撲絕緣體角解析光電子能譜術分子束磊晶
外文關鍵詞:2D materialsTopological insulatorARPESMBE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,對於新一代的半導體材料特性研究與應用的議題受到強烈的關注。例如於2010年由Andre Geim和Konstantin Novoselov兩位諾貝爾獎得主所發現的石墨烯材料,此類具有特殊性質的二維材料,為量子物理拓展出新的觀點,同時也提供未來新型自旋電子元件應用於發展量子資訊的契機。拓樸絕緣體是一種新穎的材料絕緣形態,此物理性質源自於強烈的自旋軌道耦合所形成的特殊能帶結構。根據三維拓樸絕緣體的理論預測以及實驗的驗證,觀察到此一系列的化合物具有拓樸絕緣體的特性,例如:Bi1-xSbx 、Bi2Se3、Bi2Te3 和Sb2Te3。這類的材料因電子能帶之表面結構導電傳輸行為和塊材價帶內部的導電傳輸行為不相同,因為在電子能帶表面結構則具有類似狄拉克錐的零能隙態,因此將塊材能帶內部視為具有絕緣特性。並且在時間反演對稱性的基本物理法則的保護下,表面零能隙狀態不易被破壞。該特殊的拓撲表面態已經被提出許多各種有趣的電子傳輸特性和磁電物理量子現象,並且是未來的自旋電子元件應用的理想平台。此論文著墨於拓樸絕緣體薄膜磊晶成長並且結合同步輻射進行基本的材料特性,以及關鍵物理現象探討以及尖端應用。以下為論文兩大主軸內容簡介:在二維拓撲絕緣體之材料系統裡,由雙層鉍原子堆疊而成的超薄薄膜擁有二維拓撲絕緣體之特性。在此,將報導利用不同於以往由底下基材往上成長薄膜的方法。以新穎的方法由上往下成長超薄雙層鉍原子薄膜,此種方式優於以往三維模式成長的極限,將具有大面積並且平坦的成長方式。以分子束磊晶成長之單晶鉍化硒薄膜為基底,利用氫原子由上而下與硒原子反應,由上而下成長出超薄雙層鉍原子(111)單晶薄膜。我們藉由穿隧式電子顯微鏡臨場觀測硒原子被反應的過程,和形成均勻大面積雙層鉍原子(111)單晶薄膜的原因。另外根據第一原理計算,雙層鉍原子薄膜與鉍化硒薄膜,以凡德瓦力形成鍵結。並且預測將有強烈的Rashba分裂的效應,也藉由角解析光電子能譜術驗證。利用氫原子蝕刻的方式,能提供成長均勻且大面積的二維拓撲絕緣體超薄薄膜,這種方法將更容易應用自旋電子原件上之應用;利用分子束磊晶系統,藉由調變成長的基板溫度並且固定鉍元素與銻元素的分子束的成長速率比,以達到調控不同鉍化銻拓樸絕緣體薄膜的費米能階。由角解析光電子能譜,直接地顯示出,藉由一系列的改變基板的成長溫度。鉍化銻之拓樸絕緣體薄膜,其費米能階由導帶移往價帶,電子傳輸特性由電子載子傳輸轉變成電洞載子傳輸,並且在超過特定基板成長溫度,再次發生轉變費米能階往導帶移動的行為。在此,我們藉由延伸吸收光譜,直接地證明在鉍化銻結構發生鉍取代於銻佔位的行為,導致鉍化銻拓樸絕緣體薄膜的費米能級發生一系列的轉變。同時與第一原理的理論計算搭配,證明延伸吸收光譜擬合的結果,並且預測當基板的成長溫度超過轉折點後,晶體結構會轉變發生成銻取代於鉍佔位的行為。藉由精準控制基板的成長溫度,不透過外來雜質摻雜,以材料本質行為改變拓樸電子表面態的載子濃度並且透過角解析光電子能譜技術量測其電子表面態之能帶分佈。藉由搭配理論計算與實驗分析以及上述所提的能譜技術,初步了解拓撲絕緣體後。將發展以分子束磊晶製備多層膜與超晶格拓撲絕緣體的自旋電子元件。
Three-dimensional topological insulator has led to intense research owing to the potential applications of these materials in the field of spintronics and quantum computing. TIs are insulating materials in the bulk, which host metallic surface states in the energy gap with a Dirac-cone-like dispersion. These states are protected by time-reversal symmetry that show spin-momentum locking and leads to suppression of the electron backscattering by defects. The corresponding topological invariants dictate that there must be an odd number of such states intersecting the Fermi level between each pair of surface time-reversal invariant momenta. The bismuth-chalchogenide family of topological insulators are just one of these so-called topological surface states creating a single Dirac cone in the Brillouin zone centre. More importantly, additional pairs of two-dimensional, almost parabolic states emerge in the vicinity of the bulk conduction band, which develop large Rashba-type splitting. Since large spin-orbit coupling is prerequisite for a material to exhibit topologically protected states, bismuth is a primary candidate and bismuth bilayers have become under intense study. Which are now regarded as a prototype of an elemental 2D TIs. Recently, investigating step edges of a Bi(111) surface have aimed to prepare bismuth bilayers by using molecular beam epitaxy or exfoliation.
In this thesis, the electronic band structure of topological insulator materials has been systematically studied by angel-resolved photoemission spectroscopy. Chapter 1 introduces the research background for topological insulators. Chapter 2 describes the principle of photoemission spectroscopy and x-ray absorption spectroscopy for electronic and crystal structure. Chapter 3 introduces synchrotron radiation for XPS, ARPES, and XAS end station at Taiwan Light Source and SPring-8. In Chapter 4, we present a simple and controllable approach, which is based on exposing c single crystal thin film to a flux of atomic hydrogen. Angle-resolved photoemission spectroscopy (ARPES) and other surface sensitive techniques such as x-ray photoemission spectroscopy (XPS), low energy electron diffraction (LEED). Bi2Se3 thin films were transferred into ultra-high vacuum prepare chamber base pressure around 1E-9 torr and decapping protect layer of Se by thermal heated. ARPES measurements indicate a well contrasted sharp TIs surface state. Atomic hydrogen was generated by a thermal cracker source, during the operation of atom source, the hydrogen partial pressure in the chamber was PH2 is 1.2E-7 torr. For the quantification of the exposure of the sample, the Langmuir (L) units (1L=1E10-6 torr) in the following, which is proportional to the amount of hydrogen atoms interacting with the sample that was kept at room temperature. It was obtained electronic band structure of single bismuth bi layer (111) terminated Bi2Se3 (0001) surface that the TIs surface state of the system features the Dirac point at about 0.4 eV below the Fermi level, as in a Rashba type splitting. In chapter 5, we report the directly observed key role of an anti-site defect with tuning the Fermi level (EF) in Bi2Te3 topological insulators.
Tuning the Fermi level (EF) in Bi2Te3 topological-insulator (TI) films is demonstrated on controlling the temperature of growth with molecular-beam epitaxy (MBE). Angle-resolved photoemission spectra (ARPES) reveal that EF of Bi2Te3 thin films shifts systematically with the growth temperature (Tg). The key role that a Bi-on-Te(1) (BiTe1) antisite defect plays in the electronic structure is identified through extended x-ray-absorption fine-structure (EXAFS) spectra at the Bi L3-edge. Calculations of electronic structure support the results of fitting the EXAFS, indicating that the variation of EF is due to the formation and suppression of BiTe1 that is tunable with the growth temperature. Our findings provide not only insight into the correlation between the defect structure and electronic properties but also a simple route to control the intrinsic topological surface states, which could be useful for applications in TI-based advanced electronic and spintronic
devices. At last chapter 6 summarizes the conclusion and suggests the future research topics.
Contents
摘要..............................................................................................................................III
Abstract .........................................................................................................................V
誌謝...........................................................................................................................VIII
Contents ........................................................................................................................X
List of Table ............................................................................................................... XII
List of Figure.............................................................................................................XIII
Chapter 1 Introduction ...................................................................................................1
1.1 Spintronics ...........................................................................................................1
1.2 Topological insulator............................................................................................3
1.2.1 Overview of topological insulators...............................................................3
1.2.2 Topological Band Theory, Chern numbers, Z2 invariants.............................6
1.2.3 Experimental results of topological insulator ...............................................7
1.3 Two-dimensional (2D) materials .......................................................................12
1.3.1 Introduction of 2D materials.......................................................................12
1.3.2 Honeycomb structure of 2D materials ........................................................13
1.4 Motivation..........................................................................................................15
1.5 References..........................................................................................................17
Chapter 2 Theoretical of instrumentation ....................................................................20
2.1 Photoemission spectroscopy ..............................................................................20
2.1.1 Ultraviolet photoemission spectroscopy (UPS)..........................................23
2.1.2 X-ray photoemission spectroscopy (XPS)..................................................24
2.1.3 Angle-resolved photoemission spectroscopy (ARPES)..............................25
2.2 X-ray absorption spectroscopy ..........................................................................28
2.2.1 X-ray absorption near edge structure (XANES).........................................32
2.2.2 Extended x-ray absorption fine structure (EXAFS)....................................32
2.3 References..........................................................................................................36
Chapter 3 Experimental equipment .............................................................................38
3.1 Synchrotron radiation.........................................................................................38
3.2 The XPS end station of beamline 24A at TLS...................................................40
3.3 The ARPES end station of beamline 21B at TLS ..............................................42
3.4 The XAS end station of beamline 07A at TLS and SP12B at Spring-8.............46
3.5 References..........................................................................................................48
Chapter 4 Selective hydrogen etching leads to 2D Bi (111) bilayers on Bi2Se3:Large Rashba splitting in topological insulator heterostructure.............................................49
4.1 Introduction of 2D Bi (111) bilayers on Bi2Se3 .................................................49
4.2 Experimental section..........................................................................................51
4.2.1 Sample preparation .....................................................................................51
4.2.2 STM characterization..................................................................................52
4.2.3 XPS and ARPES characterization ..............................................................53
4.2.4 Computation................................................................................................54
4.3 Results and discussion .......................................................................................54
4.3.1 The 2D Bi (111) bilayers on Bi2Se3 with STM measurement.....................54
4.3.2 The 2D Bi (111) bilayers on Bi2Se3 of XPS characterization .....................59
4.3.3 The 2D Bi (111) bilayers on Bi2Se3 of electronic band structure................62
4.4 Conclusion of 2D Bi (111) bilayers on Bi2Se3...................................................68
4.5 References..........................................................................................................70
Chapter 5 Anti-site defect effect on the electronic structure of a Bi2Te3 topological insulator........................................................................................................................76
5.1 Introduction of anti-site defect effect with Bi2Te3 .............................................76
5.2 Experimental section..........................................................................................78
5.2.1 Sample preparation .....................................................................................78
5.2.2 XPS and ARPES characterization...............................................................78
5.2.3 EXAFS characterization .............................................................................79
5.2.4 Computational.............................................................................................79
5.3 Results and discussion .......................................................................................80
5.3.1 The crystal structure of Bi2Te3 with XRD measurement ............................80
5.3.2 The electronic band structure of Bi2Te3 with ARPES measurement ..........81
5.3.3 The qualitatively of Bi2Te3 with XPS measurement...................................82
5.3.4 The anti-defect effect of Bi2Te3 with EXAFS analysis...............................84
5.3.5 To calculation the electronic band structure of Bi2Te3 with anti-site defect effect ....................................................................................................................88
5.4 Conclusion of Bi2Te3 with anti-site defect effect...............................................90
5.5 References..........................................................................................................91
Chapter 6 Conclusion...................................................................................................94
Chapter 1
[1] K. V. Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497, 1980.
[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408, 1982.
[3] X.L. Qi, R. Li, J. Zang, et al. Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187, 2009.
[4] R. Yu, W. Zhang, H. J. Zhang, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64, 2010.
[5] H. Zhang, C.-X. Liu, X.-L. Qi, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442, 2009.
[6] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402, 2009.
[7] Y. L. Chen, J. G. Analytis, J.-H. Chu, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181, 2009.
[8] D. Hsieh, Y. Xia, D. Qian, et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105, 2009.
[9] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava & M. Z. Hasan. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974. 2008
[10] A. R. Akhmerov, Johan Nilsson, and C. W. J. Beenakker. Electrically Detected Interferometry of Majorana Fermions in a Topological Insulator. Phys. Rev. Lett. 102, 216404, 2009.
[11] Cui-Zu Chang, Jinsong Zhang, Minhao Liu, Zuocheng Zhang, Xiao Feng, Kang Li, Li-Li Wang, Xi Chen, Xi Dai, Zhong Fang, Xiao-Liang Qi, Shou-Cheng Zhang, Yayu Wang, Ke He, Xu-Cun Ma, Qi-Kun Xue. Thin Films of Magnetically Doped Topological Insulator with Carrier-Independent Long-Range Ferromagnetic Order. Adv. Mater. 25, 1065–1070, 2013.
[12] D. N. Sheng, Z. Y. Weng, L. Sheng, et al. Quantum spin-Hall effect and topologically invariant Chern numbers. Phys. Rev. Lett. 97, 036808, 2006.
[13] T. Fukui, Y. Hatsugai. Topological aspects of the quantum spin-Hall effect in graphene: Z2 topological order and spin Chern number. Phys. Rev. B 75, 121403, 2007.
[14] E. Prodan. Robustness of the spin-Chern number. Phys. Rev. B 80, 125327, 2009.
[15] L. Fu, C.L. Kane. Topological insulators with inversion symmetry. Phys. Rev. B
76, 045302, 2007.
[16] L. Fu, C. L. Kane, E. J. Mele. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803, 2007.
[17] R. B. Laughlin. Quantized Hall conductivity in two dimensions. Phys.
Rev. B 23, 5632–5633, 1981.
[18] D. Huertas-Hernando, F. Guinea, A. Brataas. Phys. Rev. Lett. 103, 146801, 2009.
[19] N. Tombros et al. Nature 448, 571, 2007.
[20] N. Tombros et al. Phys. Rev. Lett. 101, 046601, 2008.
[21] C. Jozsa et al. Phys. Rev. Lett. 100, 236603, 2008.
[22] K. Pi et al. Phys. Rev. Lett. 104, 187201, 2010.
[23] K. Takeda, K. Shiraishi. Phys. Rev. B 50, 075131, 1994.
[24] G. G. Guzmán-Verri, L. C. L. Y. Voon. Phys. Rev. B 76, 075131, 2007.
[25] S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, S. Cirac. Phys. Rev. Lett. 102, 236804, 2009.
[26] S. Lebegue, O. Eriksson. Phys. Rev. B 79, 115409, 2009.
[27] M. Ezawa. New J. Phys. 14, 033003, 2012.
[28] N.D. Drummond, V. Zolyomi, V.I. Fal'ko. Phys. Rev. B 85, 075423, 2012.
[29] Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, J. Lu. Nano Lett. 12, 113, 2012.
[30] M. Ezawa. Phys. Rev. Lett. 109, 055502, 2012.
[31] M. Ezawa. Phys. Rev. Lett. 110, 026603, 2013.
[32] M. Ezawa. Phys. Rev. B 87, 155415, 2013.
[33] Gordon W. Semenoff. Phys. Rev. Lett. 53, 2449. 1984.
[34] E.F. Luis, F. Torres, S. Roche, J.C. Charlier, Introduction to Graphene-Based Nanomaterials From Electronic Structure to Quantum Transport. 2013.
Chapter 2
[1] H. Hertz. Ann. Physik 31, 983, 1887.
[2]A. Einstein. Ann. Physik 17, 132, 1905.
[3]B. Feuerbacher. Photoemission and the electronic propertied of surfaces. 1992.
[4] T. Takahashi. Photoemission solid-state physics, Kotai Butsuri. Solid States Phys. 29, 189, 1994.
[5] F. J. Himpsel. Adv. Phys. 32, 1, 1983.
[6] A. Takayama. High-Resolution Spin-Resolved Photoemission Spectrometer
and the Rashba Effect in Bismuth Thin Films, Springer Theses, 2015.
[7] E. W. Plummer, W. Eberhardt. Angle-resolved photoemission as a tool for the study of surface, Advance in Chemical Physics, 2007.
[8] M. P. Seah, W. A. Dench, Surf. Interface Anal. 1, 2,1979.
[9]K. Siegbahn et al. ESCA atomic, molecular and solid state structure by mean of electron spectroscopy, nova acta. Soc. Sci., Upsaliensis Ⅳ, 20, 1967.
[10] T. Carlson. Photoelectron and auger spectroscopy, Springer US, 1975.
[11] A. Damascelli, Z. Hussain, and Z-.X. Shen. Angle-resolved photoemission studies
of the cuprate superconductors. Rev. Mod. Phys. 75, 473, 2003.
[12] Y .Q. Xia. Photoemission studies of a new topological insulator class: experimental discovery of the Bi2X3 topological insulator class. 2010.
[13] P. J. Feibelman, D. E. Eastman. Phys. Rev. B 10, 4932,1974.
[14] D. E. Sayers, E. A. Stern, F. W. Lytle. New Technique for Investigating noncrystalline structures: Fourier analysis of the extended x-ray absorption fine structure. Phys. Rev. Lett. 27, 1204–1207, 1971.
[15] B. K. Teo. EXAFS Spectroscopy: Basic principles and data analysis. Springer-Verlag, New York, 1986.
[16] C. S. Schnohr and M. C. Ridgway Editors. X-ray absorption spectroscopy of semiconductors. Springer series in optical sciences. Volume 190. 2015.
[17] G. Bunker, Introduction to XAFS. Cambridge University Press, Cambridge. 2010.
[18] J. J. Rehr, R.C. Albers. Rev. Mod. Phys. 72, 621. 2000.
[19] S. D. Kelly, D. Hesterberg, B. Ravel. Analysis of soils andminerals using X-ray absorption spectroscopy, in Methods of Soil Analysis—Part 5: Mineralogical Methods, Soil Science Society of America Book Series No. 5, Madison. 2008.
[20] J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen. Phys. Chem. Chem. Phys. 12, 5503. 2010.
[21]J. E. Penner-Hahn. X-ray absorption spectroscopy in coordination chemistry. Coordination Chemistry Reviews. 190–192, 1101–1123, 1999.
Chapter 3
[1] National Synchrotron Radiation Research Center (NSRRC), Synchrotron Light Source (NSRRC, HsinChu, 2009).
[2] P. C. Tseng, C. C. Chen, T. E. Dann, S. C. Chung, C. T. Chen and K. L. Tsang, J. Synchrotron Rad. 5, 723, 1998.
[3] L. J. Lai, P. C. Tseng, Y. W. Yang, S. C. Chung, Y. F. Song, N. F. Cheng, C. C. Chen, C. T. Chen, and K. L. Tsang, “Current status of the wide-range (10-1,500 eV) spherical grating monochromator beamline at SRRC, Nuclear Instruments and Methods in Physics Research A, 467-468, 586-588,2001.
[4] Yen-Fang Song et al., Design of an ultra-high resolution and high flux cylindrical grating monochromator undulator beamline. Nucl. Instrum. Methods A. 496, 467-468, 2001.
[5] M.-T. Tang, T.-E. Dann, C.-C. Chen, K.-L. Tsang, K.-S. Liang. Conceptual design report of the BL12 bending magnet beamline at SPring-8. SRRC RBM-IM/98-03, 1998.
[6] M.-T. Tang, T.-E. Dann, C.-C. Chen, K.-L. Tsang. Specifications for the beamline BL12B2 at SPring-8. SRRC RBM-IM/98-04, 1998.
[7] M.-T. Tang, T.E. Dann, C.C. Chen, K.L. Tsang, C.T. Chen, K.S. Liang. Design of the Taiwan Contract Bending Magnet Beamline at SPring-8. Nucl. Instrum. Meth. A467-468, 719-722, 2001.
[8] Mau-Tsu Tang, Yuch-Cheng Jean, Yu-Shan Huang, Chun-Hsiung Chao, Chun-Jung Chen, Chia-Ni Hsu. Operational Manual of the Protein Crystallography Station at SPring-8 Taiwan Beamline BL12B2. SRRC Internal Technical Report, 2002.
Chapter 4
[1] Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. A topological Dirac insulator in a quantum spin Hall phase. Nature 2008, 452, 970-974.
[2] Moore, J. Topological insulators: The next generation. Nat. Phys. 2009, 5, 378-380.
[3] Zhang, H.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438-442.
[4] Moore, J. The birth of topological insulators. Nature 2010, 464, 194-198.
[5] Ren, Y.; Qiao, Z.; Niu, Q. Topological phases in two-dimensional materials: a review. Rep. Prog. Phys. 2016, 79, 066501.
[6] Kane, C. L.; Mele, E. J. Z2 Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 2005, 95, 146802.
[7] Roth, A.; Brüne, C.; Buhmann, H.; Molenkamp, L. W.; Maciejko, J.; Qi, X.-L.; Zhang, S.-C. Nonlocal Transport in the Quantum Spin Hall State. Science 2009, 325, 294-297.
[8] Bernevig, B. A.; Zhang, S-C. Quantum spin Hall effect. Phys. Rev. Lett. 2006, 96,
106802.
[9] Bernevig, B. A.; Hughes, T. L.; Zhang, S.-C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science 2006, 314, 1757-1761.
[10] König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X.-L.; Zhang, S.-C. Quantum Spin Hall Insulator State in HgTe Quantum Wells Science 2007, 318, 766-770.
[11] Koski, K. J.; Cui, Y. The New Skinny in Two-Dimensional Nanomaterials. ACS Nano 2013, 7, 3739-3743.
[12] Xu,Y. ; Yan, B.; Zhang, H.-J.; Wang, J.; Xu, G.; Tang, P.; Duan, W.; Zhang, S.-C. Large-Gap Quantum Spin Hall Insulators in Tin Films. Phys. Rev. Lett. 2013, 111, 136804.
[13] Zhu, F.-F.; Chen, W.-J.; Xu, Y.; Gao, C.-L.; Guan, D. D.; Liu, C.-h.; Qian, D.; Zhang, S.-C.; Jia, J.-f. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020-1025.
[14] Zhang, P. F.; Liu, Z.; Duan, W.; Liu, F.; Wu, J. Topological and electronic transitions in a Sb (111) nanofilm: The interplay between quantum confinement and surface effect. Phys. Rev. B 2012, 85, 201410(R).
[15] Murakami, S. Quantum Spin Hall Effect and Enhanced Magnetic Response by Spin-Orbit Coupling. Phys. Rev. Lett. 2006, 97, 236805.
[16] Liu, Z.; Liu, C.-X.; Wu, Y.-S.; Duan, W.-H.; Liu, F.; Wu, J. Stable Nontrivial Z2 Topology in Ultrathin Bi (111) Films: A First-Principles Study.
Phys. Rev. Lett. 2011, 107, 136805.
[17] Mannix, A. J.; Kiraly, B.; Hersam, M. C.; Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 2017, 1, 0014.
[18] Ast, C. R.; Höchst, H. Fermi surface of Bi (111) measured by photoemission spectroscopy. Phys. Rev. Lett. 2001, 87, 177602.
[19] Koroteev, Y. M.; Bihlmayer, G.; Gayone, J. E.; Chulkov, E. V.; Blügel, S.; Echenique, P. M.; Hofmann, P. Strong spin-orbit splitting on Bi surfaces. Phys. Rev. Lett. 2004, 93, 046403.
[20] Hirahara, T.; Nagao, T.; Matsuda, I.; Bihlmayer, G.; Chulkov, E. V.; Koroteev, Y. M.; Echenique, P. M.; Saito, M.; Hasegawa, S. Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films. Phys. Rev. Lett. 2006, 97, 146803.
[21] Takayama, A.; Sato, T.; Souma, S.; Takahashi, T. Giant out-of-plane spin component and the asymmetry of spin polarization in surface rashba states of bismuth thin film. Phys. Rev. Lett. 2011, 106, 166401.
[22] Ohtsubo, Y.; Mauchain, J.; Faure, J.; Papalazarou, E.; Marsi, M.; Le Fèvre, P.; Bertran, F.; Ibrahimi, A. T.; Perfetti, L. Giant anisotropy of spin-orbit splitting at the bismuth surface. Phys. Rev. Lett. 2012, 109, 226404.
[23] Takayama, A.; Sato, T.; Souma, S.; Oguchi, T.; Takahashi, T. Tunable Spin Polarization in Bismuth Ultrathin Film on Si(111). Nano Lett. 2012, 12, 1776-1779.
[24] Zhu, Z.; Collaudin, A.; Fauqué, B.; Kang, W.; Behnia, K. Field-induced polarization of Dirac valleys in bismuth. Nat. Phys. 2012, 8, 89-94.
[25] Küchler, R.; Steinke, L.; Daou, R.; Brando, M.; Behnia, K.; Steglich, F. Thermodynamic evidence for valley-dependent density of states in bulk bismuth. Nat. Mater. 2014, 13, 461-465.
[26] Hofmann, P. The surfaces of bismuth: Structural and electronic properties.
Prog. Surf. Sci. 2006, 81, 191-245.
[27] Rycerz, A.; Tworzydło, J.; Beenakker, C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 2007, 3, 172–175.
[28] Molle, A.; Goldberger, J.; Houssa,M.; Xu, Y.; Zhang, S.-C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Phys. 2017, 16, 163–169.
[29] Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, 9439.
[30] Wang, Z. F.; Chen, L.; Liu, F. Tuning Topological Edge States of Bi(111) Bilayer Film by Edge Adsorption. Nano Lett. 2014, 14, 2879-2883.
[31] Yeom, H. W.; Jin, K.-H.; Jhi, S.-H. Topological fate of edge states of single Bi bilayer on Bi (111). Phys. Rev. B 2016, 93, 075435.
[32] Kim, S. H.; Jin, K.-H.; Park, J.; Kim, J. S.; Jhi, S.-H.; Kim, T.-H.; Yeom, H. W. Edge and interfacial states in a two-dimensional topological insulator: Bi(111) bilayer on Bi2Te2Se. Phys. Rev. B 2014, 89, 155436.
[33] Shoman,T.; Takayama, A.; Sato, T.; Souma, S.; Takahashi, T.; Oguchi, T.; Segawa, K.; Ando, Y. Topological proximity effect in a topological insulator hybrid. Nat. Commun. 2015, 6, 6547.
[34] Hirahara, T.; Bihlmayer, G.; Sakamoto, Y.; Yamada, M.; Miyazaki, H.; Kimura, S. I.; Blügel, S.; Hasegawa, S. Interfacing 2D and 3D Topological Insulators: Bi (111) Bilayer on Bi2Te3. Phys Rev Lett. 2011, 107, 166801.
[35] Hirahara, T.;Fukui, N.; Shirasawa, T.; Yamada, M.; Aitani, M.; Miyazaki, H.;
Matsunami, M.; Kimura, S.;Takahashi, T.; Hasegawa, S.; Kobayashi, K. Atomic and Electronic Structure of Ultrathin Bi(111) Films Grown on Bi2Te3 (111) Substrates: Evidence for a Strain-Induced Topological Phase Transition. Phys Rev Lett. 2012, 109, 227401.
[36] Yang, F.; Miao, L.; Wang, Z. F.; Yao, M.-Y.; Zhu, F.; Song, Y. R.; Wang, M.-X.; Xu, J.-P.; Fedorov, A. V.; Sun, Z.; Zhang, G. B.; Liu, C.; Liu, F.; Qian, D.; Gao, C. L.; Jia, J.-F. Spatial and Energy Distribution of Topological Edge States in Single Bi(111) Bilayer. Phys Rev Lett. 2012, 109, 016801.
[37] Chen, M.; Peng, J.-P.; Zhang, H.-M.; Wang, L.-L.; He, K.; Ma, X.-C.; Xue, Q.-K. Molecular beam epitaxy of bilayer Bi(111) films on topological insulator Bi2Te3 : A scanning tunneling microscopy study. Appl. Phys. Lett. 2012, 101, 81603.
[38] Miao, L.; Wang, Z. F.; Ming, W.; Yao, M.-Y.; Wang, M.-X.; Yang, F.; Song, Y. R.; Zhu, F.; Fedorov, A. V.; Sun, Z.; Gao, C. L.; Liu, C.; Xue, Q.-K.; Liu, C.-X.; Liu, F.; Qian, D.; Jia, J.-F. Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 2758-2762.
[39] Miao, L.; Yao, M.-Y.; Ming, W.; Zhu, F.; Han, C. Q.; Wang, Z. F.; Guan, D. D.; Gao, C. L.; Liu, C.; Liu, F.; Qian, D.; Jia, J.-F. Evolution of the electronic structure in ultrathin Bi(111) films. Phys. Rev. B 2015, 91, 205414.
[40] Wang, Z. F.; Yao, M.-Y.; Ming, W.; Miao, L.; Zhu, F.; Liu, C.;
Gao, C. L.; Qian, D.; Jia, J.-F.; Liu, F. Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions. Nat. Commun. 2013, 4, 1384.
[41] Eich, A.; Michiardi, M.; Bihlmayer, G.; Zhu, X.-G.; Mi, J.-L.; Iversen, Bo B.; Wiesendanger, R.; Hofmann,Ph.; Khajetoorians, A. A.; Wiebe, J. Intra- and Interband Electron Scattering in a Hybrid Topological Insulator: Bismuth Bilayer on Bi2Se3 Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 155414.
[42] Chang, C.-Z.; Tang, P.; Feng, X.; Li, K.; Ma, X.-C.; Duan, W.; He, K.; Xue, Q.-K. Band Engineering of Dirac Surface States in Topological-Insulator-Based van der Waals Heterostructures. Phys Rev Lett. 2015, 115, 136801.
[43] Zhang, K. F.; Yang, F.; Song, Y. R.; Liu, C.; Qian, D.; Gao, C. L.; Jia, J.-F.
Strongly compressed Bi (111) bilayer films on Bi2Se3 studied by scanning tunneling microscopy. Appl. Phys. Lett. 2015, 107, 121601.
[44] Sabater, C.; Gosálbez-Martínez, D.; Fernández-Rossier, J.; Rodrigo, J. G.; Untiedt, C.; Palacios, J. J. Topologically Protected Quantum Transport in Locally Exfoliated Bismuth at Room Temperature. Phys. Rev. Lett. 2013, 110, 176802 .
[45] Drozdov, I. K.; Alexandradinata, A.; Jeon, S.; Perge, S. N.; Ji, H.; Cava, R. J.; Bernevig, B. A.; Yazdani, A. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 2014, 10, 664-669.
[46] He, X.; Zhou, W.; Wang, Z. Y.; Zhang, Y. N.; Shi, J.; Qu, R. Q.; Yarmoff, J. A. Surface Termination of Cleaved Bi2Se3 Investigated by Low Energy Ion Scattering. Phys. Rev. Lett. 2013, 110, 156101-156105
[47] Edmonds, M. T.; Hellerstedt, J.; Tadich, A.; Schenk, A.; O’Donnell, K. M.; Tosado, J.; Butch, N. P.; Syers, P.;Paglione, J.; Fuhrer, M. S.Stability and Surface Reconstruction of Topological Insulator Bi2Se3 on Exposure to Atmosphere. J. Phys. Chem. C 2014, 118, 20413-20419.
[48] Govaerts, K.; Park, K.; Beule, C. D.; Partoens, B.; Lamoen, D. Effect of Bi bilayers on the topological states of Bi2Se3: A first-principles study. Phys. Rev. B 2014, 90, 155124.
[49] Govaerts, K.; Sluiter, M. H. F.; Partoens, B.; Lamoen, D. Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems: Ab initio study. Phys. Rev. B 2014, 89, 054106.
[50] Hewitt, A. S.; Wang, J.; Boltersdorf , J.; Maggard, P. A.; Dougherty, D. B. Coexisting Bi and Se surface terminations of cleaved Bi2Se3 single crystals. J. Vac. Sci. Technol. B 2014, 32, 04E103.
[51] Shokri, R.; Meyerheim, H. L.; Roy, S.; Mohseni, K.; Ernst, A.; Otrokov, M. M.; Chulkov, E. V.; Kirschner, J. Atomic and electronic structure of bismuth-bilayer-terminated Bi2Se3 (0001) prepared by atomic hydrogen etching. Phys. Rev. B 2015, 91, 205430.
[52] Jin, K.-H.; Yeom, H. W.; Jhi, S.-H. Band structure engineering of topological insulator heterojunctions. Phys. Rev. B 2016, 93, 075308.
[53] Tung, Y.; Chiang, Y. F.; Chong, C. W.; Deng, Z. X.; Chen,Y. C.; Huang, J. C. A.; Cheng, C.-M.; Pi, T.-W., Tsuei, K.-D.; Li, Z.; Qiu, H. Growth and characterization of molecular beam epitaxy-grown Bi2Te3−xSex topological insulator alloys. J. Appl. Phys. 2016, 119, 055303.
[54] Su, S. H.; Chen, H.-H.; Lee, T.-H.; Hsu, Y.-J.; Huang, J. C. A. Thermally Activated Interaction of Co Growth with ZnO (101̅0) Surface. J. Phys. Chem. C 2013, 117, 17540-17547.
[55] Chen, H.-H.; Su, S. H.; Chang, S.-L. Cheng, B.-Y.; Chong, C.-W.; Huang, J. C. A.; Lin, M.-F. Long-range interactions of bismuth growth on monolayer epitaxial graphene at room temperature. Carbon 2015, 93,180-186.
[56] Chen, H.-H.; Su, S. H.; Chang, S.-L. Cheng, B.-Y.; Chen, S. W.; Chen, H.-Y. Lin, M.-F.; Huang, J. C. A. Tailoring low-dimensional structures of bismuth on monolayer epitaxial graphene. Sci. Rep. 2015, 5, 11623.
[57] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.
[58] Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [59] Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115.
[60] Lin, H.; Das, T.; Okada, Y.; Boyer, M.C.; Wise, W.D.; Tomasik, M.; Zhen, B.; Hudson, E.W.; Zhou, W.; Madhavan, V.; Ren, C.Y.; Ikuta, H.; Bansil, A. Topological Dangling Bonds with Large Spin Splitting and Enhanced Spin Polarization on the Surfaces of Bi2Se3. Nano Lett., 2013, 13, 1915-1919.
[61] Atuchin, V.V.; Golyashov, V.A.; Kokh, K.A.; Korolkov, I.V.; Kozhukhov, A.S.; Kruchinin,V.N.; Makarenko, S.V.; Pokrovsky, L.D.; Prosvirin, I.P.; Romanyuk, K.N.; Tereshchenko, O.E. Formation of Inert Bi2Se3(0001) Cleaved Surface. Cryst. Growth Des., 2011, 11, 5507-5514.
[62] Kim, S.; Ye, M.; Kuroda, K.; Yamada, Y.; Krasovskii, E. E.; Chulkov, E. V.; Miyamoto, K.; Nakatake, M.; Okuda, T.; Ueda, Y.; Shimada, K.; Namatame, H.; Taniguchi, M.; Kimura, A. Surface Scattering via Bulk Continuum States in the 3D Topological Insulator Bi2Se3. Phys. Rev. Lett. 2011, 107, 056803.
[63] Cheng, P.; Song, C.; Zhang, T.; Zhang, Y.; Wang, Y.; Jia, J.-F.; Wang, J.; Wang, Y.; Zhu, B.-F.; Chen, X.; Ma, X.; He, K.; Wang, L.; Dai, X.; Fang, Z.; Xie, X.; Qi, X.-L.; Liu, C.-X.; Zhang, S.-C.; Xue, Q.-K. Landau Quantization of Topological Surface States in Bi2Se3. Phys. Rev. Lett. 2010, 105, 076801.
[64] Urazhdin, S.; Bilc, D.; Tessmer, S. H.; Mahanti, S. D.; Kyratsi , T.; Kanatzidis, M. G. Scanning tunneling microscopy of defect states in the semiconductor Bi2Se3. Phys. Rev. B 2002, 66, 161306(R).
[65] Kong, D.; Cha, J. J.; Lai, K.; Peng, H.; Analytis, J. G.; Meister, S.; Chen, Y.; Zhang, H.-J.; Fisher, I. R.; Shen, Z.-X.; Cui, Y. Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi2Se3. ACS Nano 2011, 5, 4698-4703.
[66] Gibson, Q. D.; Schoop, L. M.; Weber, A. P.; Ji, H.; Nadi-Perge, S.; Drozdov, I. K.; Beidenkopf, H.; Sadowski, J. T.; Fedorov, A.; Yazdani, A.; Valla, T.; Cava, R. J. Termination-Dependent Topological Surface States of the Natural Superlattice Phase Bi4Se3. Phys. Rev. B 2013, 88, 081108-081112(R).
[67] Waitkins, G. R.; Shutt, R.; Kinney, I. W.; McReynolds, J. P. Inorganic Syntheses; Wiley Publishing: New York, 1946; Vol. 2.
[68] Benia, H. M.; Lin, C.; Kern, K.; Ast, C. R. Reactive Chemical Doping of the Bi2Se3 Topological Insulator. Phys. Rev. Lett. 2011, 107, 177602-177606.
[69] Hinchliffe, A. AB initio study of the hydrogen-bonded complexes H2X⋯ HY (X= O, S, Se: Y= F, Cl, Br). J. Mol. Struct. (THEOCHEM). 1984, 106, 361-366.
[70] Gann, R. D.; Wen, J.; Xu, Z.; Gu, G. D.; Yarmoff, J. A. Surface Restructuring in Sputter-Damaged Bi2Sr2CaCu2O8+δ. Phys. Rev. B 2011, 84, 165411-165416.
[71] Hatta, S.; Aruga, T.; Ohtsubo, Y.; Okuyama, H. Large Rashba spin splitting of surface resonance bands on semiconductor surface. Phys. Rev. B 2009, 80, 113309. [72] Ast, C. R.; Henk, J.; Ernst, A.; Moreschini, L.; Falub, M.C.; Pacilé, D.; Bruno,
P.; Kern, K.; Grioni, M. Giant Spin Splitting through Surface Alloying. Phys. Rev. Lett. 2007, 98, 186807.
[73] Ishizaka, K.; Bahramy, M.S.; Murakawa, H.; Sakano, M.; Shimojima, T.; Sonobe, T.; Koizumi, K.; Shin, S.; Miyahara, H.; Kimura, A.; Miyamoto, K.; Okuda, T.; Namatame, H.; Taniguchi, M.; Arita, R.; Nagaosa, N.; Kobayashi, K.; Murakami, Y.; Kumai, R.; Kaneko, Y.; Onose, Y.; Tokura, Y. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 2011, 10, 521-526.
Chapter 5
[1] J. E. Moore, Nature, 2010, 464, 194-198.
[2] X. -L. Qi and S. -C. Zhang, Rev. Mod. Phys., 2011, 83, 1057-1110.
[3] B. A. Bernevig, T. L. Hughes, and S. -C. Zhang, Science, 2006, 314, 1757-1761.
[4] H. Zhang ,C. -X. Liu, X. -L Qi, X. Dai, Z. Fang, and S. -C. Zhang, Nature Physics, 2009, 5, 438-442.
[5] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys., 2010, 82, 3045-3067.
[6] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature Physics, 2009, 5, 398-402.
[7] Y. L. Chen, J. G. Analytis, J. -H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, Z. -X. Shen, Science, 2009, 325, 178-181.
[8] A. Mzerd, D. Sayah, J. C. Tedenac, and A. Boyer, J. Cryst. Growth, 1994, 140, 365-369.
[9] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan, Nature, 2009, 460, 1101-1105.
[10] G. R. Miller, and Che-Yu Li, Journal of Physics and Chemistry of Solids, 1965, 26, 173-177.
[11] R. F. Brebrick, Journal of Physics and Chemistry of Solids, 1969, 30, 719-731
[12] C. B. Satterthwaite and R. W. Ure, Jr., Phys. Rev., 1957, 108, 1164-1170.
[13] Helin Zou, D. M. Rowe, and Gao Min, Journal of Crystal Growth, 2001, 222, 82-87.
[14] Helin Zou, D. M. Rowe, and S. G. K. Williams, Thin Solid Films, 2002, 408, 270-27
[15] G. Kresse and J. Hafner, Phys. Rev. B. 1993, 48, 13115-13118.
[16] G. Kresse, J. Furthmiiller, Computational Materials Science, 1996, 6, 15-50.
[17] G. Kresse and D. Joubert, Phys. Rev. B, 1999,59, 1758-1775.
[18] D. H. Kim, E. Byon, G. H. Lee, and S. Cho, Thin Solid Films, 2006, 510, 148-153.
[19] G. Wang, X.-G. Zhu, Y.-Y. Sun, Y.-Y. Li, T. Zhang, J. Wen, X. Chen, K. He, L.-L. Wang, X.-C. Ma, J.-F. Jia, S. B. Zhang, and Q.-K. Xue, Adv. Mater., 2011, 23, 2929–2932.
[20] Adham Hashibon and Christian Elsässer, Phys. Rev. B, 2011, 84, 144117.
[21] D. O. Scanlon, P. D. C. King, R. P. Singh, A. de la Torre, S. McKeown Walker, G. Balakrishnan, F. Baumberger, and C. R. A. Catlow, Adv. Mater., 2012, 24, 2154–2158.
[22] P. Pecheur and G. Toussaint, J. Phys. Chem. Solids, 1994, 55(4), 327-338.
[23] S. X. Zhang, L. Yan, J. Qi, M. Zhuo, Y. -Q. Wang, R. P. Prasankumar, Q. X. Jia, and S. T. Picraux, Thin Solid Films, 2012, 520, 6459-6462.
[24] Sunglae Cho, Yunki Kim, Antonio DiVenere, George K. Wong, and John B. Ketterson, Appl. Phys. Lett., 1999, 75, 1401-1403.
[25] D. A. Shirley, Phys. Rev. B, 1972, 5, 4709-4714.
[26] M. C. Burrell, N. R. Armstrong, Appl. Surf. Sci., 1983, 17, 53-69.
[27] H. E. Bishop, Surf. Interface Anal.,1981, 3, 272-274.
[28] S. Tougaard, Journal of Electron Spectroscopy and Related Phenomena, 1999, 52, 243-271.
[29] K. Schouteden, K. Govaerts, J. Debehets, U. Thupakula, T. Chen, Z. Li, A. Netsou, F. Song, D. Lamoen, C. V. Haesendonck, B. Partoens, and K. Park, ACS Nano, 2016, 10(9), 8778-8787.
[30] B. Ravel and M. Newville, J. Synchrotron Rad., 2005, 12, 537-541.
[31] C. W. Luo, H. J. Wang, S. A. Ku, H.-J. Chen, T. T. Yeh, J.-Y. Lin, K. H. Wu, J. Y. Juang, B. L. Young, T. Kobayashi, C.-M. Cheng, C.-H. Chen, K.-D. Tsuei, R. Sankar, F. C. Chou, K. A. Kokh, O. E. Tereshchenko, E. V. Chulkov, Yu. M. Andreev, and G. D. Gu, Nano Lett., 2013, 5797-5802.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔