(3.236.228.250) 您好!臺灣時間:2021/04/22 05:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許家昆
研究生(外文):Bhimireddy BasiviReddy
論文名稱:偏轉的外罩式風力渦輪計算
論文名稱(外文):THE SIMULATION OF DUCTED WIND TURBINE AT YAW ANGLES
指導教授:張錦裕張錦裕引用關係
指導教授(外文):Jiin-Yuh Jang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:114
中文關鍵詞:風力發電擴散器增強式風力發電機計算流體力學偏航角性能
外文關鍵詞:Wind powerDiffuser augmented wind turbineCFDYaw anglePerformance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
擴散器增強式風力發電機(DAWT)(或稱導管式風力發電機)被認為具有良好的風能轉換效果。據了解,導管式風力發電機的設計比傳統的水平軸風力發電機(HAWT)在將風能轉換爲電力方面具有空氣動力學上的優勢。本研究中,利用計算流體力學(CFD)的技術,在不同旋轉速度下及在多個偏向角(10度到90度,間隔10度)下執行導管式風力發電機的數值模擬。本研究的主要目的是了解在不同的偏航角情況下,導管式風力發電機的流動物理和性能變化。它計算了在不同轉速下偏航角為10度到90度的功率輸出。將偏航時的功率輸出曲線與偏航角為零度時的功率輸出進行比較。數值結果顯示導管式風力發電組的功率輸出隨著偏航角度增大而顯著下降,證明了改變偏航角是在強風力條件下安全操作導管式風力發電機的有效方法。本研究有助於未來導管式風力發電機的安全設計。
The diffuser augmented wind turbine (DAWT) (or so called ducted wind turbine) was believed to have a good wind power energy conversion effect. It was realized that a DAWT design has aerodynamic advantages over traditional horizontal axis wind turbine (HAWT) in converting wind energy to electric power. In this research numerical simulations of a DAWT were performed at multiple yaw angles (10 degrees to 90 degrees at intervals of 10 degrees) at different rotational speeds with the help of computational fluid dynamics (CFD) technique. The main purpose of this research is to understand flow physics and performance variation of DAWT at different yaw angles. This study helps to operate the DAWT safely during high wind conditions. Power outputs of DAWT at 10 degrees to 90 degrees of yaw angles at different rotational speeds were calculated. Power output curves of DAWT at 10 degrees to 90 degrees of yaw angles were compared with power output curve at zero degree of yaw angle. The comparison of numerical results shows that power output of DAWT decreased significantly as the yaw angle increases from 0 degrees to 90 degrees respectively. Changing yaw angle is an effective way to operate DAWT at high wind conditions.
ABSRACT.......................................................I
摘要.........................................................II
ACKNOWLEDGEMENT.............................................III
CONTENTS.....................................................IV
LIST OF FIGURES..............................................VI
LIST OF TABLES..............................................XII
NOMENCLATURE...............................................XIII
CHAPTER 1: INTRODUCTION.......................................1
1.1 Background and motivation.................................1
1.2 Wind turbine technology...................................3
1.2.1 Types of wind turbine...................................4
1.2.2 Wind turbine control systems...........................10
1.3 Theoretical analysis.....................................12
1.3.1 Non-diffuser augmented wind turbine analysis...........12
1.3.2 Diffuser augmented wind turbine analysis...............15
1.4 Overview of the thesis...................................22
CHAPTER 2: COMPUTATIONAL AERODYNAMICS........................24
2.1 Governing equations......................................24
2.1.1 Continuity equation....................................25
2.1.2 Momentum equation......................................25
2.2 The κ-ε (K-epsilon) turbulence model...................26
2.3 Wall function approach...................................28
2.3.1 Scalable wall functions................................30
2.4 Solution procedure.......................................32
CHAPTER 3: PHYSICAL MODEL AND CALCULATION ENVIRONMENT........33
3.1 Geometry.................................................33
3.2 Mesh.....................................................40
3.3 Boundary conditions......................................49
CHAPTER 4: RESULTS & DISCUSSION..............................52
4.1 Mesh independence study..................................52
4.2 Convergence..............................................53
4.3 Post-processing results of JPS200 (no change in yaw angle).......................................................57
4.4 Post-processing results of JPS200 at multiple yaw angle..77
CHAPTER 5: CONCLUSION AND FUTURE WORK……………109
5.1 Conclusion..............................................109
5.2 Future work............................................111
REFERENCES..................................................112
[1].J. O. Dabiri, J. R. Greer, J. R. Koseff, P. Moin and J. Peng, “A New Approach To Wind Energy: Opportunities And Challenges, American Institute of Physics Conference Proceedings, pp. 51-57, 2015.
[2].Global Statistics, 2016. Retrieved from www.gwec.net/global-figures/graphs/
[3].K. Akhil, D. Klayan, A. Sruthi, N. Lakshmi, A. Vamsi, B. Rajesh, K. Kiran, C. Shivasri and S. Yakub, “A Brief Research, Study, Design and Analysis on Wind turbine, International Journal of Modern Engineering Research, vol. 5, pp. 5-30, 2015.
[4].J. N. Libii, “Comparing the Calculated Coefficients of Performance of a Class of Wind Turbines that Produce Power Between 330kW AND 7,500kW, World Transactions on Engineering and Technology Education, Vol. 11, pp. 36-40, 2013.
[5].P. J. Schubel and R. J. Crossley, “Wind Turbine Blade Design Review, Wind Engineering, vol. 36, pp. 365-388, 2012.
[6].M. Saad and N. Asmuin, “Comparison of Horizontal Axis Wind Turbines and Vertical Axis Wind Turbines, International Organization of Scientific Research Journal of Engineering, vol. 4, pp. 27-30, 2014.
[7].Wind 101: The Basics of Wind Energy, Retrieved from www.awea.org/wind-power-101
[8].A. P. Schaffarczyk and A. Peter, “Introduction to Wind Turbine Aerodynamics, Green Energy and Technology, pp. 7-20, 2014.
[9].K. M. Foreman, “Preliminary Design and Economic Investigations of Diffuser Augmented Wind Turbines (DAWT), Executive Summary, Final Report, Solar Energy Research Institute, pp. 6-23, 1981.
[10].Wind Energy, Retrieved from www.nrel.gov/wind/research.html
[11].P. Rajesh, K. Maheshwara and P. Kishore, “Wind Turbine Pitch and Yaw Control, International Journal of Science, Technology & Management, vol. 4, pp. 618-623, 2015.
[12].O. D. Vries, “Fluid Dynamic Aspects of Wind Energy Conversion, National Aerospace Laboratory NLR, pp. 28-33, 1979.
[13]. M. O. L. Hansen, N. N. Sorrensen and R. G. J. Flay, “Effect of Placing a Diffuser Around a Wind Turbine, Wind Energy, vol. 3, pp. 207-213, 2000.
[14]. D. G. Phillips, R. G. J. Flay and P. J. Richards, “An Investigation on Diffuser Augmented Wind Turbine Design, Ph.D thesis, University of Auckland, 2003.
[15]. C. A. J. Fletcher, “Computational Analysis of Diffuser-Augmented Wind Turbines, Energy Convers. Manag., vol. 21, pp. 175-183, 1981.
[16].JPS200, Retrieved from www.jetprotech.com.tw/en/products/jps200.htm
[17]. B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering, vol. 3, pp. 269-275, 1974.
[18].D. L. Sondak, “Wall Functions for The k - ε Turbulence Model in Generalized Non-orthogonal Curvilinear Coordinates, Ph.D thesis, Iowa State University, 1992.
[19].H. Grotjans and F. R. Menter, “Wall Functions for General Application CFD codes, Proceedings of Fourth European CFD conference, vol. 1, pp. 112-117, 1998.
[20].S. H. Wang and S. H. Chen, “Blade Number Effect for A Ducted Wind Turbine, Journal of Mechanical Science and Technology, vol. 22, pp. 1984-1992, 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔