跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 04:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮氏秋恒
研究生(外文):Hang Nguyen ThiThu
論文名稱:以電磁誘發透明法模擬階梯式修正三能階系統
論文名稱(外文):Electromagnetically Induced Transparency Simulation in Ladder-type Modified Three-level System
指導教授:蔡錦俊
指導教授(外文):Chin-Chun Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:42
中文關鍵詞:電磁感應透明度四波混頻三光子電磁感應吸收
外文關鍵詞:Electromagnetically Induced TransparencyFour Wave MixingThreePhoton Electromagnetically Induced Absorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在我的工作中,我首先通過求解光學Bloch方程來得到密度矩陣分量的解,呈現了在兩能階系統中光和原子的交互作用。接著,我們用數值模擬來描述原子在基態和激發態的機率以及在不同的Rabi frequencies下不同的雷射光頻率下對原子吸收的影響。更進一步,將光學Bloch方程應用於具有兩個外場(弱探測場和強耦合場)的梯形三能階系統,並且通過數值計算求出密度矩陣分量在穩定狀態下的解。
此篇論文的目地在於呈現133Cs系統中(6^2 S_(1/2)-6^2 P_(3/2)-〖11〗^2 S_(1/2)) 梯形狀的電磁誘發透明的數值模擬結果。在EIT中的Doppler effect以及耦合光的Rabi frequency也有被考慮在本論文中。最後,我們在有雙光子干涉的梯形三能階系統中再加上一道雷射光。在改變不同Rabi frequency的雷射光後,我們得到四波混頻(FWM)的信號和三光子的電磁誘發吸收信號。我們也針對電磁誘發透明和三光子電磁誘發吸收的不同進行了討論。
In this research, we firstly present the interaction of light and atoms in the simplest way that is the two-level system by solving the optical Bloch equation to get the solution of density matrix components. We subsequently use numerical simulation to describe the probability of atom being in the ground state and the excited state, as well as the influence of absorption of light with changing the frequency of laser field for various Rabi frequencies. Furthermore, the optical Bloch equation is applied into the ladder-type three-level system with two external fields (a weak probe field and a strong coupling field), and the solution of density matrix is presented after solving numerical method in steady state condition.
The purpose of this research is to present numerical simulation results of Electromagnetically Induced Transparency (EIT) in ladder-type three-level system for the 6^2 S_(1/2)-6^2 P_(3/2)-〖11〗^2 S_(1/2) transition of 133Cs atom. Moreover, influences of the Rabi frequency of coupling field and Doppler effect in EIT are also presented. Finally, an additional driving field is introduced into ladder-type three-level system to form a modified three-level system which involves two-photon coherence. We obtain the four-wave mixing (FWM) signal with various Rabi frequencies of driving field and the three-photon electromagnetically induced absorption (TPEIA) signal. A comparison between EIT and TPEIA with the change of Rabi frequency of the driving field is also illustrated in this research.
ABSTRACT I
摘要 II
Acknowledgements III
Table of Contents IV
List of Figures VI
Chapter 1 INTRODUCTION 1
Chapter 2 the two level system 4
2.1 The Two-Level atom 4
2.1.1 Atom Light Interactions in the Schrodinger picture 4
2.1.2 Hamitonian of Two-Level System 9
2.2 Spontaneous Emission and The Density Matrix. 10
2.2.1 The density matrix 10
2.2.2 The Time Evolution of the Density Matrix and Spontaneous Emission 11
2.3 Absorption and Refractive Index of Laser Field in Atomic Medium. 13
Chapter 3 Electromagnetically induced transparency (EIT) 20
3.1 Ladder Type Three-Level System 20
3.2 The EIT Phenomena in Ladder Type Three-Level Systems 22
3.3 EIT with Doppler Effect Consideration 26
Chapter 4 Modified three-level system 30
4.1 Modified Three-Level System 30
4.1.1 Modified Three-Level Scheme 30
4.1.2 Density Matrix Approach in the Four-Level System 31
4.2 Transformation between EIT and TPEIA 33
4.3 Influence of Driving Field on Four Wave Mixing 38
Chapter 5 CONCLUSION AND SUGGESTIONS 40
References 41
[1] H. S. Moon and H.-R. Noh, Opt. Express 21, 7447 (2013).
[2] S. D. Badger, I. G. Hughes, and C. S. Adams, J. Phys. B 34, L749 (2001).
[3] A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Phys. Rev. Lett. 98, 113003 (2007).
[4] H. S. Moon, L. Lee, and J. B. Kim, Opt. Express 16, 12163 (2008).
[5] M. A. Kumar and S. Singh, Phys. Rev. A 79, 063821 (2009).
[6] C. Liu, J. F. Chen, S. Zhang, S. Zhou, Y.-H. Kim, M. M. T. Loy, G. K. L. Wong, and S. Du, Phys. Rev. A 85, 021803 (2012).
[7] K.-J. Boller, A. Imamog ̆lu, and S. E. Harris, Phys. Rev. Lett. 66, 2593-2596 (1991).
[8] S. E. Harris, Phys. Today 50, 36-42 (1997).
[9] M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666-669 (1995).
[10] D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Phys. Rev. A 52, 2302-2311 (1995).
[11] H. Y. Ling, Y.-Q. Li, and M. Xiao, Phys. Rev. A 53, 1014-1026 (1996).
[12] S. Sen, T. K. Dey, M. R. Nath and G. Gangopadhyay, J. Mod. Opt 62, 166-174 (2015).
[13] H.-R. Lee and H. S. Moon, Opt. Express 23, 31574-31581 (2015).
[14] Y.-S. Lee, H.-R. Noh, and H. S. Moon, Opt. Express 23, 2999-3009 (2015).
[15] H. S. Moon and T. Jeong, Phys. Rev. A 89, 033822 (2014).
[16] Y.-Q.Li and M. Xiao, Opt. Lett. 21, 1064-1066 (1996).
[17] R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, Phys. Rev. A 79, 033814 (2009).
[18] U. Khadka, H. Zheng, and M. Xiao, Opt. Express 20, 6204-6214 (2012).
[19] C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, J. Mod. Opt. 49, 2485-2499 (2002).
[20] C. Carr, M. Tanansittikosol, A. Sargsyan, D. Sarkisyan, C. S. Adams, and K. J. Weatherill, Opt. Lett. 37, 3858-3860 (2012).
[21] R. J. Rafac, C. E. Tanner, A. E. Livingston and H. G. Berry, Phys. Rev. A 60, 3648-3662 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top