跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 04:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳進福
研究生(外文):Chin-FuChen
論文名稱:低電壓操作有機互補式反相器之電特性研究
論文名稱(外文):Low-voltage operated organic complementary inverters
指導教授:周維揚周維揚引用關係
指導教授(外文):Wei-Yang Chou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:106
語文別:中文
論文頁數:86
中文關鍵詞:高介電常數氧化物有機薄膜電晶體有機互補式反相器
外文關鍵詞:high-k metal oxideorganic thin film transistorsorganic complementary inverters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為以氧電漿製作高介電常數氧化鋁介電層,並以不同高分子溶液以旋轉塗佈製程製作介電修飾層,將其應用在互補式反相器並探討其對元件電特性之影響。
在氧化鋁薄膜特性方面,利用掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)及化學分析電子光譜儀(ESCA)對其厚度、表面形貌、元素組成進行分析,最後應用在以PTCDI-C13H27為主動層之電晶體元件並驗證其對電性的影響。互補式反相器部分則由前述所得之最佳製程參數製作成互補式反相器並探討其在不同介電修飾層及不同濃度介電修飾層上對元件特性之影響。
首先,在掃描式電子顯微鏡及原子力顯微鏡分析部分,可知氧電漿在對鋁金屬表面進行氧化的同時也會產生些微蝕刻的效應,且所得之氧化鋁表面粗糙度約為5 nm,而在化學分析電子光譜儀分析部分,可知在氧電漿製程中通以6 sccm之氧氣通量時,表面氧原子與鋁原子的數目比最為接近氧化鋁的原子比例,在單型電晶體的電性表現上也會得到最大的輸出電流值。
再者,在不同修飾層對於互補式反相器的比較上,以C-PVP作為元件介電修飾層不論在訊號增益大小及切換電壓的位置上,都較以固含量3.6 %的PI-1溶液所製成的互補式反相器元件佳。最後,稀釋PI-1固含量可以在固含量為1.8 %的PI-1溶液所製成之互補式反相器上得到最接近理想的切換電壓值(誤差率1 %)、大於40的訊號增益及相對匹配的雜訊容限,在連續操作穩定性的分析部分,以3.6 %固含量PI-1所製成之互補式反相器在輸出電壓值的變化上則較其他濃度穩定。綜合以上,本論文成功以簡易製程實現低電壓操作互補式反相器並具有接近理想的切換電壓、高的電壓增益、匹配的雜訊容限及穩定的連續操作。
Organic thin film transistors (OTFTs) could be a promising candidate for the application in the future portable electronic products featuring low-voltage operation and eco-friendly. In this study, we demonstrated OTFTs with a polymer-modified high-k AlOx thin film as the dielectric through facile process. The AlO¬x thin film was prepared by oxygen plasma treatment, and with oxygen flux of 6 sccm during oxygen plasma treatment generates the best quality of AlOx thin film for OTFT applications. Furthermore, OTFTs modified by polyimide (PI) solution with different solid content in 1-Methyl-2-pyrrolidone (NMP) are investigated. The n-type and p-type OTFTs modified by PI solution of 1.8 % solid content lead to perfectly matched threshold voltages, comparable drain currents and high on/off ratios at the operation voltage of 3 V. Consequently, the complementary inverter assembled with those OTFTs obtains an ideal switching voltage, high noise margins, and a high signal gain by 40.
中文摘要 I
Extended Abstract III
誌謝 XI
目錄 XII
表目錄 XVI
圖目錄 XVII
第一章 簡介 1
1.1 有機半導體簡介 1
1.2 研究動機 3
第二章 有機薄膜電晶體概論 5
2.1 有機薄膜電晶體的基本結構與操作原理 5
2.1.1基本結構 5
2.1.2操作原理 5
2.2 有機半導體的傳輸機制 6
2.3 有機薄膜電晶體與互補式反相器的基本公式與特性 7
2.3.1 線性區與飽和區汲極電流 8
2.3.2 臨界電壓(threshold voltage, Vt) 8
2.3.3 次臨界擺幅(subthreshold swing, S.S.) 9
2.3.4 載子遷移率(mobility, μ) 9
2.3.5 電流開關比(on/off ratio) 9
2.3.6 切換電壓(switching voltage, Vs) 10
2.3.7 訊號增益(gain) 11
2.3.8 雜訊容限(noise margin, NMH/L) 11
第三章 實驗方法與分析儀器介紹 22
3.1 實驗材料 22
3.1.1 有機高分子修飾層材料 22
3.1.2 有機半導體材料 22
3.2 有機薄膜電晶體製程 23
3.2.1 清洗基板 23
3.2.2 蒸鍍閘極 24
3.2.3 高介電係數金屬氧化層 24
3.2.4 旋轉塗佈有機高分子介電修飾層 24
3.2.5 蒸鍍有機半導體層和電極 25
3.3 分析儀器 25
3.3.1 半導體參數分析儀 25
3.3.2 原子力顯微鏡(Atomic Force Microscopy,AFM) 27
3.3.3 化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis, ESCA) 27
3.3.4 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 28
第四章 實驗結果與討論 36
4.1 前言 36
4.2 實驗一:氧電漿製作金屬氧化層對薄膜電晶體之電特性影響 36
4.2.1 掃描式電子顯微鏡分析 36
4.2.2 原子力顯微鏡分析 37
4.2.3 電子光譜儀表面化學元素分析 37
4.2.4 電晶體電性分析 38
4.3 實驗二:不同介電修飾層對互補式反相器之電特性影響 39
4.3.1 單型元件電性分析 39
4.3.2 互補式反相器之元件特性分析 40
4.3.3 原子力顯微鏡分析 41
4.4 實驗三:不同固含量聚醯亞胺介電修飾層對互補式反相器之電特性影響 43
4.4.1 單型元件電性分析 43
4.4.2 電容分析 44
4.4.3 互補式反相器之元件特性分析 45
4.4.4 原子力顯微鏡分析 48
4.4.5 互補式反相器之元件操作耐久度分析 48
第五章 結論 80
5.1 實驗結論 80
5.2 未來工作 82
參考文獻 83
[1] E. Fortunato, “Oxide Semiconductor Thin-Film Transistors: A Review
of Recent Advances, Adv. Mater., 24, 2945, 2012.

[2] Juan L. A. Chilla, Hailong Zhou, “Blue and green optically pumped
semiconductor lasers for display, Proceedings of SPIE, 5740, 41, 2005.

[3] F. A. Kish, F. M. Steranka, D. C. DeFevere, “Very high‐efficiency semiconductor wafer‐bonded transparent‐substrate (AlxGa1−x)0.5In0.5P/GaP light‐emitting diodes, Appl. Phys. Lett., 64, 2839, 1994.

[4] Nikolay Zheludev, “The life and times of the LED — a 100-year history, Nature Photonics, 1, 189, 2007.

[5] J. Shewchun, “The operation of the semiconductor-insulator-semiconductor solar cell: Experiment, J. Appl. Phys., 50, 4, 1979.

[6] A. V. Shah, “Thin‐film silicon solar cell technology, Prog. Photovolt: Res. Appl., 12, 113, 2004.

[7] D. F. Barbe, C. R. Westgate, “Surface state parameters of metal-free phthalocyanine single crystals, J. Phys. Chem. Solids, 31, 2679, 1970.

[8] H. Koezuka, A. Tsumura, T. Ando, Synth, “Field-effect transistor with polythiophene thin film, Synth. Met., 18, 699, 1987.

[9] G. Horowitz, “Organic field-effect transistors, Adv. Mater., 10, 365, 1998.

[10] Wei-Yang Chou, Bo-Liang Yeh, Horng-Long Cheng, “Organic complementary inverters with polyimide films as the surface modification of dielectrics, Organic Electronics, 10, 1001, 2009.

[11] Congyan Lu, Zhuoyu Ji, Guangwei Xu, “Progress in flexible organic thin-film transistors and integrated circuits, Sci. Bull., 61, 1081, 2016.

[12] Yoshihide Fujisaki, “Transparent Nanopaper-Based Flexible Organic Thin-Film Transistor Array, Adv. Funct. Mater., 24, 1657, 2014.

[13] Veaceslav Coropceanu, “Charge Transport in Organic Semiconductors, Chem. Rev., 107, 926, 2007.

[14] Seungjun Chung, Seul Ong Kim, Soon-Ki Kwon, “All-Inkjet-Printed Organic Thin-Film Transistor Inverter on Flexible Plastic Substrate, IEEE Electron Device Lett., 32, 8, 2011.

[15] Sooji Nam, Yong Jin Jeong, Jaemin Jung, “Direct printing of soluble acene crystal stripes by a programmed dip-coating process for organic field-effect transistor applications, J. Mater. Chem. C, 6, 799, 2018.

[16] Yongbo Yuan, Gaurav Giri, Alexander L. Ayzner, “Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method, Nature Communications, 5, 3005, 2014.

[17] A. Chasin, V. Volskiy, M. Libois, K. Myny, M. Nag, M. Rockele,
G.A.E. Vandenbosch, J. Genoe, G. Gielen, P. Heremans, “An integrated a-IGZOUHF energy harvester for passive RFID tags, IEEE Trans. Electr. Dev. 61, 3289, 2014.

[18] N.K. Elumalai, A. Uddin, “Open circuit voltage of organic solar cells: an in-depth review, Energy Environ. Sci., 9, 391, 2016.

[19] N.K. Elumalai, M.A. Mahmud, D. Wang, A. Uddin, “Perovskite solar cells: progress and advancements, Energies, 9, 861, 2016.

[20] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347, 522, 2015.

[21] Ute Zschieschang, Vera Patricia Bader, “Below-one-volt organic thin-film transistors with large on/off current ratios, Organic Electronics, 49, 179, 2017.

[22] C. Liu, E.F. Chor, L.S. Tan, “Investigations of HfO2∕AlGaN∕GaN metal-oxide-semiconductor high electron mobility transistors, Appl. Phys. Lett., 88, 173504, 2006.

[23] X.H. Zhang, S.P. Tiwari, B. Kippelen, “Pentacene organic field-effect transistors with polymeric dielectric interfaces: Performance and stability, Org. Electron., 10, 1133, 2009.

[24] R. Chen, W. Zhou, M. Zhang, H.S. Kwok, “High performance self-aligned top-gate ZnO thin film transistors using sputtered Al2O3 gate dielectric, Thin Solid Films, 520, 6681, 2012.

[25] C. R. Newman, C. D. Frisbie, Demetrio A. da Silva Filho, Jean-Luc Bredas, P. C. Ewbank, Kent R. Mann, “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors, Chem. Mater., 16, 4436, 2004.

[26] Shuhei Tatemichi, Musubu Ichikawa, Toshiki Koyama, “High mobility -type thin-film transistors based on N, N’ ditridecyl perylene diimide
with thermal treatments, Appl. Phys. Lett., 89, 112108, 2006.

[27] Masatoshi Kitamura, “Low-voltage-operating complementary inverters with C60 and pentacene transistors on glass substrates, Appl. Phys. Lett., 91, 53505, 2007.

[28] 林益生, “以烷基駢苯衍生物作為主動層之有機薄膜電晶體, 國立成功大學碩士論文, 2008.

[29] Shuhei Tatemichi, Musubu Ichikawa, “Low-voltage, high-gain,
and high-mobility organic complementary inverters based on N,N’-ditridecyl-3,4,9,10-perylenetetracarboxylic diimide and pentacene, phys. stat. sol. (RRL) 2, 2, 47, 2008

[30] K.C. Smith, A.S. Sedra, Microelectronic Circuit, 4nd ed., Oxford, New York, 1998, p. 428.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top