|
Chapter I references
[1]G. Moore: Cramming more components onto integrated circuits. Electronics, 38, 114 (1965) [2]R.R. Schaller, “Moore’s Law—Past, Present, and Future, IEEE Spectrum, June 1997, pp. 52-59 [3]Jean-Pierre Colinge, “FinFETs and other Multi-Gate Transistors, Chapter 1, Page 1, ISBN 978-0-387-71751-7. [4]R.H. Dennard et al., “Design of ion-implanted MOSFETs with very small physical dimensions, IEEE Journal of Solid-State Circuits 9(5), pp. 256–268 (1974). [5]Jean-Pierre Colinge, “FinFETs and other Multi-Gate Transistors, Chapter 2, Fig 2.2(b) & Fig 2.5, ISBN 978-0-387-71751-7. [6]J. Kedzierski, D.M. Fried, E.J. Nowak, T. Kanarsky, J.H. Rankin, H. Hanafi, W. Natzle, D. Boyd, Y. Zhang, R.A. Roy, J. Newbury, C. Yu, Q. Yang, P. Saunders, C.P. Willets, A. Johnson, S.P. Cole, H. E. Young, N. Carpenter, D. Rakowski, B.A. Rainey, P.E. Cottrell, M. Ieong, H.-S. P. Wong: High-performance symmetric-gate and CMOS-compatible Vt asymmetric-gate FinFET devices. Technical Digest of IEDM, 437 (2001). [7]K.G. Anil, K. Henson, S. Biesemans, N. Collaert: Short-channel effect in fully-depleted SOI MOSFET's. Proceedings of ESSDERC, 139 (2003). [8]T. Ludwig, I. Aller, V. Gernhoefer, J. Keinert, E. Nowak, R.V. Joshi, A. Mueller, S. Tomaschko: FinFET technology for future microprocessors. Proceedings of IEEE International SOI Conference, 33 (2003). [9]S.H. Kim, J.G. Fossum, V.P. Trivedi: Bulk Inversion in FinFETs and Implied Insights on Effective Gate Width. IEEE Transactions on Electron Devices 52-9, 1904 (2005). [10]A. Razavieh et al. Scaling challenges of FinFET architecture below 40nm contacted gate pitch 2017 75th Annual Device Research Conference (DRC) pp. 1-2 2017. [11]http://www.ispd.cc/slides/2016/3_1.pdf, slide 7. [12]M. G. Bardon et al., Dimensioning for power and performance under 10 nm: The limits of FinFETs scaling, Proc. ICICDT, pp. 1-4, Jun. 2015.
[13]D. Jang et al., “Device Exploration of NSH Transistors for Sub-7-nm Technology Node, TED, pp. 2707, 2017. [14]L.-Å. Ragnarsson et al., Zero-thickness multi work function solutions for N7 bulk FinFETs, Proc. Symp. VLSI Technol. (VLSIT), pp. 1-2, Jun. 2016. [15]T. Skotnicki, F. Boeuf, “How can high-mobility channel materials boost or degrade performance in advanced CMOS, Proceedings VLSI Symposium, pp. 153–154 (2010). [16]Jean-Pierre Colinge, James C. Greer - NW Transistors_ Physics of Devices and Materials in One Dimension (2016, Cambridge University Press), pp. 9, Fig 1.6. [17]https://www.extremetech.com/computing/250424-ibm-announces-5nm-breakthrough-claims-silicon-NSH-technology-will-drive-future-performance-power-efficiency-improvements [18]N. Loubet et al., “Stacked NSH gate-all-around transistor to enable scaling beyond FinFET, in VLSIT, 2017, pp. T230–T231. [19]S. Natarajan et al. IEDM Tech. Dig pp. 71 2014. [20]S.Y Wu et al. IEDM Tech. Dig pp. 9 2013.
Chapter II references
[1]https://www.synopsys.com/home.aspx [2]Yung-Chun Wu, Yi-Ruei Jhan “3D TCAD Simulation for CMOS Nanoeletronic Devices, Springer Publications, ISBN 978-981-10-3065-9, Chapter 1. [3]Sentaurus Device, Synopsys, Inc., Mountain View, CA, 2017. [4]S.C Jain, et al., Solid-State Electron., 34, 453, 1991. [5]J. Poortmans, et al., Solid-State Electron., 36, 1763, 1993.
Chapter III references
[1]K. Takeuchi, T. Fukai, T. Tsunomura, A. T. Putra, A. Nishida, S. Kamohara, and T. Hiramoto, “Understanding random threshold voltage fluctuation by comparing multiple fabs and technologies, in IEDM Tech. Dig., Dec. 2007, pp. 467–470.
[2]A. Asenov, “Simulation of statistical variability in nano MOSFETs, in IEEE Symp. VLSI Technol., Dig. Tech. Papers, Jun. 2007, pp. 86–87. [3]C. Shin et al., “Study of Random-Dopant-Fluctuation (RDF) Effects for the Trigate Bulk MOSFET, IEEE Transactions on Electron Devices, Vol. 56, No. 7, pp.1538-1542, July 2009. [4]G. Leung et al., “Variability Impact of Random Dopant Fluctuation on Nanoscale Junctionless FinFETs, IEEE Electron Device Letters, Vol. 33, No. 6, pp.767-769, June 2012. [5]J. Regner, “An analytical approach to quantify the thermal budget in consideration of consecutive thermal process steps, 10th IEEE International Conference on Advanced Thermal Processing of Semiconductors, RTP 2002. [6]P. M. Rousseau et al., “A model for mobility degradation in highly doped arsenic layers, IEEE Transactions on Electron Devices, Vol. 43, No. 11, pp.2025-2027, November 1996. [7]G. Gupta et al., “Electrostatic Doping in Semiconductor Devices, IEEE Transactions on Electron Devices, Vol. 64, No. 8, pp.3044-3055, August 2017. [8]S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. New York, NY, USA: Wiley, 2007. [9]K.-H. Kao and L.-Y. Chen, “A dopingless FET with metal–insulator–semiconductor contacts, IEEE Electron Device Lett., vol. 38, no. 1, pp. 5–8, Jan. 2017, doi: 10.1109/LED.2016.2628414. [10]J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky-Barrier MOSFET technology, IEEE Trans. Electron Devices, vol. 53, no. 5, pp.1048–1058, May 2006. [11]B. Rajasekharan, R. J. E. Hueting, C. Salm, T. Van Hemert, R. A. M. Wolters, and J. Schmitz, “Fabrication and characterization of the charge-plasma diode, IEEE Electron Device Lett., vol. 31, no. 6, pp.528–530, Jun. 2010. [12]M. J. Kumar and S. Janardhanan, “Doping-less tunnel field effect transistor: Design and investigation, IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3285–3290, Oct. 2013. [13]C. Sahu and J. Singh, “Charge-plasma based process variation immune junctionless transistor, IEEE Electron Device Lett., vol. 35, no. 3, pp. 411–413, Mar. 2014. [14]C. Sahu and J. Singh, “Potential benefits and sensitivity analysis of dopingless transistor for low power applications, IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 729–735, Mar. 2015. [15] F. Bashir, S. A. Loan, M. Rafat, A. R. M. Alamoud, and S. A. Abbasi, “A high-performance source engineered charge plasma-based Schottky MOSFET on SOI, IEEE Trans. Electron Devices, vol. 62, no. 10, pp. 3357–3364, Oct. 2015. [16]A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermilevel pinning and charge neutrality level in germanium, Appl. Phys. Lett., vol. 89, no. 25, p. 252110, 2006. [17]D. Connelly, C. Faulkner, P. A. Clifton, and D. E. Grupp, “Fermi-level depinning for low-barrier Schottky source/drain transistors, Appl. Phys. Lett., vol. 88, no. 1, p. 012105, 2006. [18]M. K. Husain, X. V. Li, and C. H. De Groot, “High quality Schottky contacts for limiting leakage currents in Ge based Schottky Barrier MOSFETs, IEEE Trans. Electron Devices, vol. 56, no. 3, pp. 499–504, Mar. 2009. [19]V. Heine, “Theory of surface states, Phys. Rev., vol. 138, p. A1689, Jun. 1965. [20]W. Mönch, Electronic Properties of Semiconductor Interfaces. New York, NY, USA: Springer, 2004. [21]T. Nishimura, K. Kita, and A. Toriumi, “Evidence for strong Fermilevel pinning due to metal-induced gap states at metal/germanium interface, Appl. Phys. Lett., vol. 91, no. 12, p. 123123, 2007. [22]M. Kobayashi, A. Kinoshita, K. Saraswat, H.-S. P. Wong, and Y. Nishi, “Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect transistor application, J. Appl. Phys., vol. 105, no. 2, p. 023702, 2009. [23]A. M. Roy, J. Y. J. Lin, and K. C. Saraswat, “Specific contact resistivity of tunnel barrier contacts used for Fermi level depinning, IEEE Electron Device Lett., vol. 31, no. 10, pp. 1077–1079, Oct. 2010. [24]A. Agrawal, J. Lin, M. Barth, R. White, B. Zheng, S. Chopra, S. Gupta, K. Wang, J. Gelatos, S. E. Mohney, and S. Data, “Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon metal-insulator-semiconductor ohmic contacts, Appl. Phys. Lett., vol. 104, no. 11, p. 112101, 2014. [25]H. Yu, M. Schaekers, K. Barla, N. Horiguchi, N. Collaert, A. V.-Y. Thean, and K. De Meyer, “Contact resistivities of metal-insulator-semiconductor contacts and metal-semiconductor contacts, Appl. Phys. Lett., vol. 108, no. 17, p. 171602, 2016. [26]J. Borrel, L. Hutin, O. Rozeau, M.-A. Jaud, S. Martinie, M. Gregoire, E. Dubois, and M. Vinet, “Modeling of Fermi-level pinning alleviation with MIS contacts: N and pMOSFETs cointegration considerations— Part I, IEEE Trans. Electron Devices, vol. 63, no. 9, pp. 3413–3418, Sep. 2016. [27]Thomidis C., Barozzi M., Bersani M., Ioannou-Sougleridis V., Vouroutzis N. Z., Colombeau B., Skarlatos D., ECS Solid State Lett. 4, P47 (2015). [28]Materials 2014, 7(4), 2913-2944 [29]Appl. Phys. Lett. 105, 182103 (2014) [30]L.-Y. Chen, Y.-F. Hsieh, and K.-H. Kao, “Undoped and doped junctionless FETs: Source/drain contacts and immunity to random dopant fluctuation, IEEE Electron Device Lett., vol. 38, no. 6, pp. 708–711, Jun. 2017. doi: 10.1109/LED.2017.2690993. [31]Y.-F. Hsieh et al., “An FET with a source tunneling barrier showing suppressed short-channel effects for low-power applications, IEEE Trans. Electron Devices, vol. 65, no. 3, pp. 855–859, Mar. 2018. doi: 10.1109/TED.2018.2791467.
Chapter IV references
[1]K.-H. Kao and L.-Y. Chen, “A dopingless FET with metal–insulator–semiconductor contacts, IEEE Electron Device Lett., vol. 38, no. 1, pp. 5–8, Jan. 2017, doi: 10.1109/LED.2016.2628414. [2]K. E. Kroell and G. K. Ackermann, Solid-St. Electron. 19, 77 (1976).
Chapter V references
[1]S. M. Y. Sherazi, J. K. Chae, P. Debacker, L. Matti, D. Verkest, A. Mocuta, R. H. Kim, A. Spessot, A. Dounde, and J. Ryckaert CFET standard-cell design down to 3Track height for node 3nm and below, Proc. SPIE 10962, Design-Process-Technology Co-optimization for Manufacturability XIII, 1096206 (20 March 2019); https://doi.org/10.1117/12.2514571
|