跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 09:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建佑
研究生(外文):CHEN,JIAN-YOU
論文名稱:二氰基亞甲基取代吲哚-2-酮衍生物之N型有機場效電 晶體
論文名稱(外文):Dicyanomethylene Substituted Indol-2-one Derivatives for N-channel Organic Field Effect Transistors
指導教授:郭明裕郭明裕引用關係
指導教授(外文):Ming-Yu Kuo
口試委員:吳景雲朱智謙
口試委員(外文):Jing-Yun WuChih-Chien Chu
口試日期:2017-10-31
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:103
中文關鍵詞:有機場效電晶體二氰基亞甲基取代吲哚-2-酮自組裝單層
外文關鍵詞:OFETsDicyanomethylene Substituted Indol-2-oneSelf-assembly monolayer (SAM)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機場效電晶體已經應用在許多電子設備上,像是傳感器、顯示器和電子紙,目前,有機半導體材料一直在創新與進步,但是N-type的有機半導體材料效能仍落後於P-type,尤其是在空氣中不穩定性方面。本實驗以二氰基亞甲基取代吲哚-2-酮衍生物(Dicyanomethylene Substituted Indol-2-one Derivatives,DCMI)為有機半導體材料,它的優點在於結構具有對稱性及 π 共軛系統,可以增強電子的跳躍範圍和分子間的相互作用力,以提高載子遷移率,而給體-受體(Donor-acceptor,D-A)型的共軛分子是目前研究的一個重要方向,可降低分子的能隙;化合物具有較低的LUMO能階(< -3.8 eV),是個在空氣中穩定的N-type有機半導體材料。
利用CV電化學及UV-Vis 的光學特性來得之其能階及吸收範圍,化合物 DCMI -C8在波長415 nm和562 nm , DCMI-NC8在 386 nm和556 nm, DCMI-N2C8在367 nm 和562 nm有寬廣及明顯的吸收峰,而最大的吸收位置分別是在 681 nm、670 nm和657 nm, 而能隙分別是1.82 eV、1.85 eV和1.88 eV,再利用CV伏安儀計算化合物 DCMI-C8、 DCMI-NC8、 DCMI-N2C8分子的LUMO能階為-4.02 eV、-4.11 eV和-4.16 eV,表示這材料是具有空氣穩定性的N-type材料。
為了探討二氰基亞甲基取代吲哚-2-酮衍生物的傳遞效率,我們使用下閘極/上接觸式的元件結構,再以蒸鍍的方式將有機材料沈積在表面,而 DCMI-N2C8以ODTS為修飾層,而可得最佳的載子遷移率為5.91 x 10-2 cm2/Vs。

Organic field-effect transistors (OFETs) have been attracted much attention inrecent decades owing to their potential application in numerous electronic devices, such as sensors, displays, and electronic papers. Currently, numerous progress in organic semiconductors (OSCs) has been made; however, the overall development of n-type OSCs still lags behind their p-type counterparts, especially in terms of charge transfer performance, ambient stability.
In this study, we use Dicyanomethylene Substituted Indol-2-one Derivatives (DCMI) as OSCs. Its advantage lies in the symmetry of the structure and π conjugation system, which can enhance the jump range of electrons and the interaction between molecules to improve the charge carrier mobility, and donor-acceptor (D-A) type. The conjugate molecule is an important direction in the present study, which can reduce the energy gap of the molecule. The compound has a low LUMO energy level (<-4.0 eV), which is a stable N-type organic semiconductor material in the air.
The use of CV electrochemical and UV-Vis optical properties to get its energy level and absorption range. The Uv-vis absorption spectrum of DCMI-C8 strong absorption between 415 nm and 562 nm, DCMI-NC8 at 386 nm and 556 nm, DCMI-N2C8 have broad and obvious absorption peaks at 367 nm and 562 nm, and the absorption maximum sites are respectively at 681 nm, 670 nm and 657 nm While the energy gap is 1.82 eV, 1.89 eV and 1.88 eV, and then use of CV the LUMO energy levels of the DCMI-C8、 DCMI-NC8、 DCMI-N2C8 molecules were calculated to be -4.02 eV, -4.11 eV and -4.16 eV, respectively indicating new material were favorable for efficient electron injection and also beneficial for air-stable n-type OFET.
In order to investigate the charge transport properties of DCMI Derivatives, by fabricating field-effect in a bottom-gate/top-contact architectures. The thin films were thermally deposited on ODTS modified Si/SiO2 substrates, and then vacuum deposited to afford OFET devices.The excellent field-effect properites were observed in DCMI-N2C8 based devices fabricated at the substrate temperaturs(Ts) of 65°C. It exhibited high performance with electron mobility up to 5.91 x 10-2 cm2/Vs.

謝誌 i
摘要 ii
Abstract iii
目次 ⅴ
表目次 ⅷ
圖目次 iⅹ
第一章 序論 1
1-1前言 1
1-2半導體概論 4
1-3有機場效電晶體簡介 6
1-3.1有機場效電晶體元件結構 6
1-3.2有機場效電晶體運作原理 9
1-3.3 N型及P型有機場效電晶體之傳輸原理 10
1-3.4載子傳導機制 11
1-3.5有機場效電晶體元件參數計算 14
1-4有機半導體材料簡介 17
1-4.1分子排列 17
1-4.2 P-type有機半導體材料 21
1-4.3 N-type有機半導體材料 25
1-5 元件接觸面修飾 29
1-6元件製程技術 30
1-6.1物理氣相沉積 30
1.6-2液相製成 31
1-7 N-type分子設計概論 33
1-7.1影響傳遞效率的因素 33
1-7.2研究動機 35
第二章 實驗過程 37
2-1實驗用藥品 37
2-2量測儀器 38
2-3元件製備 42
2-3.1清洗矽晶片 42
2-3.2氧電漿清洗 42
2-3.3製作自組裝單層薄膜 43
2-3.4真空蒸鍍有機半導體材料 44
2-3.5真空蒸鍍金屬電極 44
2-4 材料合成步驟 45
2-4.1合成流程 45
2-4.2 Scheme Molecular之合成步驟流程 46
第三章 結果與討論 53
3-1理論計算與單晶排列探討 53
3-2熱穩定性探討 60
3-3 CV電化學性質探討 64
3-4 UV-Vis吸收光譜探討 66
3-5分子薄膜型態與元件效率探討 69
3-5.1元件電性量測 69
3-5.2元件表面薄膜AFM探討 79
3-5.3元件表面薄膜XRD探討 91
第四章 結論 98
參考文獻 99
附錄 103

[1a] Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc. Chem. Commun.1977, 16, 578-580.
[1b] Tsumura, A.; Koezuka, H.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210-1212.
[2] Huitema, H. E. A.; Gelinck, G. H.; Kuijk, K. E.; Hart, C. M. E.; Nature 2001, 414, 599-603.
[3] Voss, D. Nature 2000, 407, 442-447.
[4] Chen, Y.; Au, J.; Kazlas, P.; Ritenour, A.; Gates, H.; McCreary, M. Nature 2003, 423, 136-143.
[5] Braga, D.; Horowitz, G. Adv. Mater. 2009, 21, 1473–1486.
[6] De Boer, R. W. I.; Klapwijk, T. M.; Morpurgo, A. F. Appl. Phys. Lett. 2003, 83, 4345-4347.
[7] De Boer, R. W. I.; Gershenson, M. E.; Morpurgo, A. F.; Podzorov, V. Phys. Status. Solidi A. 2004, 201, 1302–1331.
[8] Sundar, V. C.; Zaumseil, J.; Podzorov,V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Science. 2004 303, 1644–1646.
[9] Mas-Torrent, M.; Durkut, M.; Hadley, P.; Ribas, X.; Rovira, C. J. Am. Chem. Soc. 2004, 126, 984–985.
[10] Mas-Torrent, M.; Hadley, Bromley, P.; S. T.; Ribas, X.; Tarrés, J.; Mas, M.; Molins, E.; Veciana, J.; Rovira, C. J. Am. Chem. Soc. 2004, 126, 8546–8553.
[11] Mas-Torrent, M.; Hadley, P.; Bromley, S. T.; Crivillers, N.; Veciana, J.; Rovira, C. Appl. Phys. Lett. 2005, 86, 121101-121103.
[12] Briseno, A. L.; Mannsfeld, S. C. B.; Xiong, X.; Lu, Y.; Jenekhe, S. A.; Bao, Z.; Xia, Y. Nano Lett. 2007, 7, 668–675.
[13] Kim, D. H.; Lee, D. Y.; Lee, H. S.; Lee, W. H.; Kim, Y. H.; Han, J. I.; Cho, K. I. Adv. Mater. 2007, 19, 678–682.
[14] Molinari, S.; Alves, H.; Chen, Z.; Facchetti, A.; Morpurgo, A. F. J. Am. Chem. Soc. 2009, 131, 2462–2463.
[15] Braga, D.; Horowitz, G. Adv. Mater. 2009, 21, 1473–1486.
[16] Newman, C. R.; Frisbie, C. D.; Da Silva Filho, D. A.; Bre´das, J. L.; Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436–4451.
[17] Battaglia, R. M. Chem. Phys. Lett. 1981, 78, 421–423.
[18] Brédas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971-5004.
[19] Coropceanu, V.; Cornil, J.; Da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Chem. Rev. 2007, 107, 926-952.
[20] Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W. Adv. Mater. 2013, 25, 6158–6183.
[21] Molinari, S.; Alves, H.; Chen, Z.; Facchetti, A.; Morpurgo, A. F. J. Am. Chem. Soc. 2009, 131, 2462–2463.
[22] http://www.agc.com/kagaku/shinsei/cytop/jian/about.html
[23] Aleshin, N.; Lee, J. Y.; Chu, S. W.; Kim, J. S.; Park, Y. W. Appl. Phys. Lett. 2004, 84, 5383-5388.
[24] Hajlaoui, M. E.; Garnier, F.; Hassine, L.; Kouki, Bouchriha, F.; H. Synth. Met. 2002, 129, 213-218.
[25] Reese, C.; Chung, W. J.; Ling, M. M.; Roberts, M.; Bao, Z. Appl. Phys. Lett. 2006, 89, 202104- 202108.
[26] Ganrnier, F. Synth. Met. 1992, 51, 419-424.
[27] Gundlach, D. J.; Lin, Y. Y.; Jackson, T. N.; Nelson, S. F.; Schlom, D. G. IEEE Electron Device Let. 1997, 18, 87-89.
[28] Jurchescu, D.; Popinciuc, M.; Van Wees, B. J.; Palstra, T. T. M. Adv. Mater. 2007, 19, 688-692.
[29] Watanabe, M.; Chang, Y. J.; Liu, S. W.; Chao, T. H.; Goto, K.; IslamMd, M.; Yuan, C. H.; Tao, Y. T.; Shinmyozu, T.; Chow, T. J. Nat. Chem. 2012, 4, 574-578.
[30] Mondal, R.; Shah, B. K.; Neckers, D. C. J. Am. Chem. Soc. 2006, 128 , 9612-9613 .
[31] Sundar, V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Science. 2004, 303, 1644-1646.
[32] Kim, D. H.; Lee, D. Y.; Lee, H. S.; Lee, W. H.; Kim, Y. H.; Han, J. I.; Cho, K. Adv. Mater. 2007, 19, 678-683.
[33] Park, S. K.; Jackson, T. N.; Anthony, J. E.; Mourey, D. A. Appl. Phys. Lett. 2007, 91, 635141-635144.
[34] Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Nature. 2011, 475, 364-367.
[35] Kang, M. J.; Doi, I.; Mori, H.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H. Adv. Mater. 2011, 23, 1222–1225.
[36] Nakayama, K.; Hirose, Y.; Soeda, J.; Yoshizumi, M.; Uemura, T.; Uno, M.; Li, W.; Kang, M. J.; Yamagishi, M.; Okada, Y.; Miyazaki, E.; Nakazawa, Y.; Nakao, A.; Takimiya, K. J. Adv. Mater. 2011, 23, 1626-1629.
[37] DeLeeuw, D. M.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F.; Synth. Met. 1997, 87, 53-59.
[38] Bao, Z.; Lovinger, A. J.; Brown, J. J. Am.Chem. Soc. 1998, 120, 207-208.
[39] Usta, H.; Facchetti, A.; Marks, T. J. Acc. Chem. Res. 2011, 44, 501−510.
[40] Jones, B. A.; Facchetti, A.; Wasielewski, M. R.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 15259−15278.
[41] Newman, C. R.; Frisbie, C. D.; Da Silva Filho, D. A.; Br Das, J. L.; Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436−4451
[42] Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112. 2208-2267.
[43] Wurthner, F.; Stolte, M. Chem. Commun. 2011 , 47, 5109-5115 .
[44] Bhosale, S. V.; Bhosale, S. V.; Bhargava, S. K. Org Biomol Chem. 2012, 10, 6455-6468.
[45] Shukla, D.; Nelson, S. F.; Freeman, D. C.; Rajeswaran, M.; Ahearn, W. G.; Meyer, D. M.; Carey, J. T.; Chem. Mater. 2008, 20, 7486-7491.
[46] Oh, J. H.; Suraru, S. L.; Lee, W. Y.; Konemann, M.; Hoffken, H. W.; Roger, C.; Schmidt, R.; Chung, Y.; Chen, W. C.; Wurthner, F.; Bao, Z. N. Adv. Funct. Mater. 2010, 20, 2148-2156.
[47] Stolte, M.; Gsanger, M.; Hofmockel, R.; Suraru, S. L.; Wurthner, F. Chem. Phys. 2012, 14, 14181- 14188.
[48] He, T.; Stolte, M.; Würthner, F. Adv. Mater. 2013, 25, 6951–6955.
[49] Horowitz, G.; Kouki, F.; Spearman, P.; Fichou, D.; Nogues, C.; Pan, X.; Garnier, F.; Adv. Mater. 1996, 8, 242-255.
[50] Chesterfield, R. J.; McKeen, J. C.; Newman, C. R.; Ewbank, P. C.; Da Silva, D. A.; Bredas, J. L.; Miller, L. L.; Mann, K. R.; Frisbie, C. D. J. Phys. Chem. B. 2004, 108, 19281-19292.
[51] Schmidt, R.; Oh, J. H.; Sun, Y. S.; Deppisch, M.; Krause, A. M.; Radacki, K.; Braunschweig, H.; Konemann, M.; Erk, P.; Bao, Z.; Wurthner, F. J. Am. Chem. Soc. 2009, 131, 6215-6228.
[52] Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W. Adv. Mater. 2013, 25, 6158-6183.
[53] Wang, Y.; Lieberman, M. Langmuir.2003, 19, 1159-1167.
[54] Zhao, Y.; Guo, Y.; Liu, Y. Adv. Mater. 2013, 25, 5373-5380.
[55] Quinton, C.; Marder, S. R. Phys. Chem. Chem. Phys., 2014, 16, 19345-19350.
[56] Ashizawa, M.; Matsumoto, H. RSC adv. 2016, 6, 109434-109441.
[57] Ashizawa, M.; Mori, T. Organic Electronics .2016, 35, 95-100.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top