|
[1] Aouizerats, B., Van Der Werf, G. R., Balasubramanian, R., & Betha, R. (2015). Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event. Atmospheric chemistry and Physics, 15(1), 363-373. [2] Baralis, E., Cerquitelli, T., Chiusano, S., Garza, P., & Kavoosifar, M. R. (2016). Analyzing air pollution on the urban environment. In Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2016 39th International Convention, 1464-1469. [3] Bouarar, I., Brasseur, G., Granier, C., Petersen, K., Wang, X., Fan, Q., ... & Mijling, B. (2016). Monitoring and Forecasting Air Quality over China: Results from the PANDA Modeling System. IGAC 2016 Science Conference (International Global Atmospheric Chemistry). [4] Cagliero, L., Cerquitelli, T., Chiusano, S., Garza, P., Ricupero, G., & Xiao, X. (2016). Modeling correlations among air pollution-related data through generalized association rules. In Smart Computing (SMARTCOMP), 2016 IEEE International Conference, 1-6. [5] Cagliero, L., Cerquitelli, T., Chiusano, S., Garza, P., & Ricupero, G. (2016). Discovering air quality patterns in urban environments. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, 25-28. [6] Chen, J., Chen, H., Zheng, G., Pan, J. Z., Wu, H., & Zhang, N. (2014). Big smog meets web science: smog disaster analysis based on social media and device data on the web. Proceedings of the 23rd international conference on world wide web, 505-510. [7] Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., ... & Granier, C. (2016). Forty years of improvements in European air quality: regional policy-industry interactions with global impacts. Atmospheric Chemistry and Physics, 16(6), 3825-3841. [8] Cuchiara, G. C., Rappenglück, B., Rubio, M. A., Lissi, E., Gramsch, E., & Garreaud, R. D. (2017). Modeling study of biomass burning plumes and their impact on urban air quality; a case study of Santiago de Chile. Atmospheric Environment, 166, 79-91. [9] Domańska, D., & Łukasik, S. (2016). Handling high-dimensional data in air pollution forecasting tasks. Ecological Informatics, 34, 70-91. [10] Dong, Y., Wang, H., Zhang, L., & Zhang, K. (2016). An improved model for PM2.5 inference based on support vector machine. Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2016 17th IEEE/ACIS International Conference, 27-31. [11] Gromke, C., Jamarkattel, N., & Ruck, B. (2016). Influence of roadside hedgerows on air quality in urban street canyons. Atmospheric Environment, 139, 75-86. [12] Hsieh, H. P., Lin, S. D., & Zheng, Y. (2015). Inferring air quality for station location recommendation based on urban big data. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 437-446. [13] Jiang, W., Wang, Y., Tsou, M. H., & Fu, X. (2015). Using social media to detect outdoor air pollution and monitor air quality index (AQI): a geo-targeted spatiotemporal analysis framework with Sina Weibo (Chinese Twitter). PloS one, 10(10), e0141185. [14] Lee, Y. H., Shindell, D. T., Faluvegi, G., & Pinder, R. W. (2015). Potential impact of a US climate policy and air quality regulations on future air quality and climate change. Atmospheric Chemistry & Physics Discussions, 15(21). [15] Li, Y., Huang, J., & Luo, J. (2015). Using user generated online photos to estimate and monitor air pollution in major cities. Proceedings of the 7th International Conference on Internet Multimedia Computing and Service, 79. [16] Lu, X., Wang, Y., Huang, L., Yang, W., & Shen, Y. (2016). Temporal-Spatial Aggregated Urban Air Quality Inference with Heterogeneous Big Data. International Conference on Wireless Algorithms, Systems, and Applications, 414-426. [17] Lv, B., Zhang, B., & Bai, Y. (2016). A systematic analysis of PM2. 5 in Beijing and its sources from 2000 to 2012. Atmospheric Environment, 124, pp. 98-108. [18] Martins, V., Moreno, T., Mendes, L., Eleftheriadis, K., Diapouli, E., Alves, C. A., ... & Minguillón, M. C. (2016). Factors controlling air quality in different European subway systems. Environmental research, 146, 35-46. [19] Mei, S., Li, H., Fan, J., Zhu, X., & Dyer, C. R. (2014). Inferring air pollution by sniffing social media. In Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 534-539. [20] Millstein, D., Wiser, R., Bolinger, M., & Barbose, G. (2017). The climate and air-quality benefits of wind and solar power in the United States. Nature Energy, 2(9), 17134. [21] Shirmohammadi, F., Sowlat, M. H., Hasheminassab, S., Saffari, A., Ban-Weiss, G., & Sioutas, C. (2017). Emission rates of particle number, mass and black carbon by the Los Angeles International Airport (LAX) and its impact on air quality in Los Angeles. Atmospheric Environment, 151, 82-93. [22] Wang, S., Paul, M. J., & Dredze, M. (2015). Social media as a sensor of air quality and public response in China. Journal of medical Internet research, 17(3). [23] Zheng, Y., Liu, F., & Hsieh, H. P. (2013). U-Air: When urban air quality inference meets big data. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining,1436-1444. [24] Zheng, Y., Chen, X., Jin, Q., Chen, Y., Qu, X., Liu, X., ... & Sun, W. (2014). A cloud-based knowledge discovery system for monitoring fine-grained air quality. preparation, Microsoft Tech Report, http://research. microsoft. com/apps/pubs/default. [25] Zhang, Y., Ding, A., Mao, H., Nie, W., Zhou, D., Liu, L., ... & Fu, C. (2016). Impact of synoptic weather patterns and inter-decadal climate variability on air quality in the North China Plain during 1980–2013. Atmospheric Environment, 124, 119-128. [26] Zheng, Y., Yi, X., Li, M., Li, R., Shan, Z., Chang, E., & Li, T. (2015). Forecasting fine-grained air quality based on big data. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2267-2276. [27] Zhuang, Y., Lin, F., Yoo, E. H., & Xu, W. (2015). Airsense: A portable context-sensing device for personal air quality monitoring. Proceedings of the 2015 Workshop on Pervasive Wireless Healthcare, 17-22. [28] Zhu, J. Y., Zhang, C., Zhang, H., Zhi, S., Li, V. O., Han, J., & Zheng, Y. (2017). pg-Causality: Identifying Spatiotemporal Causal Pathways for Air Pollutants with Urban Big Data. IEEE Transactions on Big Data.
|