(3.238.7.202) 您好!臺灣時間:2021/03/02 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡宜哲
研究生(外文):I-TseTsai
論文名稱:以光調控鈷鐵氧體磊晶薄膜之磁性
論文名稱(外文):Optical Control of Magnetism in Epitaxial CoFe2O4 Thin Films
指導教授:陳宜君陳宜君引用關係楊展其
指導教授(外文):Yi-Chun ChenJan-Chi Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:94
中文關鍵詞:鈷鐵氧體亞鐵磁性熱效應光控磁性
外文關鍵詞:Cobalt ferrite(CoFe2O4)FerrimagnetismThermal effectOptical control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光控磁性研究對於磁性儲存技術等應用具有極大重要性,光調控不僅可以以聚焦程度控制照光區域範圍,且調控過程為非接觸式,在製程上有一定程度方便性。本篇研究主要以光為調控物性手法,在室溫環境下控制鈷鐵氧體(CoFe2O4)磊晶薄膜的磁疇結構與磁矩方向。本研究利用磁力顯微鏡(Magnetic Force Microscope, MFM)觀測照光前後的CFO薄膜磁疇結構變化,另外也透過表面電位顯微鏡(Kelvin Force Microscope, KFM)與拉曼光譜來幫助探討照光引起磁性變化的機制。

透過改變光的偏振與波長、照光強度與時間、樣品膜厚等變因,我們推論光致磁性變化機制是由熱效應主導,並經由拉曼光譜估算出照光引起的升溫效果。另外透過KFM,我們發現特定照光條件下會發生發生表面電荷累積情形,但經由實驗證明,表面電荷與磁性變化沒有因果關係。最後更進一步討論在外加磁場下的光致磁性變化,發現照光後的磁疇磁矩方向變化同時受到樣品初始磁化狀態與外加磁場影響。
Complex oxides have caught significant attention for the development of the next-generation electronic devices due to their versatile functionalities and the tunability via the external stimuli, such as electrical and magnetic fields. To broaden the application of complex oxides, the new pathway to control the physical properties is on demand. Cobalt ferrite (CoFe2O4), a ferrimagnetic inverse spinel, is potential in the application of magnetic storage device because of its high magnetization and coercivity. In this study, we introduce the optical method to control the magnetic domain configuration of CoFe2O4 thin film. We use not only magnetic force microscopy (MFM) to investigate the change of the magnetic state of the area illuminated by laser light but also Kelvin Force Microscope (KFM) and Raman spectroscopy to analyze the possible mechanisms behind the changes of magnetic properties induced by light illumination.
摘要 I
Abstract II
致謝 VII
目錄 VIII
圖目錄 XI
第一章 緒論 1
第二章 磁性原理與文獻回顧 3
2.1磁性基本原理 3
2.1.1磁性 3
2.1.2磁異向性 7
2.1.3 磁疇理論 9
2.2光調控物理特性 11
2.2.1光控物性 11
2.2.2光控磁性文獻回顧 12
2.3複雜性氧化物與鈷鐵氧體 26
2.3.1鈷鐵氧體性質 27
2.3.2 鈷鐵氧體的磁性調控 33
第三章 實驗原理與方法 36
3.1原子力顯微鏡 36
3.1.1 AFM運作原理與操作模式 37
3.2 磁力顯微鏡 42
3.3 表面電位顯微鏡 46
3.4 拉曼光譜 48
3.5 實驗架設 52
第四章 結果與討論 53
4.1 CFO薄膜的光調控磁性變化 54
4.1.1 CFO/STO薄膜的磁異向性 54
4.1.2 MFM磁性影像判別 55
4.1.3 CFO薄膜的光調控磁性變化 57
4.2 CFO薄膜光調控磁性變化機制探討 60
4.2.1 光偏振探討 60
4.2.2 變波長探討 64
4.2.3 照光強度 65
4.2.4 照光溫度效應 66
4.2.5變時間光控磁性 70
4.2.6 薄膜厚度效應 77
4.2.7 表面電荷效應 79
4.3 外加磁場下的光調控磁性變化 82
第五章 結論 90
參考文獻 92
[1]姜政熙,鎳鐵氧/鈦酸鍶鋇/鈦酸鍶磊晶薄膜之磁電藕合特性,成功大學碩士論文(2008)。
[2]B. M. Moskowitz, Hitchhiker's Guide to Magnetism (1991).
[3]T. C. Wei, H. P. Wang, H.J. Liu, D. S. Tsai, J. J. Ke , C. L. Wu, Y. P. Yin, Q. Zhan, G. R. Lin, Y. H. Chu, and J. H. He, “ Photostriction of strontium ruthenate, Nature communications 8, 15018 (2017).
[4]Ming-Min Yang and Marin Alexe, “ Light‐Induced Reversible Control of Ferroelectric Polarization in BiFeO3, Advanced Materials 30, 1704908 (2018).
[5]邱宇祐,混相鐵酸鉍之鐵電域光調控,成功大學碩士論文(2017)。
[6]A. Talapatra and J. Mohanty, “Laser induced local modification of magnetic domain in Co/Pt multilayer, Journal of Magnetism and Magnetic Materials 418, 224 (2016).
[7]S. R. Bakaul, W. Lin, and T. Wu, “Engineering magnetic domain in manganite thin films by laser interference, APPLIED PHYSICS LETTERS 100, 012403 (2012).
[8]L. Pan and D. B. Bogy, “Data storage: Heat-assisted magnetic recording, Nature Photonics 3, 189 (2009).
[9]J. Hohlfeld, T. Gerrits, M. Bilderbeek, T. Rasing, H. Awano, and N. Ohta, “ Fast magnetization reversal of GdFeCo induced by femtosecond laser pulses, Physical Review B 65, 012413 (2001).
[10]T. Ogasawara, N. Iwata, Y. Murakami, H. Okamoto, and Y. Tokura, “Submicron-scale spatial feature of ultrafast photoinduced magnetization reversal in TbFeCo thin film, APPLIED PHYSICS LETTERS 94, 162507 (2009).
[11]J. P. Van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect, Physical Review Letters 15, 190 (1965).
[12]A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “ Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses, Nature 435, 655 (2005).
[13]C. A. Perroni and A. Liebsch, “ Magnetization dynamics in dysprosium orthoferrites via the inverse Faraday effect, Physical Review B 74, 134430 (2006).
[14]C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing,“All-optical magnetic recording with circularly polarized light, Physical review letters 99, 047601 (2007).
[15]K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “ Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state, Physical review letters 103, 117201 (2009).
[16]C. H. Lambert, S. Mangin, B. C. S.V araprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton,“All-optical control of ferromagnetic thin films and nanostructures,Science 345, 1337 (2014).
[17]W. D. Rice, P. Ambwani, M. Bombeck, J. D. Thompson, G. Haugstad, C. Leighton, and S. A. Crooker, “Persistent optically induced magnetism in oxygen-deficient strontium titanate, Nature materials 13, 481 (2014).
[18]Soshin Chinkazumi著、張煦、李學養合譯,磁性物理學,聯經出版社,新北市(1992)。
[19]R. S. Turtelli, M. Atif, N. Mehmood, F. Kubel, K. Biernacka, W. Linert, K. Biernacka, W. Linert, R. Grössinger, Cz. Kapusta, and M.Sikora, “Interplay between the cation distribution and production methods in cobalt ferrite, Materials Chemistry and Physics 132, 832 (2012).
[20]M. Khodaei, S. S.Ebrahimi, Y. J. Park, J. M. Ok, J. S. Kim, J. Son, and S. Baik, “Enhancement of in-plane magnetic anisotropy in (111)-oriented Co0. 8Fe2. 2O4 thin film by deposition of PZT top layer, Applied Physics A 117, 1153 (2014).
[21]T. Yu, Z. X. Shen, Y. Shi, and J. Ding, “Cation migration and magnetic ordering in spinel CoFe2O4 powder: micro-Raman scattering study, Journal of Physics Condensed Matter 14 L613 (2002).
[22]吳昆鴻,鈷鐵氧體薄膜在可撓式基板上的應變調製拉曼研究,成功大學碩士論文(2016)。
[23]B.D Cullity and C.D. Graham, Introduction to magnetic material, Wiley-IEEE Press , New York, 2009.
[24]H. J. Liu, L. Y. Chen, Q. He, C. W. Liang, Y. Z. Chen, Y. S. Chien, Y. H. Hsieh,
S. J. Lin, E. Arenholz, C. W. Luo, Y. L. Chueh, Y. C. Chen, and Y. H. Chu,“Epitaxial photostriction–magnetostriction coupled self-assembled nanostructures, Acs Nano 6, 6952 (2012).
[25]F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S. Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D. G. Schlom, Y. Suzuki, and R. Ramesh, “Electric field-induced magnetization switching in epitaxial columnar nanostructures, Nano letters 5, 1793 (2005).
[26]王洸富,屏蔽電荷對108度域壁成核動態機制之影響,成功大學碩士論文(2010)。
[27]曾賢德、果尚志,奈米電性之掃描探針量測技術,物理雙月刊廿十五卷五期(2003)。
[28]Magnetic Force Microscopy (MFM) Applicable to Dimension™ Series and MultiMode™ Systems, Digital Instruments, 1996.
[29]J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introduction Raman Spectroscopy, Academic Press, San Diego, 1994
[30]A. Kirilyuk, A. V. Kimel, and T. Rasing, “Ultrafast optical manipulation of magnetic order, Reviews of Modern Physics 82, 2731 (2010).
[31]B. J. Kip and R. J. Meier, “Determination of the local temperature at a sample during Raman experiments using Stokes and anti-Stokes Raman bands, Applied spectroscopy 44, 707 (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔