|
1.World Health Organization, http://www.who.int/mediacentre/factsheets/fs317/en/ (accessed on 8 September 2017). 2.The Taiwan’s Ministry of Health and Welfare, http://dep.mohw.gov.tw/DOS/np-1776-113.html (accessed on 8 September 2017). 3.Android App for Patient Monitoring. Available online: https://www.amrita.edu/center/awna/research/patient-monitoring-app (accessed on 25 August 2017). 4.Chen, H.; Liu, H. A remote electrocardiogram monitoring system with good swiftness and high reliability. Computers & Electrical Engineering 2016, 53, 191–202. 5.Madias, J.E. A proposal for monitoring patients with heart failure via “smart phone technology-based electrocardiograms. Journal of Electrocardiology 2016, 49(5), 699–706. 6.Take, Y.; Morita, H. Fragmented QRS: what is the meaning. Indian Pacing and Electrophysiology Journal 2012, 12(5), 213–225. 7.Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering 1985, BME-32(3), 230–236. 8.Hamilton, P.S.; Tompkins, W.J. Quantitative investigation of QRS detection rules using the mit/bih arrhythmia database. IEEE Transactions on Biomedical Engineering 1986, BME-33(12), 1157–1165. 9.Farashi, S. A multiresolution time-dependent entropy method for QRS complex detection. Biomedical Signal Processing and Control 2016, 24, 63–71. 10.Phukpattaranont, P. QRS detection algorithm based on the quadratic filter. Expert Systems with Applications 2015, 42(11), 4867–4877. 11.Manikandan, M.S.; Soman K.P. A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomedical Signal Processing and Control 2012, 7(2), 118–128. 12.Zhu, H.; Dong, J. An R-peak detection method based on peaks of Shannon energy envelope. Biomedical Signal Processing and Control. 2013, 8(5), 466–474. 13.Yochuma, M.; Renaudb, C.; Jacquira, S. Automatic detection of P, QRS and T patterns in 12 leads ECG signal based on CWT. Biomedical Signal Processing and Control 2016, 25, 46–52. 14.Meraha, M.; Abdelmalika, T.A.; Larbi, B.H. R-peaks detection based on stationary wavelet transform. Computer Methods and Programs in Biomedicine 2015, 121(3), 149–160. 15.Madeiro, J.P.V.; Cortez, P.C.; Marques, J.A.L.; Seisdedos, C.R.V.; Sobrinho, C.R.M.R. An innovative approach of QRS segmentation based on first-derivative, Hilbert and Wavelet Transforms. Medical Engineering & Physics 2012, 34(9), 1236–1246. 16.Christov, I.I. Real time electrocardiogram QRS detection using combined adaptive threshold. BioMedical Engineering OnLine 2004, 3(28), 1–9, doi:10.1186/1475–925X-3–28. 17.Karimipour, A.; Homaeinezhad, M.R. Real-time electrocardiogram P-QRS-T detection–delineation algorithm based on quality-supported analysis of characteristic templates. Computers in Biology and Medicine 2014, 52, 153–165. 18.Jain, S.; Ahirwal, M.K.; Kumar, A.; Bajaj, V.; Singh, G.K. QRS detection using adaptive filters: A comparative study. ISA Transactions 2017, 66, 362–375. 19.Dohare, A.K.; Kumar, V.; Kumar, R. An efficient new method for the detection of QRS in electrocardiogram. Computers & Electrical Engineering 2014, 40(5), 1717–1730. 20.Sharma, L.D.; Sunkaria, R.K. A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency. Measurement 2016, 87, 194–204. 21.Kuzilek, J.; Lhotska, L. Electrocardiogram beat detection enhancement using Independent Component Analysis. Medical Engineering & Physics 2013, 35(6), 704–711. 22.Rahman, M. Z. U.; Shaik, R. A.; Rama Koti Reddy, D. V. Efficient and Simplified Adaptive Noise Cancelers for ECG Sensor Based Remote Health Monitoring, IEEE Sensors Journal 2012, 12(3), 566-573. 23.Tafreshi, R.; Jaleel, A.; Lim, J.; Tafreshi, L. Automated analysis of ECG waveforms with atypical QRS complex morphologies. Biomedical Signal Processing and Control 2014, 10, 41–49. 24.Yazdani, S.; Vesin, J.M. Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Digital Signal Processing 2016, 56, 100–109. 25.Chatterjee, H.K.; Gupta, R.; Mitra, M. A statistical approach for determination of time plane features from digitized ECG. Computers in Biology and Medicine 2011, 41(5), 278-284. 26.Guyton, A. C.; Hall, J. E. Textbook of Medical Physiology 11th Edition. Elsevier Saunders, Philadelphia Pennsylvania, 123-130, 2006. ISBN: 0-7216-0240-1. 27.Zarei, R; He, J.; Huang, G.; Zhang, Y. Effective and efficient detection of premature ventricular contractions based on variation of principal directions. Digital Signal Processing 2016, 50, 93-102. 28.Chen, S.; Hua, W.; Li, Z.; Li, J.; Gao, X. Heartbeat classification using projected and dynamic features of ECG signal. Biomedical Signal Processing and Control 2017, 31, 165-173. 29.Alcaraza, R.; Hornerob, F.; Rieta, J. J. Dynamic time warping applied to estimate atrial fibrillation temporal organization from the surface electrocardiogram. Medical Engineering & Physics 2013, 35(9), 1341-1348. 30.Vafaie, M.H.; Ataei, M.; Koofigar, H.R. Heart diseases prediction based on ECG signals’ classification using a genetic-fuzzy system and dynamical model of ECG signals. Biomedical Signal Processing and Control 2014, 14, 291-296. 31.Mishra, A. K.; Raghav, S. Local fractal dimension based ECG arrhythmia classification. Biomedical Signal Processing and Control 2010, 5(2), 114-123. 32.Zhang, Z.; Dong, J.; Luo, X.; Choi, K. S.; Wu, X. Heartbeat classification using disease-specific feature selection. Computers in Biology and Medicine 2014, 46, 79-89. 33.Dutta, S.; Chatterjee, A.; Munshi, S. Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification. Medical Engineering & Physics 2010, 32(10), 1161-1169. 34.Sahoo, S.; Kanungo, B.; Beherab, S.; Sabut, S. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 2017, 108, 55-66. 35.Ebrahimzadeh, A.; Shakiba, B.; Khazaee, A. Detection of electrocardiogram signals using an efficient method. Applied Soft Computing 2014, 22, 108-117. 36.Korürek, M.; Doğan, B. ECG beat classification using particle swarm optimization and radial basis function neural network. Expert Systems with Applications 2010, 37(12), 7563-7569. 37.Thaler, M. S. Only EKG Book You'll Ever Need 6th Edition. Lippincott Williams & Wilkins, Philadelphia, 2010. ISBN: 978-1-60547-140-2. 38.Suave Lobodzinski, S. ECG patch monitors for assessment of cardiac rhythm abnormalities. Progress in Cardiovascular Diseases 2013, 56(2), 224-229. 39.Vital Connect Solution. Available online: https://vitalconnect.com/solutions/ (accessed on 10 September 2017). 40.iRhythm Zio. Available oline: http://irhythmtech.com/products-services/zio-xt (accessed on 10 September 2017). 41.Fensl, R.; Gundersen, T.; Snaprud, T.; Hejlesen, O. Clinical evaluation of a wireless ECG sensor system for arrhythmia diagnostic purposes. Medical Engineering & Physics 2013, 35(6), 697-703. 42.Sankari, Z.; Adeli, H. HeartSaver: A mobile cardiac monitoring system for auto-detection of atrial fibrillation, myocardial infarction, and atrio-ventricular block. Computers in Biology and Medicine 2011, 41(4), 211-220. 43.Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine 2001, 20(3), 45–50. 44.American National Standard ANSI/AAMI EC 57:2012, Testing and reporting performance results of cardiac rhythm and ST-segment measurement algorithms. Available online: https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI%2fAAMI+EC57%3a2012+(ANSI%2fAAMI+EC+57%3a2012) (accessed on 12 September 2017). 45.The WFDB Software Package. Available online: https://www.physionet.org/physiotools/wfdb.shtml (accessed on 25 August 2017). 46.Castells-Rufas, D.; Carrabina, J. Simple real-time QRS detector with the MaMeMi filter. Biomedical Signal Processing and Control 2015, 21, 137–145. 47.Kim, J.; Shin, H. Simple and robust realtime qrs detection algorithm based on spatiotemporal characteristic of the QRS complex, PLoS ONE 11(3), Available online: https://doi.org/10.1371/journal.pone.0150144 (accessed on 25 August 2017). 48.Benitez, D. S.; Gaydecki, P.A.; Zaidi, A.; Fitzpatrick, A.P. A New QRS Detection Algorithm Based on the Hilbert Transform. In proceedings of the Computers in Cardiology 2000, Cambridge, MA, USA, 24–27 September 2000; pp: 379–382. 49.Thomas, M.; Das, M. K.; Ari, S. Automatic ECG arrhythmia classification using dual tree complex wavelet based features. International Journal of Electronics and Communications 2015, 69(4), 715-721. 50.Afkhami, R. G.; Azarnia, G.; Tinati, M. A. Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recognition Letters 2016, 70, 45-51. 51.Polar Heart Rate Sensor. Available online: https://www.polar.com/uken/products/accessories// h10_heart_rate_sensor (accessed on 25 August 2017). 52.Moradi, M.H.; Ashoori Rad, M.; Khezerloo, R.B. ECG signal enhancement using adaptive Kalman filter and signal averaging. International Journal of Cardiology 2014, 173(3), 553–555.
|