|
Altendorfner, F., Kuhl, J., Zigan, L., and Leipertz, A. 2011. Study of the influence of electric fields on flames using planar LIF and PIV techniques. Proc. Combust. Inst., 33. 3195–3201. Belhi, M., Domingo, P., and Vervisch, P. 2010. Direct numerical simulation of the effect of an electric field on flame stability. Combust. Flame, 157. 2286–2297. Bak, M.S., Im, S.K., Mungal, M.G., and Cappelli, M.A. 2013. Studies on the stability limit extension of premixed and jet diffusion flames of methane, ethane, and propane using nanosecond repetitive pulsed discharge plasmas. Combust. Flame, 160. 2396–2403. Belhi, M., Domingo, P., and Vervisch, P. 2013. Modeling of the effect of DC and AC electric fields on the stability of a lifted diffusion methane/air flame. Combust. Theor. Model., 17(4), 749–787. Boulos, M.I., Fauchais, P., and Pfender E., 1994. In Thermal Plasmas: Fundamental And Applications, Plenum Press, New York, pp. 452. Bradley, D. 1986. The effects of electric fields on combustion processes. In Advanced combustion methods, Academic Press, London, pp. 331–390. Bradley, D., and Nasser, S.H. 1984. Electrical coronas and burner flame stability. Combust. Flame, 55. 53–58. Broadwell, J.E., Dahm, W.J.A., and Mungal, M.G. 1984. Blowout of turbulent diffusion flame. Proc. Combust. Inst., 20. 303–310. Calcote, H.F., and Pease, R.N. 1951. Electrical properties of flames: Burner flames in longitudinal electric fields. Ind. Eng. Chem., 43, 2726–2731. Cessou, A., Varea, E., Criner, K., Godard, G., and Vervisch, P. 2012. Simultaneous measurement of OH, mixture fraction and velocity fields to investigate flame stabilization enhancement by electric field. Exp. Fluid, 52. 905–917. Chang, J.S. 1991. Corona discharge processes. IEEE Trans. Plasma Sci., 19(6), 1152–1166. Chang, T.W., and Chao, Y.C. 2011. The stabilization characteristics of turbulent lifted diffusion flames of CH4/CO blended fuels. Proc. Combust. Inst., 33. 1655–1662. Chao, Y.C., Chang, Y.L., Wu, C.Y., and Cheng, T.S. 2000. An experimental investigation of the blowout process of a jet flame. Proc. Combust. Inst., 28. 335–342. Chao, Y.C., Wu, C.Y., Cheng, T.S., and Yuan, T. 2002. Stabilization process of a lifted flame tuned by acoustic excitation. Combust. Sci. Technol., 174. 87–110. Criner, K., Cessou, A., and Vervisch, P. 2007. A comparative study of the stabilization of propane lifted jet-flames by pulsed, AC and DC high-voltage discharges. Presented at the 3rd European Combustion Meeting, Crete, Greece, April 11–13. Criner, K., Cessou, A., Louiche, J., and Vervisch, P. 2006. Stabilization of turbulent lifted jet flames assisted by pulsed high voltage discharge. Combust. Flame, 144. 422–425. Davis, S.G., and Law, C.K. 1998. Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combust. Sci. Technol., 140. 427–449. Dunn-Rankin, D., and Weinberg, F.J. 2003. Electric fields, flames, and microgravity. In Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems, NASA Glenn Research Center, Cleveland, Ohio, June 3–6, pp. 309–312. Ehn, A., Zhu, J.J. Petersson, P., Li, Z.S., Aldén, M., Fureby, C., Hurtig, T., Zettervall, N., Larsson, A., and Larfeldt, J. 2015. Plasma assisted combustion: Effects of O3 on large scale turbulent combustion studied with laser diagnostics and Large Eddy Simulations. Proc. Combust. Inst., 35. 3487–3495. Everest, D.A., Feikema, D.A., and Driscoll, J.F. 1996. Images of the strained flammable layer used to study the liftoff of turbulent jet flames. Proc. Combust. Inst., 26. 129–136. Fialkov, A.B. 1997. Investigation on ions in flames. Prog. Energy Combust. Sci., 23. 399–528. Hasselbrink Jr, E.F., and Mungal, M.G. 1998. Characteristics of the velocity field near the instantaneous base of lifted non-premixed turbulent jet flames. Proc. Combust. Inst., 22. 867–873. Hegeler, F., and Akiyama, H. 1997. Spatial and temporal distriburion of ozone after a wire-to-plate streamer discharge. IEEE Trans. Plasma Sci., 25(5), 1158–1165. Hu, J., Rivin, B., and Sher, E. 2000. The effect of an electric field on the shape of co-flowing and candle-type methane-air flames. Exp. Thermal Fluid Sci., 21. 124–133. Ju, Y., and Sun, W. 2015. Plasma assisted combustion: progress, challenges, and opportunities. Combust. Flame, 162. 529–532. Kalghatgi, G.T. 1984. Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol., 41. 17–29. Kim, M.K., Ryu, S.K., Won, S.H., and Chung, S.H. 2010. Electric fields effect on liftoff and blowoff of nonpremixed laminar jet flames in a coflow. Combust. Flame, 157. 17–24. Kim, W., Mungal, M.G., and Cappelli, M.A. 2005. Flame stabilization using a plasma discharge in a lifted jet flame. Presented at the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10–13. Kribs, J.D., Shah, P.V., Hutchins, A.R., Reach, W.A., Muncey, R.D., June, M.S., Saveliev, A., and Lyons, K.M. 2016. The stabilization of partially-premixed jet flames in the presence of high potential electric fields. J. Electrost., 84. 1–9. Lacoste, D.A., Xu, D.A., Moeck, J.P., and Laux, C.O. 2013. Dynamic response of a weakly turbulent lean-premixed flame to nanosecond repetitively pulsed discharges. Proc. Combust. Inst., 34. 3259–3266. Lawton, J., and Weinberg, F.J. 1969. Electrical aspects of combustion, Clarendon Press, Oxford, London. Lee, J., and Chung, S.H. 2001. Characteristics of reattachment and blowout of laminar lifted flames in partially premixed propane jets. Combust. Flame, 127. 2194–2204. Lee, S.M., Park, C.S., Cha, M.S., and Chung, S.H. 2005. Effect of electric fields on the liftoff of nonpremixed turbulent jet flames. IEEE Trans. Plasma Sci., 33(5), 1703–1709. Li, Y.H., Wu, C.Y., Chen, B.C., and Chao, Y.C. 2008. Measurements of a high-luminosity flame structure by a shuttered PIV system. Meas. Sci. Technol., 19 045401 (11pp). Lin, C.K., Jeng, M.S., and Chao, Y.C. 1993. The stabilization mechanism of the lifted jet diffusion flame in the hysteresis region. Exp. Fluid, 14. 353–365. Lyons, K.M. 2007. Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Prog. Energy Combust. Sci., 33. 211–231. Marcum, S.D., and Ganguly, B.N. 2005. Electric-field-induced flame speed modification. Combust. Flame, 143. 27–36. Miake–Lye, R.C., and Hammer, J.A. 1988. Lifted turbulent jet flame: a stability criterion base on the jet large-scale structure. Proc. Combust. Inst., 22. 817–824. Muñiz, L., and Mungal, M.G. 1997. Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame, 111. 16–31. Ombrello, T., Won, S.H., Ju, Y., and Williams. S. 2010. Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3. Combust. Flame, 157. 1906–1915. Ono, R., and Oda, T. 2004. Spatial distribution of ozone density in pulsed corona discharges observed by two-dimensional laser absorption method. J. Phys. D: Appl. Phys., 37. 730–735. Ono, R., and Oda, T. 2007. Ozone production process in pulsed positive dielectric barrier discharge. J. Phys. D: Appl. Phys., 40. 176–182. Ruetsch, G.R., Vervisch, L., and Liñán, A. 1995. Effects of heat release on triple flames. Phys. Fluids, 7(6), 1447–1454. Sakhrieh, A., Lins, G., Dinkelacker, F., Hammer, T., Leipertz, A., and Branston, D.W. 2005. The influence of pressure on the control of premixed turbulent flames using an electric field. Combust. Flame, 143. 313–322. Schmidt, J., Kostka, S., Lynch, A., and Ganguly, B.N. 2012. Simultaneous particle image velocimetry and chemiluminescence visualization of millisecond-pulsed current–voltage-induced perturbations of a premixed propane/air flame. Exp. Fluid, 52. 905–917. Starikovskiy, A., and Aleksandrov, N. 2013. Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci., 39. 61–110. Starikovskiy, A.Yu. 2005. Plasma supported combustion. Proc. Combust. Inst., 30. 2405–2417. Strayer, B.A., Posner, J.D., Dunn-Rankin, D., and Weinberg, F.J. 2002. Simulating microgravity in small diffusion flames by using electric fields to counterbalance natural convection. Proc. R. Soc. London, Ser. A, 458, 1151–1166. Tacke, M.M., Geyer, D., Hassel, E.P., and Janicka, J. 1998. A detailed investigation of the stabilization point of lifted turbulent diffusion flames. Proc. Combust. Inst., 27. 1157–1165. Upatnieks, A., Driscoll, J.F., and Ceccio, S.L. 2002. Cinema particle imaging velocimetry time history of the propagation velocity of the base of a lifted turbulent jet flame. Proc. Combust. Inst., 29. 1897–1903. Upatnieks, A., Driscoll, J.F., Rasmussen, C.C., and Ceccio, S.L. 2004. Liftoff of turbulent jet flames—assessment of edge flame and other concepts using cinema-PIV. Combust. Flame, 138. 259–272. Vanquickenborne, L., and van Tigglen, A. 1966. The stabilization mechanism of Lifted diffusion Flame. Combust. Flame, 10. 59–69. Vincent-Randonnier, A., Larigaldie, S., Magre, P., and Sabel’nikov, V. 2007. Plasma assisted combustion: effect of a coaxial DBD on a methane diffusion flame. Plasma Sources Sci. Technol., 16(1), 149–160. Vinogradov, J., Sher, E., Rutkevich, I., and Mond, M. 2001. Voltage-current characteristics of a flame-assisted unipolar corona. Combust. Flame, 127. 2041–2050. Watson, K.A., Lyons, K.M., Donbar, J.M., and Carter, C.D. 1999. Observation on the leading edge in lifted flame stabilization. Combust. Flame, 119. 199–202. Willert, C.E., and Gharib, M. 1991. Digital particle image velocimetry. Exp. Fluid, 10. 181–193. Wisman, D.L., Marcum, S.D., and Ganguly, B.N. 2008. Chemi-Ion-Current-Induced Dissociative Recombination in Premixed Hydrocarbon/Air Flames. J. Propul. Power, 24(5). 1079-1084. Won, S.H., Cha, M.S., Park, C.S., and Chung, S.H. 2007. Effect of electric fields on reattachment and propagation speed of tribrachial flames in laminar coflow jets. Proc. Combust. Inst., 31. 963–970. Won, S.H., Ryu, S.K., Kim, M.K., Cha, M.S., and Chung, S.H. 2008. Effect of electric fields on the propagation speed of tribrachial flames in coflow jets. Combust. Flame, 152. 496–506. Wu, C.Y., Chao, Y.C., Cheng, T.S., Li, Y.H., Lee, K.Y., and Yuan, Tony. 2006. The blowout mechanism of turbulent jet diffusion flames. Combust. Flame, 145. 481–494. Xiong, Y., Cha, M.S., and Chung, S.H. 2015. AC electric field induced vortex in laminar coflow diffusion flames. Proc. Combust. Inst., 35. 3513–3520. Yoshino, K., Esmond, J.R., Freeman, D.E., and Parkinson W.H., 1993. Measurements of absolute absorption cross sections of ozone in the 185–254 nm wavelength region and the temperature dependence. J. Geophys. Res., 98. 5205.
|