(3.238.7.202) 您好!臺灣時間:2021/03/04 20:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃聖捷
研究生(外文):Sheng-JieHuang
論文名稱:具氧化銦鋅堆疊氧化銦錫結構於磷光發光二極體之研究
論文名稱(外文):Investigation of Indium Zinc Oxide Stacked Indium-Tin Oxide on Phosphorescent Organic Light Emitting Diodes
指導教授:李清庭
指導教授(外文):Ching-Ting Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:78
中文關鍵詞:多層堆疊磷光有機發光二極體二氧化矽粗糙化結構
外文關鍵詞:multilayer stackphosphorescent organic light emitting diodesSiO2 roughness structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於傳統有機發光二極體大部分皆是利用氧化銦錫(ITO)薄膜當作電極,雖然氧化銦錫薄膜具有高穿透與高導電性質,但是卻具有粗糙之表面,粗糙的薄膜表面形貌會受到局部電場較強的影響而產生尖端放電效應,對後續傳輸層或發光層的塗佈產生影響,因此本論文利用射頻式磁控濺鍍系統(RF-magnetron sputter)來製作氧化銦鋅(IZO)堆疊氧化銦錫結構取代傳統有機發光二極體(OLED)之電極,因氧化銦鋅薄膜具有平坦之薄膜表面,其堆疊於氧化銦錫薄膜之上是可以改善氧化銦錫表面粗造缺點,並有利於後續製作傳輸層或發光層,使得元件效率有效提升。接著利用高分子材料聚(9-乙烯咔唑) (PVK)與雙(4,6-二氟苯基吡啶-N,C2)吡啶甲酰合銥(Firpic)材料來製作有機發光二極體之發光層,探討氧化銦鋅堆疊氧化銦錫結構對元件特性的影響,並利用雷射干涉微影技術製作粗糙化之表面於玻璃基板背部,因具有粗糙化結構之玻璃基板比起傳統無任何結構設計之玻璃基板,可以改善玻璃基板與空氣因折射率差導致的光反射,因此可有效降低玻璃基板與空氣間的反射率,使得有機發光二極體之發光亮度與發光效率有效地被提升。利用二氧化矽粗糙化結構於基板背部作為有機發光二極體元件之抗反射層,當二氧化矽粗糙化結構週期為0.75 μm時,比起傳統無任何結構設計玻璃基板,在波長470~500 nm之間,其結構之平均反射率由8.25%下降至約為3.02%。此外將二氧化矽粗糙化結構製作於磷光有機發光二極體元件,在週期為0.75 μm時,其最高發光亮度提升至336 cd/m2,而最大發光效率提升至7.58 cd/A。
Most of the conventional organic light-emitting diodes used indium tin oxide (ITO) film as an electrode, because the ITO film had high transmission and conductivity. However, ITO film had a roughness surface. The roughness surface morphology of the ITO film was likely to cause problems in the fabrication of the subsequent transport layer or light emitting layer. Therefore, we used RF-Sputter to fabricate indium zinc oxide (IZO) stacked ITO structures instead of traditional electrodes for organic light-emitting diodes (OLEDs) Because IZO film had a smooth surface, stacking IZO on the ITO film could improve the roughness defects of ITO. Then, using poly (9-vinylcarbazole)(PVK) and Bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III(Firpic) to fabricate the light-emitting layers of OLED, and discussing the device characteristics of the relationship between IZO stacked ITO film. Additionally, we used laser interference lithography to fabricate silicon dioxide (SiO2) on the back of the substrate. The difference in refractive index between the glass and air would create light reflection, however the roughness structure could effectively reduce the reflection. Among the different period of the SiO2 roughness structure, the period of 0.75 μm had the minimum average reflection 3.02% at 470~500 nm. The maximum luminous of the OLED with SiO2 roughness structure period for 0.75 um was increased to 336 cd/m2, while the maximum luminous efficiency was increased to 7.76 cd/A.
摘要..................I
Abstract................III
致謝.................IX
目錄..................X
表目錄................XIV
圖目錄.................XV
第一章 緒論.................1
1.1 前言..................1
1.2 有機發光二極體發展.............2
1.3 透明導電薄膜的發展.............3
1.4 研究動機與目的...............4
第二章 原理...............8
2.1 有機發光二極體元件結構...........8
2.2 有機發光二極體操作原理...........9
2.3 有機材料的吸收與放射............10
2.4 主客體發光機制..............12
2.5 氧化銦錫與氧化銦鋅之材料特性.........13
2.6 抗反射層原理..............14
2.7 雷射干涉微影技術..............15
第三章 實驗方法與步驟.............20
3.1 製程機台介紹..............20
3.1-1 射頻式磁控濺鍍系統............20
3.1-2 電子束蒸鍍系統..............20
3.1-3 有機分子物理氣相沉積系統架構圖.........21
3.2 實驗架構...............21
3.3 實驗材料...............21
3.3-1 陽極材料...............22
3.3-2 平坦層材料...............22
3.3-3 抗反射層材料..............22
3.3-4 電洞傳輸層材料..............23
3.3-5 發光層材料...............23
3.3-6 電子傳輸層材料..............24
3.3-7 電子注入層與陰極材料............24
3.4 實驗流程...............24
3.4-1 ITO與IZO製作.............24
3.4-2 ITO與IZO基板圖案化............25
3.4-3 SiO2粗糙化結構製備............26
3.4-4 電洞傳輸層...............27
3.4-5 製作發光層配製..............27
3.4-6 電子傳輸層...............28
3.4-7 電子注入層與電極蒸鍍............28
3.5 量測儀器...............28
3.5-1 紫外/可見光/近紅外光分光光譜儀.........28
3.5-2 掃描式電子顯微鏡............29
3.5-3 輝度量測系統..............29
第四章 量測分析與結果討論...........42
4.1 氧化銦鋅與氧化銦錫基本特性量測.........42
4.1-1 調變不同射頻功率沉積氧化銦鋅薄膜.......42
4.1-2 調變不同腔體壓力沉積氧化銦鋅薄膜.......43
4.1-3 調變不同氣體流量沉積氧化銦鋅薄膜.......44
4.1-4 調變不同射頻功率沉積氧化銦錫薄膜.......44
4.1-5 調變不同腔體壓力沉積氧化銦錫薄膜.......45
4.1-6 調變不同氣體流量沉積氧化銦錫薄膜.......46
4.1-7氧化銦鋅與氧化銦錫薄膜表面粗糙度........46
4.1-8 氧化銦鋅堆疊氧化銦錫特性量測.........47
4.2 磷光有機發光二極體基本特性量測.........49
4.2-1主動層發光頻譜特性.............49
4.2-2 氧化銦鋅堆疊氧化銦錫雙層結構對元件之電性影響....50
4.2-3 氧化銦鋅堆疊氧化銦錫雙層結構對元件之發光亮度影響...50
4.2-4 氧化銦鋅堆疊氧化銦錫雙層結構對元件之發光效率影響...51
4.3 二氧化矽抗反射結構之元件特性量測.........51
4.3-1 不同週期粗糙化結構之表面型態與反射率量測......52
4.3-2 不同週期粗糙化結構對元件之電性影響........52
4.3-3 不同週期粗糙化結構對元件之發光亮度影響......53
4.3-4 不同週期粗糙化結構對元件之發光效率影響......53
參考文獻.................70
第五章 結論................77
[1]M. Pope, H. Kallmann, and P. Magnante, “Electron spin resonance study of partially reduces vanadium pentoxide, J. Chem. Phys., vol. 38, pp. 2022-2024, 1963.
[2]C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes, Appl. Phys. Lett., vol. 51, pp. 913-915, 1987.
[3]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light emitting diode based on conjugated polymer, Nature, vol. 347, pp. 539-541, 1990.
[4]F. Streintz, “Ueber die elektrische leitfähigkeit von gepressten pulvern, Ann. Phys. vol. 314, p. 854, 1902.
[5]K. Bädeker, “Über die elektrische leitfähigkeit und die thermoelektrische kraft einiger schwermetallverbindungen, Ann. Phys. vol. 327, p. 749, 1907.
[6]T. Ishida, H. Kobayashi, and Y. Nakato, “Structures and properties of electron-beam-evaporated Indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements, J. Appl. Phys., vol. 73, pp. 4344-4350, 1993.
[7]Y. S. Park, H. K. Kim, and S. W. Kim, “Thin Ag layer inserted GZO multilayer grown by roll-to-roll sputtering for flexible and transparent conducting electrodes, J. Electrochem. Soc., vol. 157, pp. J301-J306, 2010.
[8]T. Kim, B. H. Choi, J. S. Park, S. M. Lee, Y. S. Lee, and L. S. Park, “Transparent conductive ITO/Ag/ITO multilayer films prepared by low temperature process and physical properties, Displays, vol. 520, pp. 209/[485]–214/[490], 2010.
[9]Y. Luo, L. Wang, Y. Ding, L. Li, and J. Shi, “High light-extracting efficiency for OLED directly fabricated on double-side nanotextured silica substrate, Opt. Lett., vol. 38, pp. 2394-2396, 2013.
[10]C. Shen, I. G. Hill, and A. Kahn, “Role of electrode contamination in electron injection at Mg:Ag/Alq3 interfaces, Adv. Mater., vol. 11, pp. 1523-1527, 1999.
[11]D. Kudryashov, A. Gudovskikh, and K. Zelentsov, “Low temperature growth of ITO transparent conductive oxide layers in oxygen-free environment by RF magnetron sputtering, J. Phys.: Conf. Ser., vol. 461, p. 012021, 2013.
[12]J. H Kim, T. Y. Seong, K. J. Ahn, K. B. Chung, H. J. Seok, H. J. Seo, and H. K Kim, “The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtered ITO films, Appl. Surf. Sci., vol. 440, pp. 1211–1218, 2018.
[13]D. H. Shin, Y. H. Kim, J. W. Han, K. M. Moon, and R. I. Murakami, “Effect of process parameters on electrical, optical properties of IZO films produced by inclination opposite target type DC magnetron sputtering, Trans. Nonferrous Met. Soc. China, vol. 19, pp. 997-1000, 2009.
[14]H. C. Pan, M. H. Shiao, C. Y. Su, and C. N. Hsiao, “Influence of sputtering parameter on the optical and electrical properties of zinc-doped indium oxide thin films, J. Vac. Sci. Technol. A, vol. 23, p. 1187, 2005.
[15]T. Kiba, K. Yanome, M. Kawamura, Y. Abe, K. H. Kim, J. Takayama, and A. Murayama, “Emission enhancement in indium zinc oxide (IZO)/Ag/IZO sandwiched structure due to surface plasmon resonance of thin Ag film, J. Appl. Surf. Sci., vol. 389, pp. 906-910, 2016.
[16]Y. C. Kim, S. J. Lee, I. K. Oh, S. Seo, H. Kim, and J. M. Myoung, “Bending stability of flexible amorphous IGZO thin film transistors with transparent IZO/Ag/IZO oxide–metal–oxide electrodes, J. Alloy. Compd., vol. 688, pp. 1108-1114, 2016.
[17]S. M. Lee, H. W. Koo, T. W. Kim, and H. K. Kim, “Asymmetric ITO/Ag/ZTO and ZTO/Ag/ITO anodes prepared by roll-to-roll sputtering for flexible organic light-emitting diodes, Sol. Energy Mater. Sol. Cells, vol. 172, pp. 277-284, 2017.
[18]K. P. Sibina, G. Srinivas, H. D. Shashikala, A. Dey, N. Sridhara, and A. K. Sharma, H. C. Barshilia, “Highly transparent and conducting ITO/Ag/ITO multilayer thin films on FEP substrates for flexible electronics applications, Surf. Coat. Technol., vol. 343, pp. 115-120, 2017.
[19]H. Xu, L. Lan, M. Xu, M. Li, D. Luo, P. Xiao, and J. Peng, “Low-Roughness and Easily-Etched Transparent Conducting Oxides with a Stack Structure of ITO and IZO, ECS J. Solid State Sci. Technol., vol. 2, p. R245, 2013.
[20]R. F. Garcia, L. Zeng, S. Khadir, M. Chakaroun, A. P. A. Fischer, and A. Boudrioua, “Enhanced electroluminescence of an organic light-emitting diode by localized surface plasmon using Al periodic structure J. Opt. Soc. Am. B, vol. 33, pp. 246-252, 2016.
[21]C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance, Opt. Express, vol. 16, pp. 10701-10708, 2008.
[22]J. D. Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam inter-ference lithography:Upgrading a Lloyd’s interferometer for sin-gle-exposure hexagonal patterning, Opt. Lett., vol. 34, pp. 1783-1785, 2009.
[23]V. A. Dao, T. Le, T. Tran, H. C. Nguyen, K. Kim, J. Lee, S. Jung, N. Lakshminarayan, and J. Yi, “Electrical and optical studies of transparent conducting ZnO:Al thin films by magnetron DC sputtering, J. Elec-troceram., vol. 23, pp. 356-360, 2009.
[24]X. Bie, J. G. Lu, L. Gong, L. Lin, B. H. Zhan, and Z. Z. Ye, “Transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering at low temperature, Appl. Surf. Sci., vol. 256, pp. 289-293, 2009.
[25]R. F. Bunshah and A. C. Raghuram, “Activated reactive evaporation process for high rate deposition of compounds, J. Vac. Sci. Technol., vol. 9, pp. 1385-1388, 1972.
[26]B. R. Moraes, N. S. Campos, and C. M. S. Izumi, “Surface-enhanced Raman scattering of EDOT and PEDOT on silver and gold nanoparticles, Vib. Spectrosc., vol. 96, pp. 137-142, 2018.
[27]M. Petrosino and A. Rubino, “Effects of the PEDOT interface trap distribution in polymeric OLEDs, Org. Electron., vol. 12, pp. 1159-165, 2011.
[28]J. Wang, F. Zhang, B. Liu, Z. Xu, J. Zhang, and Y. Wang, “Emission colour-tunable phosphorescent organic light-emitting diodes based on the self-absorption effect and excimer emission, J. Phys. D-Appl. Phys., vol. 46, p. 015104, 2013.
[29]J. Y. Park and R. C. Advincula, “Tunable electroluminescence properties in CdSe/PVK guest-host based light-emitting devices, Phys. Chem. Chem. Phys., vol. 16, pp.8589-8593, 2014.
[30]S. Emelyanova, V. Chashchikhin, and A. Bagaturyants, “Atomistic multiscale simulation of the structure and properties of an amorphous OXD-7 layer, Chem. Phys. Lett., vol. 590, pp. 101-105, 2013.
[31]L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode, Appl. Phys. Lett., vol. 70, pp.152-154, 1997.
[32]H. C. Pan, M. H. Shiao, C. Y. Su, and C. N. Hsiao, “Influence of sputtering parameter on the optical and electrical properties of zinc-doped indium oxide thin films, J. Vac. Sci. Technol. A, vol. 23, pp. 1187-1191, 2005.
[33]G. Haacke, “New figure of merit for transparent conductors, J. Appl. Phys., vol. 47, p. 4086, 1976.
[34]P. K. Song, Y. Shigesato, M. Kamei, and I. Yasui, “Electrical and Structural Properties of Tin-Doped Indium Oxide Films Deposited by DC Sputtering at Room Temperature, Jpn. J. Appl. Phys., vol. 38, pp. 2921-2927, 1999.
[35]L. Lu, H. Shen, H. Zhang, F. Jiang, B. Li, and Long Lin, “Effects of Ar flow rate and substrate temperature on the properties of AZO thin films by RF magnetron sputtering, Optoelectron. Adv. Mater. Rapid Commun., vol. 4, pp. 596–600, 2010.
[36]T. Kim, B. H. Choi, J. S. Park, S. M. Lee, Y. S. Lee, and L. S. Park, “Transparent conductive ITO/Ag/ITO multilayer films prepared by low temperature process and physical properties, Displays, vol. 520, pp. 209/[485]–214/[490], 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔