(3.237.97.64) 您好!臺灣時間:2021/03/03 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡瑞敏
研究生(外文):Jui-MinTsai
論文名稱:多波段微機電加速規整合設計於工具機主軸振動監控應用
論文名稱(外文):Design and Realization of a Novel Sensing Module for Machine Tool Vibration Monitoring by Integrating Multiple MEMS Accelerometers
指導教授:陳國聲
指導教授(外文):Kuo-Shen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:245
中文關鍵詞:微機電加速規工具機狀態監測振動感測器
外文關鍵詞:MEMS accelerometersVibrationsMachine Tools
相關次數:
  • 被引用被引用:3
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在工業4.0的議題下,即時監測工具機為主要發展的目標之一,其中透過振動監測能夠對工具機的健康狀態做有效的分析,如顫震、軸承損壞等等。然而工具機會激發由低頻至高頻的振動頻率,而市面上任一的振動感測器無法兼具高頻寬、高靈敏度的特性以量測工具機的振動,同時以智慧製造為主要發展的目標之下,並且若要將振動感測器用於監測大量機台的振動狀態,還須具備有低成本的特性。因此在本文整合多個不同頻寬的低成本的微機電加速規,並使用機構設計將電路與多個微機電加速規整合,並且考慮加速規本身靈敏度低的缺陷,藉由電路設計提升加速規的靈敏度,而在訊號傳輸後使用數位濾波器做初步的資料統合,形成一個高頻寬、高靈敏度、低成本且三軸的整合多波段加速規模組,並將加速規模組初步在激振器上驗證靈敏度及頻寬,再應用於工具機主軸量測不平衡負載實驗及真實的切削情形,並討論其結果。除了量測工具機主軸的振動之外,本研究將加速規模組應用於智慧主軸鑽削平台,量測鑽削時的振動情形,以及機械手臂異音監測,量測機械手臂異常時的振動訊號,達到監測機台之效用。
In this thesis a design to form a vibrating sensing module by integrating several MEMS accelerometers with different dynamic characteristics is proposed and investigated. By such an approach, a low cost accelerometer with better dynamic behavior at any frequencies is expected. This work presents the preliminary study toward this goal. The primary test results on the dynamic performance characterization indicated that those MEMS accelerometers are potentially capable for measuring vibrations of machine tools. The in-situ on spindle also indicated that the performance of MEMS accelerometer could potentially compete with that of piezoelectric ones. Meanwhile, the Butterworth filter is efficient to eliminate redundant information. In the future, this vibration sensing module is expected to be used in monitoring a wide variety of machine tools and even more other realms.
Keywords: MEMS accelerometers, Vibrations, Machine Tools
摘要 I
Extend Abstract II
致謝 XVII
目錄 XIX
表目錄 XXVI
圖目錄 XXVIII
符號表 XXXIX
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 5
1.3文獻回顧 6
1.4研究方法 12
1.5全文架構 13
第二章 研究背景介紹 15
2.1本章介紹 15
2.2工具機簡介 16
2.3工具機振動相關介紹 18
2.3.1工具機內部的振動來源 18
2.3.2工具機加工振動 20
2.4振動感測器介紹 23
2.5加速規介紹 28
2.5.1壓電式加速規介紹 28
2.5.2微機電加速規介紹 32
2.6電路設計 36
2.6.1運算放大器 36
2.6.2運算放大器的相關應用電路 38
2.7訊號處理 41
2.7.1奈奎斯特定理 41
2.7.2快速傅立葉轉換 42
2.7.3資料規劃 43
2.7.4數位訊號處理 43
2.8本章結論 47
第三章 整合多波段微機電加速規設計 48
3.1 本章介紹 48
3.2定義設計目標 49
3.3整合多波段加速規概念設計流程 52
3.3.1多波段概念 52
3.3.2設計流程 53
3.4微機電加速規選用 54
3.5載體設計 62
3.6硬體電路設計與分析 64
3.7數位訊號處理 67
3.8本章結論 68
第四章 微機電加速規測試實驗 69
4.1本章介紹 69
4.2微機電加速規的測試規劃 70
4.3測試實驗系統建置 73
4.4測試結果與討論 77
4.5本章結論 90
第五章 硬體電路設計與實現 91
5.1本章介紹 91
5.2整體電路設計規劃 92
5.3電路設計方法 94
5.3.1硬體電路設計 94
5.2.2電路板簡介 97
5.4電路性能測試實驗建置 102
5.4.1單頻測試實驗建置 102
5.4.2掃頻測試實驗建置 104
5.5測試結果與討論 105
5.5.1單頻測試結果 105
5.5.2掃頻測試結果 110
5.5.3實驗結果討論 114
5.6本章結論 115
第六章 第一代加速規模組測試與分析 116
6.1本章介紹 116
6.2加速規量測模擬分析 117
6.3整體實驗規劃 125
6.4工具機主軸實驗建置 126
6.5工具機主軸測試結果 131
6.5.1不平衡負載實驗 131
6.5.2切削實驗 142
6.6結論分析與討論 149
6.7本章結論 150
第七章 第二代加速規模組測試及分析 151
7.1本章介紹 151
7.2第二代加速規模組介紹 152
7.3整體實驗規劃 157
7.4頻寬測試實驗與結果 159
7.5工具機主軸測試實驗與結果 161
7.5.1不平衡負載實驗 161
7.5.2切削實驗 174
7.6本章結論 182
第八章 第二代加速規模組應用與分析 183
8.1本章介紹 183
8.2整體實驗規劃 184
8.3其他載台實驗建置 186
8.3.1鑽削平台實驗建置 186
8.3.2機械手臂實驗建置 191
8.4其他載台實驗測試結果 194
8.4.1鑽削平台測試結果 194
8.4.2機械手臂測試結果 199
8.5資料統合 203
8.5.1數位濾波器模擬與分析 204
8.5.2數位濾波器介面介紹 208
8.5.3量測實驗分析 211
8.6測試問題與討論 217
8.6.1工具機主軸測試實驗討論 217
8.6.2數位濾波器 218
8.6.3第二代加速規模組應用情境 219
8.7本章結論 222
第九章 研究結果與討論 223
9.1全文歸納 223
9.2討論 226
9.2.1整合多波段加速規設計 226
9.2.2工具機上的應用 226
9.2.3雜訊分析 227
9.2.4數據統合 228
9.3未來展望及未來工作 229
9.3.1整合多波段模組改良 229
9.3.2訊號處理改善 230
9.3.3主軸感測器模組 230
9.3.4機台振動監控系統 231
9.3.5整合多種感測器概念 231
第十章 結論與未來展望 233
10.1本文結論 233
10.2本文貢獻 235
10.3未來工作 236
參考文獻 237
附錄A數位濾波器模擬架構圖 245
[1]J. P. Tomás, Smart manufacturing vs. lights out manufacturing, https://enterpriseiotinsights.com/
[2]Modern machine shop, Streamlining the Data Network Inside a Machine, https://www.mmsonline.com/
[3]H. Pahk, and S. W. Lee, “Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error. The International Journal of Advanced Manufacturing Technology, vol. 20, no. 7, pp. 487-494, 2002.
[4]U. Bravo, O. Altuzarra, L. L. De Lacalle, J. A. Sánchez, and F. J. Campa, “Stability limits of milling considering the flexibility of the workpiece and the machine. International Journal of Machine Tools and Manufacture, vol.45, no. 15, pp.1669-1680, 2005.
[5]吳宗軒, 以調變主軸轉速抑制銑削顫震之探討, 國立成功大學機械系碩士論文, 2017
[6]Z. Yao, D. Mei, and Z. Chen,. “On-line chatter detection and identification based on wavelet and support vector machine. Journal of Materials Processing Technology, vol.210, no.5, pp.713-719,2010.
[7]K. Elbhbah, and J. K. Sinha, “Vibration-based condition monitoring of rotating machines using a machine composite spectrum. Journal of Sound and Vibration, vol. 332, no. 11, pp. 2831-2845, 2013.
[8]J. Donelson, and R.L. Dicus, “Bearing defect detection using on-board accelerometer measurements. In ASME/IEEE 2002 Joint Rail Conference, pp.95-102, 2002
[9]N. Sawalhi, R.B. Randall, “Simulating gear and bearing interactions in the presence of faults: Part I. The combined gear bearing dynamic model and the simulation of localised bearing faults. Mechanical Systems and Signal Processing, vol.22, no.8, pp.1924-1951, 2008.
[10]百德機械股份有限公司, 五軸銑車複合加工中心機, http://www.quaser.com
[11]Y. Nemirovsky, A. Nemirovsky, P. Muralt, and N. Setter, “Design of novel thin-film piezoelectric accelerometer. Sensors and Actuators A: Physical, vol. 56, no. 3, pp. 239-249, 1996
[12]A Rastegari, A. Archenti, and M. Mobin, “Condition based maintenance of machine tools: Vibration monitoring of spindle units. IEEE Reliability and Maintainability Symposium, pp. 1-8, 2017.
[13]PCB Piezotronics Inc., 壓電式加速規 PCB 393B04, http://www.pcb.com/Products/model/393B04
[14]A. Sabato, and M. Q. Feng, “Feasibility of frequency-modulated wireless transmission for a multi-purpose MEMS-based accelerometer. Sensors, vol. 14, no. 9, 16563-16585.
[15]S. B. Chaudhury, M. Sengupta, and K. Mukherjee, “Vibration monitoring of rotating machines using MEMS accelerometer. International Journal of Scientific Engineering and Research, vol. 2, no. 9, 2014.
[16]A. A. Jaber, and R. Bicker, “Design of a Wireless Sensor Node for Vibration Monitoring of Industrial Machinery. International Journal of Electrical and Computer Engineering, vol. 6, no. 2, pp. 639-653, 2016.
[17]中興電工機械股份有限公司, 立式五軸加工中心機, http://www.chem.com.tw/
[18]馬特工業有限公司, 臥式加工中心機, http://www.macocnc.com/
[19]Q. Azhar, Vertical Milling Center, https://grabcad.com/library/vmc-vertical-milling-center-bt40-1
[20]Svenska Kullagerfabriken Inc., Electro-spindle in a horizontal machining centre, http://www.skf.com/
[21]朱效賢, 包絡譜分析於軸承故障診斷之探討暨工程應用, 國立中央大學機械系碩士論文, 2005.
[22]I. Bediaga, X. Mendizabal, A. Arnaiz, and J. Munoa, “Ball bearing damage detection using traditional signal processing algorithms. IEEE Instrumentation and Measurement Magazine, vol. 16, no. 2, pp. 20-25, 2013.
[23]羅凱鴻, 滾珠螺桿預壓之偵測,國立中正大學機械系碩士論文, 2011.
[24]許夫瀚, 具預壓之滾珠螺桿其振動特性之分析, 國立中正大學機械系碩士論文, 2014.
[25]汤爱君,马海龙, 切削加工系统再生颤振机理的研究概况, 工具技术,山东建筑大学机电工程学院, 2007.
[26]Y. Altintas, and M. Weck, “Chatter stability of metal cutting and grinding. CIRP Annals-Manufacturing Technology, vol. 53.no. 2, pp. 619-642, 2004.
[27]C. M. Zheng, J. J. Wang, and C. F. Sung, “Analytical prediction of the critical depth of cut and worst spindle speeds for chatter in end milling. Journal of Manufacturing Science and Engineering, vol. 136, no. 1, p. 011003, 2014.
[28]詠業科技股份有限公司, 壓電效應示意圖, https://www.unictron.com/
[29]Metra Mess- und Frequenztechnik Inc., Piezoelectric Accelerometers: Theory and Application, http://www.gracey.co.uk/downloads/accelerometers.pdf
[30]Metra Mess- und Frequenztechnik Inc., Piezoelectric Accelerometers: Theory and Application, https://mmf.de/manual/transducermane.pdf
[31]PCB Piezotronics Inc., Accelerometers/Vibration Sensors, http://www.pcb.com/TestMeasurement/Accelerometers
[32]D. E. Serrano, Design and analysis of mems accelerometers, IEEE Sensors, 2013.
[33]Analog Devices, Inc., ADXL001 Breakout Board, http://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-adxl001.html#eb-overview
[34]維基百科, 運算放大器示意圖, https://en.wikipedia.org/wiki/Dual_in-line_package
[35]維基百科, 運算放大器op741, https://en.wikipedia.org/wiki/Operational_amplifier
[36]吳尚德, Lecture Notes on Applied Electronics,國立雲林科技大學機械系
[37]Electrical Engineering, 訊號混疊示意圖, https://electronics.stackexchange.com/questions/235870/sampling-anti-aliasing-filter-bandwidth
[38]維基百科, 各式濾波器比較https://en.wikipedia.org/wiki/Butterworth_filter
[39]W. Q. Lim, D. H. Zhang, J. H. Zhou, P. H. Belgi, and H. L. Chan, “Vibration-based fault diagnostic platform for rotary machines. 36th Annual Conference on IEEE Industrial Electronics Society, pp. 1404-1409, 2010.
[40]PCB Piezotronics Inc., 壓電式加速規 PCB 356A16, http://www.pcb.com/products/model/356a16
[41]龍馬精密科技股份有限公司, 內藏式主軸C403C, http://spintrue.com.tw/ch/company.html
[42]MISUMI Group Inc., Angular Ball Bearing (7020), https://uk.misumi-ec.com/vona2/detail/221000058334/?HissuCode=7020
[43]Analog Devices, Inc., ADXL001 Breakout Board, http://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-adxl001.html#eb-overview
[44]Analog Devices, Inc., ADXL001 Circuit Description, http://www.analog.com/media/en/technical-documentation/evaluation-documentation/EVAL-ADXL001.pdf
[45]Analog Devices, Inc., ADXL001 Specifications, http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL001.pdf
[46]Analog Devices, Inc., ADXL203 Breakout Board, http://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-ADXL203.html#eb-overview
[47]Analog Devices, Inc., ADXL203 Circuit Description, http://www.analog.com/media/en/technical-documentation/evaluation-documentation/535395787ADXL203EB_0.pdf
[48]Analog Devices, Inc., ADXL203 Specifications, http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL103_203.pdf
[49]Analog Devices, Inc., ADXL327 Breakout Board, http://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-ADXL327.html
[50]Analog Devices, Inc., ADXL327 Circuit Description, http://www.analog.com/media/en/technical-documentation/evaluation-documentation/EVAL-ADXL327Z.pdf
[51]Analog Devices, Inc., ADXL327 Specifications, http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL327.pdf
[52]Analog Devices, Inc., Accelerometer Specifications - Quick Definitions, http://www.analog.com/en/products/landing-pages/001/accelerometer-specifications-definitions.html
[53]E. Neufeld, Tool change spindle, https://grabcad.com/library/tool-change-spindle--1
[54]Dytran Instruments, Inc., Schematic diagram of back to back calibration, http://www.dytran.com/assets/PDF/Back-toBack%20Accelerometer%20Calibration.pdf
[55]TIRA GMBH, Inc., 激振器TV51120 http://www.swissvacuum.com/assets/system_tv_51120_eng.pdf
[56]TIRA GMBH Inc., 功率放大器 BAA500, https://www.beak-electronic.de/en/analog-power-amplifiers/500-w/baa-500-tira/
[57]Endevco Inc., 壓電式加速規752A13, https://www.nuigalway.ie/media/publicsub-sites/engineering/files/752A12-ENDEVCO.pdf
[58]PCB Piezotronics Inc., 壓電式加速規 PCB 354C03, https://www.pcb.com/products.aspx?m=354C03
[59]Pulse Electronics Inc., 頻譜分析儀, https://www.bksv.com/media/doc/bu0228.pdf
[60]R. Darula, and A. Sjöström, Construction and InHouse Calibration of Mems-Based Vibration Transducers, Engineering Acoustics, Lund University, Scania, (TVBA-3131), 2016.
[61]Murata Manufacturing Inc., Application manual for power supply noise suppression and decoupling for digital ICs, https://www.murata.com/
[62]STMicroelectronics Inc., 運算放大器TL084C, https://www.st.com/resource/en/datasheet/tl084c.pdf
[63]STMicroelectronics Inc., 運算放大器TSV524, https://www.st.com/resource/en/datasheet/tsv521.pdf
[64]Tektronix Inc., 函數訊號產生器, http://www.fluke-tektronix.tw/data/tektronix/afg3021.htm
[65]National Instruments Inc., 電壓輸入模組, http://www.ni.com/zh-tw/support/model.ni-9215.html
[66]利瑋木工機械有限公司, PMC五軸加工機, https://www.lihwoei.com.tw/mini5-axis-cnc-tw
[67]PCB Piezotronics, Inc., ICP signal conditioner PCB 584A, http://www.pcb.com/Home
[68]National Instruments Inc., CompactDAQ 機箱, http://www.ni.com/zh-tw/support/model.cdaq-9174.html
[69]Kistler Inc., 壓電式加速規Kistler 8763BB, https://www.malinc.com/wp-content/uploads/2014/05/000-928e-03.14.pdf
[70]Diodes Inc., 穩壓器AP7333, https://www.diodes.com/assets/Datasheets/AP7333.pdf
[71]Molex Inc., 電路板公接頭5041861800, https://www.molex.com/pdm_docs/sd/5041861800_sd.pdf
[72]Molex Inc., 電路板接頭母座5041871870, https://www.molex.com/pdm_docs/sd/5041871870_sd.pdf
[73]新代科技股份有限公司, 驅動器SPD-32A2, https://www.syntecclub.com.tw/series.aspx?CategoryID=ServoProduct&SubCategoryID=ServoSystem&SeriesID=G1_1
[74]新代科技股份有限公司, 控制器21MA, https://www.syntecclub.com.tw/series.aspx?CategoryId=MillingController&SubCategoryID=EngravingMachine&SeriesID=B1_2
[75]NXP Semiconductors, 溫度感測器KTY84, https://www.nxp.com/docs/en/data-sheet/KTY84_SER.pdf?
[76]銀泰科技股份有限公司, 銀泰螺桿模組KM3310A, http://www.pmi-amt.com/products/mono/KM33AB.htm
[77]台達電子工業股份有限公司, 驅動器ASDA-B2, http://www.deltaww.com/filecenter/Products/download/06/060201/Manual/DELTA-IA-ASDA_B2-F_UM_TC_20141119.pdf
[78]利茗機械股份有限公司, 機械手臂JR6G-08, http://www.li-ming.com.tw/
[79]新代科技股份有限公司, 驅動器S08-SMD-23A-3030-00, https://www.syntecclub.com.tw/series.aspx?CategoryID=ServoProduct&SubCategoryID=MultiAxisServoDriver&SeriesID=G2_1
[80]新代科技股份有限公司, 控制器F21-M3-81RA-1700, https://www.syntecclub.com.tw/series.aspx?CategoryID=RoboticArmController&SubCategoryID=SCARASolution&SeriesID=F6_0
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔