跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:耿威廷
研究生(外文):AnkitAgarwal
論文名稱:具有金屬絕緣體半導體接面的無摻雜矽基奈米薄片場效電晶體的模擬研究
論文名稱(外文):A Simulation Study of Dopingless Si-Nanosheet FET with Metal-Insulator-Semiconductor Contacts
指導教授:高國興高國興引用關係
指導教授(外文):Kuo-Hsing Kao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米積體電路工程碩士學位學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:106
語文別:英文
論文頁數:66
外文關鍵詞:FinFETsGAA nanowiresSi-nanosheet FETDopinglessMIS contacts and MS contacts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The transistor size was well scaled by following Moore’s law for sub-20 nm and beyond with the introduction of FinFETs, which were the revolutionary upgrades for the manufacturers until they (FinFETs) started experiencing various issues at sub-10 nm and beyond. It was then the concept of Gate-All-Around (GAA) nanowire took over the attention of the semiconductor industry for sub-7 nm node and beyond. But soon the designers started facing the complex scaling issues and lithography limitations with FinFETs and GAA nanowires at sub-5 nm node and beyond. Moreover, effective width of GAA nanowires were also small which limited the drive currents. It was not later in mid of 2017, the researchers at IBM announced a breakthrough of successful fabrication of nanosheet FETs at sub-5 nm node and that it can solve the issues faced by FinFETs and nanowires enabling scaling even beyond sub-5 nm. Also, if proper EUV lithography is made available then nanosheets may aid in less complex patterning aiming suitable for sub-5 nm node completely replacing FinFETs.

In this thesis we show the how the electrical performance of nanosheet FETs can be enhanced. This is a simulation study using Synopsis Sentaurus TCAD. We simulated the dopingless Si-nanosheet FET with Metal Insulator Semiconductor (MIS) contacts at source and drain (SD). The simulation results are compared with doped Si-nanosheet FET with Metal Semiconductor (MS) contacts. It is shown that former has more prominent immunity to short-channel effects i.e., better subthreshold swing (SS), reduced threshold voltage roll-off, suppressed DIBL. Being undoped it has better immunity to problems caused by traditional doping (like random dopant fluctuation, thermal budget and mobility degradation), also using MIS contacts aids in Fermi level de-pinning and reduced parasitic resistance and induce free carriers at the SD thereby, increasing overall device performance.
Abstract I
誌謝 II
Contents III
Table captions V
Figure captions VI
Chapter Ⅰ Introduction 1
1-1 Moore's law and its Importance 1
1-2 Device Scaling 2
1-2-1 Ground Scaling law for multi-gate and stacked devices 3
1-3 Short Channel Effect 6
1-4 IBM Breakthrough 7
1-5 FinFET reaching scaling limits 7
1-6 Effective Width (Weff) 8
1-7 Intrinsic Performance 10
1-8 Inner Spacer option 13
1-9 Motivation 14
1-10 Organization of Thesis 14
Chapter Ⅱ Introduction to TCAD and S Device Models 15
2-1 Sentaurus TCAD 15
2-2 Features of Synopsys Sentaurus TCAD 16
2-2-1 Sentaurus Workbench (SWB) 16
2-2-2 Sentaurus Device Editor 16
2-2-3 S Device 17
2-2-4 Inspect 18
2-2-5 Sentaurus Visual 18
2-3 S Device Models used in Simulations 18
2-3-1 Fermi Statistics 19
2-3-2 Mobility Models 19
2-3-3 Band-to-Band Tunneling (BTBT) 20
2-3-4 Bandgap Narrowing Models 20
2-3-5 Non-local Meshing & Non-local Tunneling 21
2-3-6 Recombination Models 22
2-3-7 S Device Physics section 23
Chapter III Dopingless Si NSH-FET with MIS contacts 25
3-1 Issues related to traditional chemical doping 25
3-1-1 Random Dopant Fluctuation (RDF) 25
3-1-2 Thermal Budget (TB) 26
3-1-3 Mobility Degradation 26
3-2 Dopingless Devices 27
3-3 MS and MIS contacts 28
3-3-1 Issues related to Metal Semiconductor (MS) contacts 28
3-4 Previous work using MIS contacts 30
3-5 Dopingless Si NSH-FET with MIS contacts 37
3-6 Summary 38
Chapter IV Simulation Results and Discussion 39
4-1 Structure details simulated in SDE 39
4-1-1 Traditionally doped Si NSH-FET with MS-SD contacts 39
4-1-2 Sentaurus Device Editor 41
4-2 SDevice details 42
4-3 Results and Discussion 43
4-3-1 Transfer characteristics due to different Tb 44
4-3-2 Transfer characteristics due to different W 45
4-3-3 Transfer characteristics due to different Lch 46
4-3-4 Short-channel Effect (SCE) 47
Chapter V Conclusion and Future works 51
5-1 Conclusion 51
5-2 Future works 51
References 53
Appendix I SDE Command Lines 58
Appendix II SDevice Command Lines 62
Appendix III Parameter file used in simulations 65
Chapter I references

[1]G. Moore: Cramming more components onto integrated circuits. Electronics, 38, 114 (1965)
[2]R.R. Schaller, “Moore’s Law—Past, Present, and Future, IEEE Spectrum, June 1997, pp. 52-59
[3]Jean-Pierre Colinge, “FinFETs and other Multi-Gate Transistors, Chapter 1, Page 1, ISBN 978-0-387-71751-7.
[4]R.H. Dennard et al., “Design of ion-implanted MOSFETs with very small physical dimensions, IEEE Journal of Solid-State Circuits 9(5), pp. 256–268 (1974).
[5]Jean-Pierre Colinge, “FinFETs and other Multi-Gate Transistors, Chapter 2, Fig 2.2(b) & Fig 2.5, ISBN 978-0-387-71751-7.
[6]J. Kedzierski, D.M. Fried, E.J. Nowak, T. Kanarsky, J.H. Rankin, H. Hanafi, W. Natzle, D. Boyd, Y. Zhang, R.A. Roy, J. Newbury, C. Yu, Q. Yang, P. Saunders, C.P. Willets, A. Johnson, S.P. Cole, H. E. Young, N. Carpenter, D. Rakowski, B.A. Rainey, P.E. Cottrell, M. Ieong, H.-S. P. Wong: High-performance symmetric-gate and CMOS-compatible Vt asymmetric-gate FinFET devices. Technical Digest of IEDM, 437 (2001).
[7]K.G. Anil, K. Henson, S. Biesemans, N. Collaert: Short-channel effect in fully-depleted SOI MOSFET's. Proceedings of ESSDERC, 139 (2003).
[8]T. Ludwig, I. Aller, V. Gernhoefer, J. Keinert, E. Nowak, R.V. Joshi, A. Mueller, S. Tomaschko: FinFET technology for future microprocessors. Proceedings of IEEE International SOI Conference, 33 (2003).
[9]S.H. Kim, J.G. Fossum, V.P. Trivedi: Bulk Inversion in FinFETs and Implied Insights on Effective Gate Width. IEEE Transactions on Electron Devices 52-9, 1904 (2005).
[10]A. Razavieh et al. Scaling challenges of FinFET architecture below 40nm contacted gate pitch 2017 75th Annual Device Research Conference (DRC) pp. 1-2 2017.
[11]http://www.ispd.cc/slides/2016/3_1.pdf, slide 7.
[12]M. G. Bardon et al., Dimensioning for power and performance under 10 nm: The limits of FinFETs scaling, Proc. ICICDT, pp. 1-4, Jun. 2015.

[13]D. Jang et al., “Device Exploration of NSH Transistors for Sub-7-nm Technology Node, TED, pp. 2707, 2017.
[14]L.-Å. Ragnarsson et al., Zero-thickness multi work function solutions for N7 bulk FinFETs, Proc. Symp. VLSI Technol. (VLSIT), pp. 1-2, Jun. 2016.
[15]T. Skotnicki, F. Boeuf, “How can high-mobility channel materials boost or degrade performance in advanced CMOS, Proceedings VLSI Symposium, pp. 153–154 (2010).
[16]Jean-Pierre Colinge, James C. Greer - NW Transistors_ Physics of Devices and Materials in One Dimension (2016, Cambridge University Press), pp. 9, Fig 1.6.
[17]https://www.extremetech.com/computing/250424-ibm-announces-5nm-breakthrough-claims-silicon-NSH-technology-will-drive-future-performance-power-efficiency-improvements
[18]N. Loubet et al., “Stacked NSH gate-all-around transistor to enable scaling beyond FinFET, in VLSIT, 2017, pp. T230–T231.
[19]S. Natarajan et al. IEDM Tech. Dig pp. 71 2014.
[20]S.Y Wu et al. IEDM Tech. Dig pp. 9 2013.


Chapter II references

[1]https://www.synopsys.com/home.aspx
[2]Yung-Chun Wu, Yi-Ruei Jhan “3D TCAD Simulation for CMOS Nanoeletronic Devices, Springer Publications, ISBN 978-981-10-3065-9, Chapter 1.
[3]Sentaurus Device, Synopsys, Inc., Mountain View, CA, 2017.
[4]S.C Jain, et al., Solid-State Electron., 34, 453, 1991.
[5]J. Poortmans, et al., Solid-State Electron., 36, 1763, 1993.


Chapter III references

[1]K. Takeuchi, T. Fukai, T. Tsunomura, A. T. Putra, A. Nishida, S. Kamohara, and T. Hiramoto, “Understanding random threshold voltage fluctuation by comparing multiple fabs and technologies, in IEDM Tech. Dig., Dec. 2007, pp. 467–470.

[2]A. Asenov, “Simulation of statistical variability in nano MOSFETs, in IEEE Symp. VLSI Technol., Dig. Tech. Papers, Jun. 2007, pp. 86–87.
[3]C. Shin et al., “Study of Random-Dopant-Fluctuation (RDF) Effects for the Trigate Bulk MOSFET, IEEE Transactions on Electron Devices, Vol. 56, No. 7, pp.1538-1542, July 2009.
[4]G. Leung et al., “Variability Impact of Random Dopant Fluctuation on Nanoscale Junctionless FinFETs, IEEE Electron Device Letters, Vol. 33, No. 6, pp.767-769, June 2012.
[5]J. Regner, “An analytical approach to quantify the thermal budget in consideration of consecutive thermal process steps, 10th IEEE International Conference on Advanced Thermal Processing of Semiconductors, RTP 2002.
[6]P. M. Rousseau et al., “A model for mobility degradation in highly doped arsenic layers, IEEE Transactions on Electron Devices, Vol. 43, No. 11, pp.2025-2027, November 1996.
[7]G. Gupta et al., “Electrostatic Doping in Semiconductor Devices, IEEE Transactions on Electron Devices, Vol. 64, No. 8, pp.3044-3055, August 2017.
[8]S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. New York, NY, USA: Wiley, 2007.
[9]K.-H. Kao and L.-Y. Chen, “A dopingless FET with metal–insulator–semiconductor contacts, IEEE Electron Device Lett., vol. 38, no. 1, pp. 5–8, Jan. 2017, doi: 10.1109/LED.2016.2628414.
[10]J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky-Barrier MOSFET technology, IEEE Trans. Electron Devices, vol. 53, no. 5, pp.1048–1058, May 2006.
[11]B. Rajasekharan, R. J. E. Hueting, C. Salm, T. Van Hemert, R. A. M. Wolters, and J. Schmitz, “Fabrication and characterization of the charge-plasma diode, IEEE Electron Device Lett., vol. 31, no. 6, pp.528–530, Jun. 2010.
[12]M. J. Kumar and S. Janardhanan, “Doping-less tunnel field effect transistor: Design and investigation, IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3285–3290, Oct. 2013.
[13]C. Sahu and J. Singh, “Charge-plasma based process variation immune junctionless transistor, IEEE Electron Device Lett., vol. 35, no. 3, pp. 411–413, Mar. 2014.
[14]C. Sahu and J. Singh, “Potential benefits and sensitivity analysis of dopingless transistor for low power applications, IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 729–735, Mar. 2015.
[15] F. Bashir, S. A. Loan, M. Rafat, A. R. M. Alamoud, and S. A. Abbasi, “A high-performance source engineered charge plasma-based Schottky MOSFET on SOI, IEEE Trans. Electron Devices, vol. 62, no. 10, pp. 3357–3364, Oct. 2015.
[16]A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermilevel pinning and charge neutrality level in germanium, Appl. Phys. Lett., vol. 89, no. 25, p. 252110, 2006.
[17]D. Connelly, C. Faulkner, P. A. Clifton, and D. E. Grupp, “Fermi-level depinning for low-barrier Schottky source/drain transistors, Appl. Phys. Lett., vol. 88, no. 1, p. 012105, 2006.
[18]M. K. Husain, X. V. Li, and C. H. De Groot, “High quality Schottky contacts for limiting leakage currents in Ge based Schottky Barrier MOSFETs, IEEE Trans. Electron Devices, vol. 56, no. 3, pp. 499–504, Mar. 2009.
[19]V. Heine, “Theory of surface states, Phys. Rev., vol. 138, p. A1689, Jun. 1965.
[20]W. Mönch, Electronic Properties of Semiconductor Interfaces. New York, NY, USA: Springer, 2004.
[21]T. Nishimura, K. Kita, and A. Toriumi, “Evidence for strong Fermilevel pinning due to metal-induced gap states at metal/germanium interface, Appl. Phys. Lett., vol. 91, no. 12, p. 123123, 2007.
[22]M. Kobayashi, A. Kinoshita, K. Saraswat, H.-S. P. Wong, and Y. Nishi, “Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect transistor application, J. Appl. Phys., vol. 105, no. 2, p. 023702, 2009.
[23]A. M. Roy, J. Y. J. Lin, and K. C. Saraswat, “Specific contact resistivity of tunnel barrier contacts used for Fermi level depinning, IEEE Electron Device Lett., vol. 31, no. 10, pp. 1077–1079, Oct. 2010.
[24]A. Agrawal, J. Lin, M. Barth, R. White, B. Zheng, S. Chopra, S. Gupta, K. Wang, J. Gelatos, S. E. Mohney, and S. Data, “Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon metal-insulator-semiconductor ohmic contacts, Appl. Phys. Lett., vol. 104, no. 11, p. 112101, 2014.
[25]H. Yu, M. Schaekers, K. Barla, N. Horiguchi, N. Collaert, A. V.-Y. Thean, and K. De Meyer, “Contact resistivities of metal-insulator-semiconductor contacts and metal-semiconductor contacts, Appl. Phys. Lett., vol. 108, no. 17, p. 171602, 2016.
[26]J. Borrel, L. Hutin, O. Rozeau, M.-A. Jaud, S. Martinie, M. Gregoire, E. Dubois, and M. Vinet, “Modeling of Fermi-level pinning alleviation with MIS contacts: N and pMOSFETs cointegration considerations— Part I, IEEE Trans. Electron Devices, vol. 63, no. 9, pp. 3413–3418, Sep. 2016.
[27]Thomidis C., Barozzi M., Bersani M., Ioannou-Sougleridis V., Vouroutzis N. Z., Colombeau B., Skarlatos D., ECS Solid State Lett. 4, P47 (2015).
[28]Materials 2014, 7(4), 2913-2944
[29]Appl. Phys. Lett. 105, 182103 (2014)
[30]L.-Y. Chen, Y.-F. Hsieh, and K.-H. Kao, “Undoped and doped junctionless FETs: Source/drain contacts and immunity to random dopant fluctuation, IEEE Electron Device Lett., vol. 38, no. 6, pp. 708–711, Jun. 2017. doi: 10.1109/LED.2017.2690993.
[31]Y.-F. Hsieh et al., “An FET with a source tunneling barrier showing suppressed short-channel effects for low-power applications, IEEE Trans. Electron Devices, vol. 65, no. 3, pp. 855–859, Mar. 2018. doi: 10.1109/TED.2018.2791467.


Chapter IV references

[1]K.-H. Kao and L.-Y. Chen, “A dopingless FET with metal–insulator–semiconductor contacts, IEEE Electron Device Lett., vol. 38, no. 1, pp. 5–8, Jan. 2017, doi: 10.1109/LED.2016.2628414.
[2]K. E. Kroell and G. K. Ackermann, Solid-St. Electron. 19, 77 (1976).


Chapter V references

[1]S. M. Y. Sherazi, J. K. Chae, P. Debacker, L. Matti, D. Verkest, A. Mocuta, R. H. Kim, A. Spessot, A. Dounde, and J. Ryckaert CFET standard-cell design down to 3Track height for node 3nm and below, Proc. SPIE 10962, Design-Process-Technology Co-optimization for Manufacturability XIII, 1096206 (20 March 2019); https://doi.org/10.1117/12.2514571
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top