跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 15:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏豪
研究生(外文):Chen, Bo-Hao
論文名稱:以具雙質量車輛模型識別橋梁頻率與頻譜分析
論文名稱(外文):Two-Mass Vehicle Model for Extracting Bridge Frequencies and Spectral Analysis
指導教授:楊子儀楊子儀引用關係
指導教授(外文):Yang, Judy P.
口試委員:黃炯憲林子剛楊子儀
口試委員(外文):Huang, Chiung-ShiannLin, Tzu-KangYang, Judy P.
口試日期:2017-8-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:158
中文關鍵詞:車橋互制簧下質量有限元素法希爾伯特-黃轉換
外文關鍵詞:Vehicle-bridge interaction (VBI)Unsprung massFinite element methodHilbert-Huang transform (HHT)
相關次數:
  • 被引用被引用:4
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
在對於橋梁健康狀態進行評估與檢測時,橋梁頻率為其中一個重要參數,傳統上量測橋梁頻率的主要方法是透過直接量測法,即將數個感應器安裝於橋梁,透過量測橋梁各點之動態反應以計算橋梁頻率。有鑑於直接量測法費時費力,近二十年發展出間接量測法,透過車橋互制之理論,從量測車得到橋梁之反應。在車橋互制模型中,傳統之車輛模行僅考慮單一質量以代表整輛量測車,然量測車之簧下質量乃實際接觸地面之質量,故本研究提出具雙質量之車輛模型,以忠實反應橋梁之動力行為。在數值分析中,考慮橋梁鋪面粗糙度存在之情況,進一步探討簧下質量對於橋頻識別之影響,以期做為未來量測車設計與選用之參考;在頻譜分析部分,除了以傳統的FFT(fast Fourier transform)頻譜進行橋梁峰值識別外,亦使用HHT(Hilbert-Huang transform)處理頻譜訊號,以比較兩者對於擷取橋頻之差異與可行性,另外進一步將訊號以平均方式處理,以將粗糙度所造成之雜訊影響降低,提高橋頻之識別。
To assess or monitor the health of bridges, the most important parameter is the bridge frequency. Traditionally, the direct approach is the main way to measure bridge frequencies, which relies the installation of several sensors on a bridge and calculates bridge frequencies by measuring dynamic responses obtained at sensor locations. Since the direct approach wastes time and manpower, the indirect approach was proposed and developed over the past twenty years. Through the theory of vehicle-bridge interaction (VBI), the bridge responses can be obtained from the dynamic responses of the test vehicle. In the model of VBI, the entire test vehicle is simulated as a single mass conventionally. However, the unsprung mass of the test vehicle is the actual component in direct contact with the ground. As such, a two-mass vehicle model is proposed to truly reflect the dynamic behavior of the bridge in this study. In the numerical analysis, for the bridge pavement subject to roughness condition, the effects of unsprung mass on the identification of bridge frequencies is investigated, which serves as a reference in designing the test vehicle in the future. Concerning the spectral analysis, both FFT(fast Fourier transform) and HHT(Hilbert-Huang transform) are applied to process the spectrum signals. The difference between the two methods and the feasibility of the methods are discussed. Furthermore, the signals are processed by averaging to reduce the effect of road surface roughness and enhance the identification of bridge frequencies.
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 序論 1
1.1 研究動機與目的 1
1.2 文獻回顧 1
1.3 論文架構 5
第二章 車輛模型與橋梁頻率識別 6
2.1 單一質量車輛模型 6
2.2 雙質量車輛模型 9
2.3 鋪面粗糙度之模擬 11
2.4 Newmark-β法 14
2.5 數值結果與比較 16
2.5.1 例題驗證 16
2.5.2 簧下質量對於橋梁頻率識別之影響 19
2.5.3 鋪面粗糙度對於橋梁頻率識別之影響 24
2.5.4 量測車阻尼對於橋梁頻率識別之影響 30
第三章 頻譜分析 38
3.1 希爾伯特-黃轉換 39
3.1.1 總體經驗模態分解法 40
3.1.2 希爾伯特轉換 41
3.1.3 希爾伯特頻譜 42
3.2 數值結果與比較 43
3.2.1 FFT頻譜分析 44
3.2.2 HHT頻譜分析 52
3.2.3 多組訊號平均之FFT頻譜 117
第四章 結論與未來展望 121
4.1 結論 121
4.2 研究改善與未來展望 122
參考文獻 125
附錄一 129
附錄二 130
[1] Yang, Y. B., Lin, C. W., Yau, J. D., “Extracting bridge frequencies from the dynamic response of a passing vehicle,” Journal of Sound and Vibration, 272(3), pp. 471-493, 2004.
[2] Siringoringo, D. M. and Fujino, Y., “Estimating bridge fundamental frequency from vibration response of instrumented passing vehicle: analytical and experimental study,” Advances in Structural Engineering, 15(3), pp. 417-433, 2012.
[3] 陳上有 and 夏禾, “從過橋車輛響應中識別橋梁結構基本自振頻率的方法,” 工程力学, 8, pp. 88-94, 2009.
[4] Liu, X. W., Xie, J., Wu, C., Huang, X. C., “Semi-analytical solution of vehicle–bridge interaction on transient jump of wheel,” Engineering Structures, 30(9), pp. 2401-2412, 2008.
[5] Chang, K. C., Wu, F. B., Yang, Y. B., “Disk model for wheels moving over highway bridges with rough surfaces,” Journal of Sound and Vibration, 330(20), pp. 4930-4944, 2011.
[6] Yang, Y. B. and Chang, K. C., “Extraction of bridge frequencies from the dynamic response of a passing vehicle enhanced by the EMD technique,” Journal of sound and vibration, 322(4), pp. 718-739, 2009.
[7] Yang, Y. B., Chang, K. C., Li, Y. C., “Filtering techniques for extracting bridge frequencies from a test vehicle moving over the bridge,” Engineering Structures, 48, pp. 353-362, 2013.
[8] Yang, Y. B. and Chen, W. F., “Extraction of bridge frequencies from a moving test vehicle by stochastic subspace identification,” Journal of Bridge Engineering, 21(3), 04015053, 2016.
[9] Nguyen, K. V. and Tran, H. T., “Multi-cracks detection of a beam-like structure based on the on-vehicle vibration signal and wavelet analysis,” Journal of Sound and Vibration, 329(21), pp. 4455-4465, 2010.
[10] Yau, J. D., Yang, J. P., Yang, Y. B., “Wave number-based technique for detecting slope discontinuity in simple beams using moving test vehicle,” International Journal of Structural Stability and Dynamics, 1750060, 2017.
[11] Yang, Y. B., Li, Y. C., Chang, K. C., “Constructing the mode shapes of a bridge from a passing vehicle: a theoretical study,” Smart Structures and Systems, 13(5), pp. 797-819, 2014.
[12] 李唯鈞,「以EMD識別橋梁基本振動頻率並探討移動車輛阻尼、質量、速度之影響」,國立交通大學,碩士論文,民國 105 年。
[13] Yang J. P., Lee W. C., “Damping Effect of a Passing Vehicle for Indirectly Measuring Bridge Frequencies by EMD Technique,” International Journal of Structural Stability and Dynamics, 18(1), pp. 1850008, 2018.
[14] Chang, K. C., Wu, F. B., Yang, Y. B., “Effect of road surface roughness on indirect approach for measuring bridge frequencies from a passing vehicle,” Interact. Multiscale Mech., 3, pp. 299-308, 2010.
[15] ISO 8608, Mechanical vibration – Road surface profiles – Reporting of measured data, International Organization for Standardization (ISO), 1995.
[16] Yang, Y. B., Li, Y. C., Chang, K. C., “Effect of road surface roughness on the response of a moving vehicle for identification of bridge frequencies,” Interaction and Multiscale Mechanics, 5, pp. 347-368, 2012.
[17] Biggs, J. M., Introduction to structural dynamics, New York: McGraw-Hill, 1964.
[18] Yang, Y. B., Yau, J. D., Wu, Y. S., Vehicle-Bridge Interaction Dynamics with Applications to High-Speed Railways, Singapore: World Scientific, 2004.
[19] Turkay, S. and Akcay, H., “A study of random vibration characteristics of the quarter-car model,” Journal of Sound and Vibration, 282, pp. 111-124, 2005.
[20] Gobbi, M., Levi, F. and Mastinu, G., “Multi-objective stochastic optimisation of the suspension system of road vehicles,” Journal of Sound and Vibration, 298, pp. 1055-1072, 2006.
[21] Lin, C. W., Yang, Y. B., “Use of a passing vehicle to scan the fundamental bridge frequencies: An experimental verification,” Engineering Structures, 27, pp. 1865-1878, 2005.
[22] Yang, Y. B., Li, Y. C., Chang, K. C., “Effect of road surface roughness on the response of a moving vehicle for identification of bridge frequencies,” Interaction and Multiscale Mechanics, 5, pp. 347-368, 2012.
[23] Yang, Y. B., Yau, J. D., “Vehicle-bridge interaction element for dynamic analysis,” Journal of Structural Engineering, 123(11), pp. 1512-1518., 1997.
[24] Aisopoulos, P. J., “Suspension system,” Erasmus LLP Intensive Programme, 2011.
[25] Giaraffa, M., "Tech Tip: Springs & Dampers, Part Three," 2012. (http://www.optimumg.com/docs/Springs%26Dampers_Tech_Tip_3.pdf)
[26] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., Liu, H. H., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 454, No. 1971, pp. 903-995, The Royal Society, 1998.
[27] Wu, Z. and Huang, N. E., "Ensemble empirical mode decomposition: a noise-assisted data analysis method," Advances in adaptive data analysis, 1.01, pp.1-41, 2009.
[28] Wu, Z. and Huang, N. E., "A study of the characteristics of white noise using the empirical mode decomposition method," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 460, No. 2046, pp. 1597-1611 The Royal Society, 2004.
[29] 蘇聖中,「結構物強震觀測資料之「希爾伯特-黃」結構健康診斷方法; The Hilbert-Huang Transformation Structural Health Monitoring Method for Structure Strong Motion Records」,國立中央大學,博士論文,民國104年。
[30] Yang, Y. B., Chang, C. H., Yau, J. D., “An element for analysing vehicle-bridge systems considering vehicle's pitching effect,” International Journal for Numerical Methods in Engineering, 46(7), pp. 1031-1047, 1999.
[31] Liu, X. W., Xie, J., Wu, C., Huang, X. C., “Semi-analytical solution of vehicle–bridge interaction on transient jump of wheel,” Engineering Structures, 30(9), pp. 2401-2412, 2008.
[32] Yang J. P., Chen B. H., “Two-Mass Vehicle Model for Extracting Bridge Frequencies,” Int. J. Struct. Stab. Dyn., Accepted.
[33] 蔡協展,「應用希爾伯特-黃轉換之橋柱受沖刷之安全性實驗研究」,國立交通大學,碩士論文,民國 104 年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊