|
Ch1 [1]G. Moore, Progress in digital integrated electronics [Technical literature, Copyright 1975 IEEE. Reprinted, with permission. Technical Digest. International Electron Devices Meeting, IEEE, 1975, pp. 11-13.], IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 36-37, 2006. [2]R. Dennard, F. Gaensslen, H. Yu, V. Leo Rideovt, E. Bassous and A. Leblanc, Design of Ion-Implanted MOSFET's with Very Small Physical Dimensions, IEEE Solid-State Circuits Newsletter, vol. 12, no. 1, pp. 38-50, 2007. [3]Y. Taur and T. Ning, Fundamentals of modern VLSI devices. New York: Cambridge University Press, 2009. [4]G. Ribes et al., Review on high-k dielectrics reliability issues, in IEEE Transactions on Device and Materials Reliability, vol. 5, no. 1, pp. 5-19, March 2005. [5]S. H. Lo, D. A. Buchanan, Y. Taur and W. Wang, Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's, in IEEE Electron Device Letters, vol. 18, no. 5, pp. 209-211, May 1997. [6] D. Nayak, J. C. S. Woo, J. S. Park, K. L. Wang, and K. P. Macwilliams, “Modulation-doped p-channel Ge,Si, -, MOSFET, in DRC Conf. Dig., 1990, VIA-1. [7] S. S. Iyer, P. M. Solomon, V. P. Kesan, J. L. Freeouf, A. A. Bright, and T. N. Nguyen, “Si/SiCe metal oxide semiconductor devices, in DRC Conf. Dig., 1990, VIA-2. [8]P. Garone, V. Venkataraman and J. Sturni, Hole confinement MOS-gated Ge/sub x/Si/sub 1-x//Si heterostructures, IEEE Electron Device Letters, vol. 12, no. 5, pp. 230-232, 1991. [9]N. Tallaj and M. Buyle-Bodin, Work function measurements on germanium by thermionic emission, Surface Science, vol. 69, no. 2, pp. 428-436, 1977. [10]R. Minamisawa, D. Buca, B. Holländer, J. Hartmann, K. Bourdelle and S. Mantl, p-Type Ion Implantation in Tensile Si∕Compressive Si0.5Ge0.5∕Tensile Strained Si Heterostructures, Journal of The Electrochemical Society, vol. 159, no. 1, p. H44, 2012. [11]W.R. Grove, LXXIX. On the electro-chemical polarity of gases, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 4, no. 28, pp. 498-514, 1852. [12]F. Simeon, in A Discussion on “The Making of Reflecting Surfaces (The Fleetway, Imperial College of Science and Technology, South Kensington, S.W.7, 1920), pp. 26. [13]M. Lieberman and A. Lichtenberg, Principles of plasma discharges and materials processing. Hoboken (N.J.): Interscience, 2006. [14]V. Donnelly and A. Kornblit, Plasma etching: Yesterday, today, and tomorrow, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 31, no. 5, p. 050825, 2013. [15]I. Hussla, K. Enke, H. Grunwald, G. Lorenz and H. Stoll, In situ silicon-wafer temperature measurements during RF argon-ion plasma etching via fluoroptic thermometry, Journal of Physics D: Applied Physics, vol. 20, no. 7, pp. 889-896, 1987. [16]J. Coburn and H. Winters, Ion‐ and electron‐assisted gas‐surface chemistry—An important effect in plasma etching, Journal of Applied Physics, vol. 50, no. 5, pp. 3189-3196, 1979. [17]J. Hopwood, Review of inductively coupled plasmas for plasma processing, Plasma Sources Science and Technology, vol. 1, no. 2, pp. 109-116, 1992. [18]Kyung Seok Min, Chang Yong Kang, Ook Sang Yoo, Byoung Jae Park, Sung Woo Kim, C. Young, D. Heh, G. Bersuker, Byoung Hun Lee and Geun Young Yeom, Plasma induced damage of aggressively scaled gate dielectric (EOT ≪ 1.0nm) in metal gate/high-k dielectric CMOSFETs, 2008 IEEE International Reliability Physics Symposium, 2008. [19]A. Martin, Review on the reliability characterization of plasma-induced damage, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 27, no. 1, p. 426, 2009. [20]T. Nozawa, T. Kinoshita, T. Nishizuka, A. Narai, T. Inoue and A. Nakaue, The Electron Charging Effects of Plasma on Notch Profile Defects, Japanese Journal of Applied Physics, vol. 34, no. 1, 4, pp. 2107-2113, 1995. [21]N. Fujiwara, T. Maruyama and M. Yoneda, Pulsed Plasma Processing for Reduction of Profile Distortion Induced by Charge Buildup in Electron Cyclotron Resonance Plasma, Japanese Journal of Applied Physics, vol. 35, no. 1, 4, pp. 2450-2455, 1996. [22]S. Samukawa, Feature profile evolution in plasma processing using on-wafer monitoring system. [23]H. Ohtake, S. Fukuda, B. Jinnai, T. Tatsumi and S. Samukawa, Prediction of Abnormal Etching Profile in High-Aspect-Ratio Via/Hole Etching Using On-Wafer Monitoring System, Japanese Journal of Applied Physics, vol. 49, no. 4, pp. 04DB14, 2010. [24]Y. Liaw, W. Liao, M. Wang, C. Lin, B. Zhou, H. Gu, D. Li and X. Zou, A high aspect ratio silicon-fin FinFET fabricated upon SOI wafer, Solid-State Electronics, vol. 126, pp. 46-50, 2016. [25]B. Wu, A. Kumar and S. Pamarthy, High aspect ratio silicon etch: A review, Journal of Applied Physics, vol. 108, no. 5, p. 051101, 2010. [26]S. Lai, D. Johnson and R. Westerman, Aspect ratio dependent etching lag reduction in deep silicon etch processes, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 24, no. 4, pp. 1283-1288, 2006. [27]P. Lenahan and P. Dressendorfer, Hole traps and trivalent silicon centers in metal/oxide/silicon devices, Journal of Applied Physics, vol. 55, no. 10, pp. 3495-3499, 1984. [28]K. Yokogawa, Y. Yajima, T. Mizutani, S. Nishimatsu and K. Suzuki, Positive Charges and E' Centers Formed by Vacuum Ultraviolet Radiation in SiO2Grown on Si, Japanese Journal of Applied Physics, vol. 29, no. 1, 10, pp. 2265-2268, 1990. [29]S. Samukawa, K. Sakamoto, and K. Ichiki, Generating high-efficiency neutral beams by using negative ions in an inductively coupled plasma source, Journal of Vacuum Science & Technology A, vol. 20, pp. 1566-1573, 2002. Ch2 [1]D. Lee, S. Jung, S. Park and G. Yeom, Characteristics of neutral beam generated by reflection on a planar-type reflector and its etching properties, Surface and Coatings Technology, vol. 177-178, pp. 420-425, 2004. [2]S. Nam, D. Economou and V. Donnelly, Generation of Fast Neutral Beams by Ion Neutralization in High-Aspect-Ratio Holes: A Particle-in-Cell Simulation Study, IEEE Transactions on Plasma Science, vol. 35, no. 5, pp. 1370-1378, 2007. [3]S. Abolmasov, T. Ozaki and S. Samukawa, Characterization of neutral beam source based on pulsed inductively coupled discharge: Time evolution of ion fluxes entering neutralizer, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 25, no. 1, pp. 134-140, 2007. [4]S. Samukawa, K. Sakamoto and K. Ichiki, High-Efficiency Neutral-Beam Generation by Combination of Inductively Coupled Plasma and Parallel Plate DC Bias, Japanese Journal of Applied Physics, vol. 40, no. 2, 7, pp. L779-L782, 2001. [5]T. Kubota, O. Nukaga, S. Ueki, M. Sugiyama, Y. Inamoto, H. Ohtake and S. Samukawa, 200-mm-diameter neutral beam source based on inductively coupled plasma etcher and silicon etching, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 28, no. 5, pp. 1169-1174, 2010. [6]K. Miwa, Y. Nishimori, S. Ueki, M. Sugiyama, T. Kubota and S. Samukawa, Low-damage silicon etching using a neutral beam, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 31, no. 5, p. 051207, 2013. [7]T. Mizutani and S. Nishimatsu, Sputtering yield and radiation damage by neutral beam bombardment, Journal of Vacuum Science & Technology A, vol. 6, pp. 1417-1420, 1988. [8]D. Lee, B. Park, and G. Yeom, Effects of axial magnetic field on neutral beam etching by low-angle forward-reflected neutral beam method, Japanese journal of applied physics, vol. 44, p. L63, 2004. [9]D. Economou, Pulsed plasma etching for semiconductor manufacturing, Journal of Physics D: Applied Physics, vol. 47, no. 30, p. 303001, 2014. [10]S. Samukawa and T. Mieno, Pulse-time modulated plasma discharge for highly selective, highly anisotropic and charge-free etching, Plasma Sources Science and Technology, vol. 5, no. 2, pp. 132-138, 1996. [11]S. Samukawa, K. Sakamoto, and K. Ichiki, Generating high-efficiency neutral beams by using negative ions in an inductively coupled plasma source, Journal of Vacuum Science & Technology A, vol. 20, pp. 1566-1573, 2002. [12]S. Sze and K. Ng, Physics of semiconductor devices. New Dehli: Wiley-India, 2007. Ch3 [1]S. Samukawa, K. Sakamoto and K. Ichiki, Generating high-efficiency neutral beams by using negative ions in an inductively coupled plasma source, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 20, no. 5, pp. 1566-1573, 2002. [2]S. Samukawa, Damage-Free Plasma Etching Processes for Future Nanoscale Devices, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009. [3]T. Kubota, O. Nukaga, S. Ueki, M. Sugiyama, Y. Inamoto, H. Ohtake and S. Samukawa, 200-mm-diameter neutral beam source based on inductively coupled plasma etcher and silicon etching, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 28, no. 5, pp. 1169-1174, 2010. [4]S. Samukawa, K. Sakamoto and K. Ichiki, High-Efficiency Low Energy Neutral Beam Generation Using Negative Ions in Pulsed Plasma, Japanese Journal of Applied Physics, vol. 40, no. 2, 10, pp. L997-L999, 2001. [5]S. Samukawa, K. Sakamoto and K. Ichiki, High-Efficiency Neutral-Beam Generation by Combination of Inductively Coupled Plasma and Parallel Plate DC Bias, Japanese Journal of Applied Physics, vol. 40, no. 2, 7, pp. L779-L782, 2001. [6]T. Yunogami, T. Mizutani, K. Suzuki and S. Nishimatsu, Radiation Damage in SiO2/Si Induced by VUV Photons, Japanese Journal of Applied Physics, vol. 28, no. 1, 10, pp. 2172-2176, 1989. [7]J. Schwank, M. Shaneyfelt, D. Fleetwood, J. Felix, P. Dodd, P. Paillet and V. Ferlet-Cavrois, Radiation Effects in MOS Oxides, IEEE Transactions on Nuclear Science, vol. 55, no. 4, pp. 1833-1853, 2008. [8]K. Yokogawa, Y. Yajima, T. Mizutani, S. Nishimatsu and K. Suzuki, Positive Charges andE' Centers Formed by Vacuum Ultraviolet Radiation in SiO2Grown on Si, Japanese Journal of Applied Physics, vol. 29, no. 1, 10, pp. 2265-2268, 1990. [9]T. Tatsumi, S. Fukuda and S. Kadomura, Radiation Damage of SiO2 Surface Induced by Vacuum Ultraviolet Photons of High-Density Plasma, Japanese Journal of Applied Physics, vol. 33, no. 1, 4, pp. 2175-2178, 1994. [10]T. Yunogami, T. Mizutani, K. Tsujimoto and K. Suzuki, Mechanism of Radiation Damage in SiO2/Si Induced by vuv Photons, Japanese Journal of Applied Physics, vol. 29, no. 1, 10, pp. 2269-2272, 1990. [11]T. Oldham, F. McLean, H. Boesch and J. McGarrity, An overview of radiation-induced interface traps in MOS structures, Semiconductor Science and Technology, vol. 4, no. 12, pp. 986-999, 1989. [12]K. Yokogawa, Y. Yajima, T. Mizutani, S. Nishimatsu and K. Suzuki, Positive Charges and E' Centers Formed by Vacuum Ultraviolet Radiation in SiO2Grown on Si, Japanese Journal of Applied Physics, vol. 29, no. 1, 10, pp. 2265-2268, 1990. [13]M. Schmidt, M. Lemme, H. Kurz, T. Witters, T. Schram, K. Cherkaoui, A. Negara and P. Hurley, Impact of H2/N2 annealing on interface defect densities in Si(100)/SiO2/HfO2/TiN gate stacks, Microelectronic Engineering, vol. 80, pp. 70-73, 2005. [14]D. Han, J. Kang, C. Lin and R. Han, Reliability characteristics of high-K gate dielectrics HfO2 in metal-oxide semiconductor capacitors, Microelectronic Engineering, vol. 66, no. 1-4, pp. 643-647, 2003. [15]M. Jeng, H. Lin and J. Hwu, Rapid thermal post-metallization annealing effect on thin gate oxides, Applied Surface Science, vol. 92, pp. 208-211, 1996. [16]L. Do Thanh, Elimination and Generation of Si-SiO[sub 2] Interface Traps by Low Temperature Hydrogen Annealing, Journal of The Electrochemical Society, vol. 135, no. 7, p. 1797, 1988. Ch4 [1]K. Eriguchi and K. Ono, Impacts of plasma process-induced damage on MOSFET parameter variability and reliability, Microelectronics Reliability, vol. 55, no. 9-10, pp. 1464-1470, 2015. [2]E. Koji and O. Kouichi, Quantitative and comparative characterizations of plasma process-induced damage in advanced metal-oxide-semiconductor devices, Journal of Physics D: Applied Physics, vol. 41, p. 024002, 2008. [3]A. Martin, Review on the reliability characterization of plasma-induced damage, Journal of Vacuum Science & Technology B, vol. 27, pp. 426-434, 2009. [4]Y. Norikuni, O. Masaharu, M. Osamu, and Y. Shizuka, Surface Damage on Si Substrates Caused by Reactive Sputter Etching, Japanese Journal of Applied Physics, vol. 20, p. 893, 1981. [5]G. Oehrlein, Dry etching damage of silicon: A review, Materials Science and Engineering: B, vol. 4, no. 1-4, pp. 441-450, 1989. [6]B. O'Sullivan, L. Pantisano, P. Roussel, R. Degraeve, G. Groeseneken, S. DeGendt and M. Heyns, On the Recovery of Simulated Plasma Process Induced Damage in High-k Dielectrics, 2006 IEEE International Reliability Physics Symposium Proceedings, 2006. [7]C. Young, G. Bersuker, F. Zhu, K. Matthews, R. Choi, S. Song, H. Park, J. Lee and B. Lee, Comparison of Plasma-Induced Damage in SIO2/TIN and HFO2/TIN Gate Stacks, 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual, 2007. [8]G. Bersuker, J. Barnett, N. Moumen, B. Foran, C. Young, P. Lysaght, J. Peterson, B. Lee, P. Zeitzoff and H. Huff, Interfacial Layer-Induced Mobility Degradation in High-kTransistors, Japanese Journal of Applied Physics, vol. 43, no. 11, pp. 7899-7902, 2004. [9]S. Sze and J. Irvin, Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300°K, Solid-State Electronics, vol. 11, no. 6, pp. 599-602, 1968. [10]S. Samukawa, K. Sakamoto and K. Ichiki, Generating high-efficiency neutral beams by using negative ions in an inductively coupled plasma source, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 20, no. 5, pp. 1566-1573, 2002. [11]P. Rai-Choudhury, J. Benton, D. Schroder and T. Shaffner, Diagnostic Techniques for Semiconductor Materials and Devices. Bellingham: SPIE, 1997. [12]E. Nicollian and J. Brews, MOS (metal oxide semiconductor) physics and technology. New York: Wiley, 1982. [13]A. Goetzberger, E. Klausmann and M. Schulz, Interface states on semiconductor/insulator surfaces, C R C Critical Reviews in Solid State Sciences, vol. 6, no. 1, pp. 1-43, 1976. [14]G. DeClerck, Characterization of Surface States at the Si-SiO2 Interface, Nondestructive Evaluation of Semiconductor Materials and Devices, pp. 105-148, 1979. [15]E. Nicollian and A. Goetzberger, The Si-SiO2Interface - Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique, Bell System Technical Journal, vol. 46, no. 6, pp. 1055-1133, 1967. [16]D. Schroder, Semiconductor material and device characterization. [Piscataway, NJ]: IEEE Press, 2006. [17]R. Fowler and L. Nordheim, Electron Emission in Intense Electric Fields, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 119, no. 781, pp. 173-181, 1928. [18]M. Lenzlinger and E. Snow, Fowler‐Nordheim Tunneling into Thermally Grown SiO2, Journal of Applied Physics, vol. 40, no. 1, pp. 278-283, 1969. [19]Z. Weinberg, On tunneling in metal‐oxide‐silicon structures, Journal of Applied Physics, vol. 53, no. 7, pp. 5052-5056, 1982.
|