(3.235.25.169) 您好!臺灣時間:2021/04/20 19:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊俊德
研究生(外文):Chun-TeChuang
論文名稱:新世代穿戴式單導程心電圖裝置的即時心跳偵測與分類方法
論文名稱(外文):A QRS Detection and Heartbeat Classification Method for New-Generation Wearable ECG Devices
指導教授:陳介力陳介力引用關係
指導教授(外文):Chieh-Li Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:75
中文關鍵詞:心電圖心跳偵測心跳分類邊緣運算
外文關鍵詞:ECGQRS DetectionHeartbeat ClassificationEdge Computing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在新一代的穿戴式動態心電圖監測系統研發上,受限於電池容量,裝置內的低運算複雜度訊號處理技術具有高度需求。例如,可運用在裝置端進行初級訊號判讀,便於在發現異常心律時才進行訊號儲存,以減少資料寫入時的電力消耗;或是在偵測到危險心律時傳輸心電訊號,由雲端進行更精確之判讀與後續處理,以避免持續的無線傳輸所造成的電力消耗。本文提出一種新的即時心跳偵測及其分類方法,兼具低運算複雜度與高準確率並可應用在裝置之中。首先,本方法透過訊號轉換,增強QRS區段並抑制P波與T波,同時也消除動態雜訊所產生的基線漂移;其次,QRS波的基準點就可以由轉換後訊號所偵測出之波峰與波谷之間的關係來決定;然後,再基於4種事先定義的QRS波模板,進行R點與其它特徵識別,同時也達成初級心跳分類;最後,偵測出之心跳可用識別出的特徵點及其相關決策規則來進行心跳分類。本文提出之方法最終採用MIT-BIH心律不整資料庫來驗證效能,其QRS偵測靈敏度與正確預測率分別為99.82%與99.81%,而VEB偵測靈敏度與正確預測率分別為89.34%與84.97%,QRS偵測與VEB分類都達到國際水準。此外,本文提出之方法已經在智慧手機與嵌入式系統上實現,並實際應用在醫院臨床資料的收集與測試上,也同時驗證了本文提出之方法的低運算複雜度與實際可用性。
In the new-generation wearable Electrocardiogram (ECG) devices, signal processing with low power consumption is required to transmit data when detecting dangerous rhythms and to record signals when detecting abnormal rhythms. This study proposes a real-time QRS detection and heartbeat classification method with low computational complexity while maintaining a high accuracy. The enhancement of QRS segments and restraining of P and T waves are carried out by the proposed ECG signal transformation, which also leads to the elimination of baseline wandering. In this study, the QRS fiducial point is determined based on the detected crests and troughs of the transformed signal. Subsequently, the R point can be recognized based on four QRS waveform templates and preliminary heartbeat classification can be also achieved at the same time. At last, the detected heartbeat can be classified using decision rules according to the detected features. The performance of the proposed approach is demonstrated using the benchmark of the MIT-BIH Arrhythmia Database, where the QRS sensitivity (Se) is 99.82%, positive prediction (+P) is 99.81%, VEB (ventricular ectopic beat) Se is 89.34%, VEB +P is 84.97%, respectively. The result reveals the approach’s advantage of low computational complexity, as well as the feasibility of the real-time application on a mobile phone and an embedded system.
ABSTRACT I
ABSTRATCT IN CHINESE II
ACKOWLEGEMENT III
CONTENTS IV
LIST OF TABLES VII
LIST OF FIGURES IX
SYMBOLS AND ABBREVIATIONS XIII
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Review 3
1.3 Structure of this Dissertation 6
CHAPTER 2 ELECTROGARDIAGRAM BASICS 7
2.1 The Normal Electrocardiogram 7
2.2 New-Generation Wearable ECG Devices 12
2.3 MIT-BIH Arrhythmia Database 15
2.4 ANSI/AAMI EC57 17
2.5 Challenges in ECG Signal Processing 20
CHAPTER 3 MOTHODOLOGY 23
3.1 Method Overview 23
3.2 Refreshment of the ECG signal 24
3.3 Signal Transformation 24
3.4 The QRS Fiducial Point Detection 29
3.5 Features Recognition 33
3.5.1 S Point Detection 34
3.5.2 Ra Point Detection 35
3.5.3 Q point Detection 35
3.5.4 R Point Detection 36
3.5.5 T Point Detection 36
3.5.6 P Point Detection 37
3.6 Heartbeat Classification 37
CHAPTER 4 BENCHMARKING STUDY 42
4.1 QRS Detection and R Point Recognition Result 42
4.2 Heartbeat Classification Result 45
4.3 Benchmarking Study Using MIT-BIH Arrhythmia Database 48
CHAPTER 5 IMPLEMENTATION 54
5.1 Implementation for a Mobile Phone 54
5.2 Implementation in an Embedded System 55
5.3 A Study Case of Walking 57
5.4 VEB Detection in the Mobile ECG Application 60
CHAPTER 6 CONCLUSIONS 62
REFERENCES 65
APPENDIX 1 The latest three products of FDA cleared ECG Patch 71
APPENDIX 2 A bone chart of ECG relative research topics 73
PUBLICATIONS 74
Journal Paper: 74
Conference Papers: 74
Patents: 75
1.World Health Organization, http://www.who.int/mediacentre/factsheets/fs317/en/ (accessed on 8 September 2017).
2.The Taiwan’s Ministry of Health and Welfare, http://dep.mohw.gov.tw/DOS/np-1776-113.html (accessed on 8 September 2017).
3.Android App for Patient Monitoring. Available online: https://www.amrita.edu/center/awna/research/patient-monitoring-app (accessed on 25 August 2017).
4.Chen, H.; Liu, H. A remote electrocardiogram monitoring system with good swiftness and high reliability. Computers & Electrical Engineering 2016, 53, 191–202.
5.Madias, J.E. A proposal for monitoring patients with heart failure via “smart phone technology-based electrocardiograms. Journal of Electrocardiology 2016, 49(5), 699–706.
6.Take, Y.; Morita, H. Fragmented QRS: what is the meaning. Indian Pacing and Electrophysiology Journal 2012, 12(5), 213–225.
7.Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering 1985, BME-32(3), 230–236.
8.Hamilton, P.S.; Tompkins, W.J. Quantitative investigation of QRS detection rules using the mit/bih arrhythmia database. IEEE Transactions on Biomedical Engineering 1986, BME-33(12), 1157–1165.
9.Farashi, S. A multiresolution time-dependent entropy method for QRS complex detection. Biomedical Signal Processing and Control 2016, 24, 63–71.
10.Phukpattaranont, P. QRS detection algorithm based on the quadratic filter. Expert Systems with Applications 2015, 42(11), 4867–4877.
11.Manikandan, M.S.; Soman K.P. A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomedical Signal Processing and Control 2012, 7(2), 118–128.
12.Zhu, H.; Dong, J. An R-peak detection method based on peaks of Shannon energy envelope. Biomedical Signal Processing and Control. 2013, 8(5), 466–474.
13.Yochuma, M.; Renaudb, C.; Jacquira, S. Automatic detection of P, QRS and T patterns in 12 leads ECG signal based on CWT. Biomedical Signal Processing and Control 2016, 25, 46–52.
14.Meraha, M.; Abdelmalika, T.A.; Larbi, B.H. R-peaks detection based on stationary wavelet transform. Computer Methods and Programs in Biomedicine 2015, 121(3), 149–160.
15.Madeiro, J.P.V.; Cortez, P.C.; Marques, J.A.L.; Seisdedos, C.R.V.; Sobrinho, C.R.M.R. An innovative approach of QRS segmentation based on first-derivative, Hilbert and Wavelet Transforms. Medical Engineering & Physics 2012, 34(9), 1236–1246.
16.Christov, I.I. Real time electrocardiogram QRS detection using combined adaptive threshold. BioMedical Engineering OnLine 2004, 3(28), 1–9, doi:10.1186/1475–925X-3–28.
17.Karimipour, A.; Homaeinezhad, M.R. Real-time electrocardiogram P-QRS-T detection–delineation algorithm based on quality-supported analysis of characteristic templates. Computers in Biology and Medicine 2014, 52, 153–165.
18.Jain, S.; Ahirwal, M.K.; Kumar, A.; Bajaj, V.; Singh, G.K. QRS detection using adaptive filters: A comparative study. ISA Transactions 2017, 66, 362–375.
19.Dohare, A.K.; Kumar, V.; Kumar, R. An efficient new method for the detection of QRS in electrocardiogram. Computers & Electrical Engineering 2014, 40(5), 1717–1730.
20.Sharma, L.D.; Sunkaria, R.K. A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency. Measurement 2016, 87, 194–204.
21.Kuzilek, J.; Lhotska, L. Electrocardiogram beat detection enhancement using Independent Component Analysis. Medical Engineering & Physics 2013, 35(6), 704–711.
22.Rahman, M. Z. U.; Shaik, R. A.; Rama Koti Reddy, D. V. Efficient and Simplified Adaptive Noise Cancelers for ECG Sensor Based Remote Health Monitoring, IEEE Sensors Journal 2012, 12(3), 566-573.
23.Tafreshi, R.; Jaleel, A.; Lim, J.; Tafreshi, L. Automated analysis of ECG waveforms with atypical QRS complex morphologies. Biomedical Signal Processing and Control 2014, 10, 41–49.
24.Yazdani, S.; Vesin, J.M. Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Digital Signal Processing 2016, 56, 100–109.
25.Chatterjee, H.K.; Gupta, R.; Mitra, M. A statistical approach for determination of time plane features from digitized ECG. Computers in Biology and Medicine 2011, 41(5), 278-284.
26.Guyton, A. C.; Hall, J. E. Textbook of Medical Physiology 11th Edition. Elsevier Saunders, Philadelphia Pennsylvania, 123-130, 2006. ISBN: 0-7216-0240-1.
27.Zarei, R; He, J.; Huang, G.; Zhang, Y. Effective and efficient detection of premature ventricular contractions based on variation of principal directions. Digital Signal Processing 2016, 50, 93-102.
28.Chen, S.; Hua, W.; Li, Z.; Li, J.; Gao, X. Heartbeat classification using projected and dynamic features of ECG signal. Biomedical Signal Processing and Control 2017, 31, 165-173.
29.Alcaraza, R.; Hornerob, F.; Rieta, J. J. Dynamic time warping applied to estimate atrial fibrillation temporal organization from the surface electrocardiogram. Medical Engineering & Physics 2013, 35(9), 1341-1348.
30.Vafaie, M.H.; Ataei, M.; Koofigar, H.R. Heart diseases prediction based on ECG signals’ classification using a genetic-fuzzy system and dynamical model of ECG signals. Biomedical Signal Processing and Control 2014, 14, 291-296.
31.Mishra, A. K.; Raghav, S. Local fractal dimension based ECG arrhythmia classification. Biomedical Signal Processing and Control 2010, 5(2), 114-123.
32.Zhang, Z.; Dong, J.; Luo, X.; Choi, K. S.; Wu, X. Heartbeat classification using disease-specific feature selection. Computers in Biology and Medicine 2014, 46, 79-89.
33.Dutta, S.; Chatterjee, A.; Munshi, S. Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification. Medical Engineering & Physics 2010, 32(10), 1161-1169.
34.Sahoo, S.; Kanungo, B.; Beherab, S.; Sabut, S. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 2017, 108, 55-66.
35.Ebrahimzadeh, A.; Shakiba, B.; Khazaee, A. Detection of electrocardiogram signals using an efficient method. Applied Soft Computing 2014, 22, 108-117.
36.Korürek, M.; Doğan, B. ECG beat classification using particle swarm optimization and radial basis function neural network. Expert Systems with Applications 2010, 37(12), 7563-7569.
37.Thaler, M. S. Only EKG Book You'll Ever Need 6th Edition. Lippincott Williams & Wilkins, Philadelphia, 2010. ISBN: 978-1-60547-140-2.
38.Suave Lobodzinski, S. ECG patch monitors for assessment of cardiac rhythm abnormalities. Progress in Cardiovascular Diseases 2013, 56(2), 224-229.
39.Vital Connect Solution. Available online: https://vitalconnect.com/solutions/ (accessed on 10 September 2017).
40.iRhythm Zio. Available oline: http://irhythmtech.com/products-services/zio-xt (accessed on 10 September 2017).
41.Fensl, R.; Gundersen, T.; Snaprud, T.; Hejlesen, O. Clinical evaluation of a wireless ECG sensor system for arrhythmia diagnostic purposes. Medical Engineering & Physics 2013, 35(6), 697-703.
42.Sankari, Z.; Adeli, H. HeartSaver: A mobile cardiac monitoring system for auto-detection of atrial fibrillation, myocardial infarction, and atrio-ventricular block. Computers in Biology and Medicine 2011, 41(4), 211-220.
43.Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine 2001, 20(3), 45–50.
44.American National Standard ANSI/AAMI EC 57:2012, Testing and reporting performance results of cardiac rhythm and ST-segment measurement algorithms. Available online: https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI%2fAAMI+EC57%3a2012+(ANSI%2fAAMI+EC+57%3a2012) (accessed on 12 September 2017).
45.The WFDB Software Package. Available online: https://www.physionet.org/physiotools/wfdb.shtml (accessed on 25 August 2017).
46.Castells-Rufas, D.; Carrabina, J. Simple real-time QRS detector with the MaMeMi filter. Biomedical Signal Processing and Control 2015, 21, 137–145.
47.Kim, J.; Shin, H. Simple and robust realtime qrs detection algorithm based on spatiotemporal characteristic of the QRS complex, PLoS ONE 11(3), Available online: https://doi.org/10.1371/journal.pone.0150144 (accessed on 25 August 2017).
48.Benitez, D. S.; Gaydecki, P.A.; Zaidi, A.; Fitzpatrick, A.P. A New QRS Detection Algorithm Based on the Hilbert Transform. In proceedings of the Computers in Cardiology 2000, Cambridge, MA, USA, 24–27 September 2000; pp: 379–382.
49.Thomas, M.; Das, M. K.; Ari, S. Automatic ECG arrhythmia classification using dual tree complex wavelet based features. International Journal of Electronics and Communications 2015, 69(4), 715-721.
50.Afkhami, R. G.; Azarnia, G.; Tinati, M. A. Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recognition Letters 2016, 70, 45-51.
51.Polar Heart Rate Sensor. Available online: https://www.polar.com/uken/products/accessories//
h10_heart_rate_sensor (accessed on 25 August 2017).
52.Moradi, M.H.; Ashoori Rad, M.; Khezerloo, R.B. ECG signal enhancement using adaptive Kalman filter and signal averaging. International Journal of Cardiology 2014, 173(3), 553–555.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔