( 您好!臺灣時間:2024/07/13 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Stability Improvement of Low-bandgap Perovskite Solar Cell Using Formamidinium as Cation
指導教授(外文):Wei-Chou Hsu
外文關鍵詞:Perovskite solar cellhigh stabilitytin substitutionlow band gap
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In this thesis, in order to improve the stability of the perovskite solar cells, we substituted original cation of typical perovskite solar cells, Methylammonium (MA) with Formamidinium (FA). Because of the higher crystallization temperature of FA perovskite solar cells, we assumed that the binding energy of FA perovskite solar cells was higher than MA perovskite solar cells, enhancing the resistance of oxide and moisture, and finally enlarging its stability. Moreover, using formamidinium as the cation can reduce the bandgap of the perovskite solar cells, which means its absorption edge shifts to longer wavelength. We can apply this type of solar cells on tandem-structure perovskite solar cells, since it can absorb near-IR wavelength light of sunlight. In addition, so as to enhance its stability further, we used lead thiocyanate (Pb(SCN)2) as additive, which can enlarge grain size and crystallinity of perovskite phase. For FA-based perovskite solar cell has a tolerance factor larger than 1, it’s difficult to form high quality black phase FAPbI3 and easy to become yellow phase, an unfavorable phase for perovskite solar cells. Therefore, adding small amount of methylammonium and lead thiocyanate can restrain perovskite from forming yellow phase and it can be confirmed by X-ray diffraction measurement. Meanwhile, since tin and lead have similar atomic arrangement, we applied tin as replacement to reduce the content of lead in perovskite solar cells with a view to being less toxicity. We partially substituted lead with tin content of 12.5%, 25%, 37.5% in this work and we observed the more tin we substituted, the lower bandgap it became. Moreover, 37.5% tin substitution provides the best alternative because of the highest efficiency and tin percentage. In the end of this thesis, we successfully improved the stability of perovskite material by using formamidinium as cation and adding lead thiocyanate in perovskite layer. Formamidinium and partially tin substitution based perovskite solar cells lead to a red shift of optical absorbance compared to methylammonium and pure lead based solar cells and we hope we can apply this type of perovskite solar cells on tandem-structure solar cells.
摘 要 I
Abstract II
誌謝 IV
Content VI
Table Captions IX
Figure Captions X
Chapter 1 Introduction 1
1-1 Background 1
1-2 Perovskite 3
1-3 Motivation 4
1-4 Organization of thesis 8
Chapter 2 Operation Principle 9
2-1 Solar Spectrum 9
2-2 Mechanism of Perovskite Solar Cell 10
2-3 Solar Cell Characteristics 11
2-3-1 I-V curve 11
2-3-2 Open-Circuit Voltage (Voc) 11
2-3-3 Short-Circuit Current (Isc) 12
2-3-4 Fill Factor (FF) 12
2-3-5 Power Conversion Efficiency (PCE) 13
Chapter 3 Experiment 14
3-1 Device Structure 14
3-2 Materials Preparation 16
3-3 Process for Device Fabrication 18
3-3-1 Pre-Cleaning ITO Substrate 18
3-3-2 UV Ozone Treatment of ITO Surface 18
3-3-3 Fabrication of Hole Transport Layer 19
3-3-4 Fabrication of Active Layer 19
3-3-5 Fabrication of Electron Transport Layer and Hole Blocking Layer 21
3-3-6 Fabrication of Hole Blocking Layer and Cathode 21
3-4 Measurements 22
3-4-1 Current-Voltage Measurement System 22
3-4-2 Atomic Force Microscope 22
3-4-3 Scanning Electron Microscope 23
3-4-4 UV-Vis-NIR Absorption spectrum 23
3-4-5 X-ray Diffraction 24
3-4-6 X-ray Photoelectron Spectroscopy 25
Chapter 4 Results and Discussions 26
4-1 Comparison Between MAPbI3 and FAPbI3 and Its Derivatives 26
4-1-1 Stability Testing 26
4-1-2 Absorption Spectrum 28
4-1-3 Scanning Electron Microscope 29
4-1-4 X-ray Diffraction 30
4-1-5 Atomic Force Microscope 32
4-2 Pb-Sn Binary Formamidinium Perovskite 33
4-2-1 Variation of Annealing Temperature 33
4-2-2 Performance of Tin-substitution Perovskite Devices 36
4-2-3 Absorption Spectrum 38
4-2-4 Scanning Electron Microscope 39
4-2-5 X-ray Diffraction 40
4-2-6 Atomic Force Microscope 41
4-2-7 X-ray Photoelectron Spectroscopy 42
Chapter 5 Conclusion 43
Reference 44
Figure 50
[1] D. M. Chapin, C. S. Fuller, G. L. Pearson, J., A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys., vol. 25, pp. 676-677, 1954.
[2] D. E. Carlson, C. R. Wronski, Amorphous silicon solar cell, Appl. Phys. Lett., vol. 28, pp. 671-673, 1976.
[3] W. A. Badwy, S. A. Elmeniawy, S. A.Hefez, Improvement of the photovoltaic characteristics of industrially fabricated solar cells by etching of the Si surface, J. Sol. Energy Eng, vol. 137, no. 4, p. 041007, Aug 2015.
[4] W.A. Badwy, A review on solar cells from Si-single crystals to porous materials and quantum dots, J Adv Res., vol. 6, no. 2, pp. 123-132, Mar 2015.
[5] https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
[6] D. Weber, CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure, Z. Naturforsch, vol. 33, no. 12, pp. 1443-1445, Dec 1978.
[7] D. Weber, CH3NH3SnBrxl3-x (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur, Z. Naturforsch, vol. 33b, pp. 862-865, Aug 1978.
[8] http://highscope.ch.ntu.edu.tw/wordpress/?p=73859.
[9] Kojima, A., Teshima, K.., Miyasaka, T.,Shirai, Y., Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2), T Electrochem Soc, p. 397, Oct 2006.
[10] M. A. Green, Y .Hishikawa, E. D. Dunlop, D. H. Levi, J. H. Ebinger, Solar cell efficiency tables (version 51), Prog photovltaics, vol. 26, no. 1, pp. 3-12, Jan 2018.
[11] Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J. M. Pringle, U. Bach, L. Spiccia and Y.-B. Cheng,, Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity, J. Mater. Chem. A, vol. 3, no. 15, pp. 8139-8147, Mar 2015.
[12] R. K. Misra, S. Aharon, B. Li, D. Mogilyansky, I. Visoly-Fisher,L. Etgar and E. A. Katz, Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight, J. Phys. Chem. Lett., vol. 6, no. 3, pp. 326-330, Feb 2015.
[13] Y. Yu, C. Wang, C. R. Grice, N. Shrestha, Jing. Chen, D. Zhao, W. Liao, A. J. Cimaroli, P. J. RolandY. Yu, C. Wang, C. R. Grice, N. Shrestha, Jing. Chen, D. Zhao, W. Liao, A. J. Cimaroli, P. J. Roland, Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives, ChemSusChem, vol. 9, no. 23, pp. 3288-3297, Oct 2016.
[14] J.-W. Lee, D.-J. Seol, A.-N. Cho, N.-G. Park, High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3, Adv. Mater., vol. 26, no. 29, pp. 4991-4998, Aug 2014.
[15] M. Konstantakoua ,T. Stergiopoulos, A critical review on tin halide perovskite solar cells, J. Mater. Chem. A, vol. 5, no. 23, pp. 11518-11549, Mar 2017.
[16] M. A. Green, A. Ho-Baillie, H. J. Snaith, The emergence of perovskite solar cells, Nat Photonics, vol. 8, pp. 506-514, Jun 2014.
[17] S. F. Hoefler, G. Trimmel, T. Rath, Progress on lead-free metal halide perovskites for photovoltaic, Monatsh Chem., vol. 148, no. 5, pp. 795-826, Mar 2017.
[18] C. Wang,D. Zhao, Y. Yu, N. Shresta, C. R. Grice,W. Liao, A. J.Cimaroli, J. Chen, R. J. Ellingson, X. Zhao, Y. Yan, Compositional and morphological engineering of mixed cation perovskite films for highly effcient planar and flexible solar cells with reduced hysteresis, Nano Energy, vol. 35, pp. 223-232, May 2017.
[19] Y. Chen, B. Li, W. Huang, D. Gao and Z. Liang, Efficient and reproducible CH3NH3PbI3−x(SCN)x perovskite based planar solar cells, Chem. Commun., vol. 51, no. 60, pp. 11997-11999, Jun 2015.
[20] Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. W. Chan, F. Yan, Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity, Nat Commun., vol. 7, p. 11105, Apr 2016.
[21] A. Mancini, P. Quadrelli, C. Milanese, M. Patrini, G. Guizzetti, L. Malavasi, CH3NH3SnxPb1-xBr3 hybrid perovskite solid solution: synthesis, structure, and optical properties, Inorg. Chem., vol. 54, no. 18, pp. 8893-8895, Sep 2018.
[22] F. Hao, C. C. Stomupos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells, Nat Photonics, vol. 8, pp. 489-494, May 2014.
[23] https://en.wikipedia.org/wiki/Sunlight.
[24] J. Jeong, Photovoltaic: measuring the sun, Laser Focus World website, May 2009.
[25] P. Wang, Y. Guo, S. Yuan, C. Yan, J. Lin, Z. Liu, Y. Lu, C. Bai, Q. Lu, S. Dai, C. Cai, Advances in the structure and materials of perovskite solar cells, Res. Chem. Intermed, vol. 42, no. 2, pp. 625-639, Feb 2016.
[26] H. S. Jung, N.‐G. Park, Perovskite Solar Cells: From Materials to Devices, Small, vol. 11, no. 1, pp. 10-25, Jan 2015.
[27] A. Supreeth , Y. S. Shreya, Perovskite solar cells: a review, IJEDR, vol. 2, no. 4, pp. 1974-1977, 2016.
[28] A. Miyata, A. Mitioglu, P. Plochocka, O.r Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites, Nat Phys, vol. 11, pp. 582-587, Jun 2015.
[29] K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall et al., Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors, Energy Environ. Sci., vol. 9, no. 3, pp. 962-970, Jan 2016.
[30] V. Gonzalez-Pedro, E.J. Juarez-Perez, W.-S. Arsyad, E.M. Barea, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, General working principles of CH3NH3PbX3 perovskite solar cells, Nano Lett., vol. 14, no. 2, pp. 888-893, Jan 2014.
[31] E. L. Lim, C. C. Yap, M. H. H. Jumali, M. A. M. Teridi, C. H. Teh, A Mini Review: Can Graphene Be a Novel Material, Nano-Micro Lett, p. 27, Apr 2018.
[32] https://www.pveducation.org/pvcdrom/solar-cell-operation.
[33] S. M. Sze, Semiconductor devices: physics and technology-2nd ed, John Wiley and Sons, 1985.
[34] Q. Xu, F. Wang, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou and Y. Li, High-performance polymer solar cells with solution-processed and environmentally friendly CuOx anode buffer layer, ACS Appl Mater Interfaces., vol. 5, no. 21, pp. 10658-10064, Oct 2013.
[35] D. Liu, Y. Li, J. Yuan, Q. Hong, G. Shi, D. Yuan, J. Wei, C. Huang, J. Tang, M.-K. Fung, Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers, J. Mater. Chem. A, vol. 5, no. 12, pp. 5701-5708, Jan 2017.
[36] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells, Adv Mater, vol. 25, no. 27, pp. 3727-3732, Jul 2013.
[37] https://en.wikipedia.org/wiki/Buckminsterfullerene.
[38] https://www.dojindo.com/store/p/589-Bathocuproine.html.
[39] T. Kawai,Y. Maekawa, M. Kusabiraki, Plasma treatment of ITO surfaces to improve luminescence characteristics of organic light-emitting devices with dopants, Surf. Sci., vol. 601, no. 22, pp. 5276-5279, Nov 2007.
[40] W. Song, S. K. So, D. Wang,Y. Qiu, L. Cao, Angle dependent X-ray photoemission study on UV-ozone treatments of indium tin oxide, Appl Surf Sci., vol. 177, no. 3, pp. 158-164, Jun 2001.
[41] Ke. WJ, Xiao CX, Wang CL, S. B, Duan, HS, Zhao, DW, Xiao, ZW, Schulz, P, Harvey, SP, Liao, WQ , Meng, WW, Yu, Y Cimaroli, AJ, Jian, CS K, Al-Jassim, M, Fang, GJ, Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells, Adv Mater., vol. 28, no. 26, Jul 2016.
[42] T. A. Berhe, W. -N. Su, C. -H. Chen, C.-J. Pan, J. -H. Cheng, H. -M. Chen, M. -C. Tsai, L. -Y Chen, A. A. Dubaleb, B. -J. Hwang, Organometal halide perovskite solar cells: degradation and stability, Energy Environ. Sci., vol. 9, no. 2, pp. 323-356, Oct. 2016.
[43] http://highscope.ch.ntu.edu.tw/wordpress/?p=73859.
[44] Y. Yu, C. Wang, C. R. Grice, N. Shrestha, Jing. Chen, D. Zhao, W. Liao, A. J. Cimaroli, P. J. Roland, Improving the performance of formamidinium and cesium lead triiodide perovskite solar cells using lead thiocyanate additives, ChemSusChem, vol. 9, no. 23, pp. 3288-3297, Dec 2016.
[45] S. Yang, W. Liu, L. Zuo, X. Zhang, T. Ye, J. Chen,Chang-Zhi Li, G. Wu and H. Chen, Thiocyanate assisted performance enhancement of formamidinium based planar perovskite solar cells through a single one-step solution process, J. Mater. Chem. A., vol. 4, no. 24, pp. 9430-9436, May 2016.
[46] L. S. C. Pingree, B. A. MacLeod and D. S. Ginger, The changing face of PEDOT:PSS films: substrate, bias, and processing effects on vertical charge transport, Phys Chem Chem Phys, vol. 112, no. 21, pp. 7922-7927, Apr 2008.
[47] S. Aharon, A. Dymshits, A. Rotem, L. Etgar, Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells, J. Mater. Chem. A, vol. 3, no. 17, pp. 9171-9178, Oct 2015.
第一頁 上一頁 下一頁 最後一頁 top