跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳國禎
研究生(外文):Chen, Guo-Zhen
論文名稱:應用粒子群演算法與搜尋策略於剪力構架之結構勁度參數修正
論文名稱(外文):Applying Particle Swarm Optimization and Searching Strategy Approach in Structural Stiffness Parameter Updating
指導教授:洪士林洪士林引用關係
指導教授(外文):Hung, Shih-Lin
口試委員:洪士林黃炯憲詹君治
口試委員(外文):Hung, Shih-LinHaung, Chiung-ShiannJan, Jiun-Chi
口試日期:2018-1-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:90
中文關鍵詞:模型修正最佳化問題粒子群優化演算法不完全量測破壞位置檢測
外文關鍵詞:Model UpdatingOptimizationParticle Swarm OptimizationIncomplete MeasurementStructural Damage Detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用結構自然頻率及模態振型推導之具有物理意義之目標函數,在各樓層質量已知且固定,亦不考慮阻尼影響之假設條件下,針對不完全量測情況之剪力構架進行結構勁度參數識別,求解過程中不需反覆求解特徵值問題及模態參數比對,從而減少計算量,本研究之目的即為探討此目標函數之可行性與使用限制。方法流程先對振型單純之第一模態進行三次方雲線擬合,產生近似之完整振型,搭配已知質量快速推算出一組初始之各樓層參考勁度,以此勁度組合作為輔助選擇適當之演算法搜尋範圍,最後應用所推導之目標函數與粒子群演算法來求取最佳解。演算法中亦加入些許搜尋策略,以平衡收斂速度並避開陷入局部最佳解之問題。本研究將以一6層樓的剪力構架數值案例來進行測試方法之準確性與可行性,並探討雜訊對此目標函數識別勁度結果之影響。測試結果顯示,當自然頻率與模態振型足夠正確時,可以準確識別出各個案例之勁度參數。另外為了測試方法對破壞位置檢測之效能,再以6層樓之勁度折減數值案例,及兩組實驗模型(3層樓剪力構架與8層樓鋼構架振動台試驗)來進行測試。測試結果顯示,本研究方法在藉由比較健康結構與破壞或加勁結構之勁度差異,可檢測出結構主要勁度改變之位置。
  This work propose an approach that uses structure’s natural frequency and mode shape to derive an objective function, which is for identifying structural stiffness parameters of shear building model from measured incomplete modal data. This study assumes that the mass matrix is known and unchanged and no damping effect. This objective function retains the physical meaning of structural system and also reduce the computation by avoiding eigenvalue analysis and modal parameters comparing process. The aim of this work is to analyze the stiffness parameters from measured incomplete modal data also to test the feasibility and the working limitation of the objective function. It’s started with using cubic spline interpolation and the first mode shape to generate an approximately complete mode shape. In the next step, one set of reference stiffness is calculated by approximately mode shape and mass, and used to determine the appropriate searching range. Finally, a particle swarm optimization (PSO) with the derived objective function is applied to find the optimal stiffness solution. Two strategies of PSO are also proposed to balance converging speed and avoid being stuck in the local minimum. A six-story numerical case is employed to verify the accuracy and feasibility of the proposed approach, and also to investigate the influence of noise. The analyzing results revealed the approach can identify the corresponding stiffness parameters accurately when the modal parameters are correct enough. Moreover, the six-story numerical case and two experimental models (three-story and eight-story shear buildings shaking table experiments) are utilized to verify the capability to detect the damage locations of simulated structural models. The results revealed that the approach can identify the locations of the major stiffness changes through comparing the stiffness differences of healthy structures and damaged or strengthened structures.
目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究步驟 3
1.5 論文架構 4
第二章 文獻回顧 5
2.1 模型修正 5
2.1.1 直接法 5
2.1.2 非直接法 7
2.2 層間損壞指標 9
2.3 雲線擬合法 11
2.4 模態保證指標 11
2.5 粒子群演算法 12
2.6 狀態空間法 15
2.7 時域分解法 17
第三章 研究方法 19
3.1 目標函數 19
3.2 推算參考勁度 21
3.3 搜尋範圍選擇 23
3.4 粒子群演算法-搜尋策略 28
3.4.1 慣性權重機制 28
3.4.2 粒子活化機制 30
3.5 演算流程 32
第四章 數值模擬與結果 34
4.1 建立模型 34
4.2 結構模型修正 39
4.2.1 模型1(無雜訊) 39
4.2.2 模型1(含雜訊) 41
4.3 破壞檢測 46
第五章 實驗測試與結果 59
5.1 三層樓剪力構架 59
5.2 八層樓鋼構架 69
第六章 結論與未來展望 84
6.1 結論 84
6.2 未來展望 85
參考文獻 86
[1] Kennedy, J., and Eberhart, R. C. (1995). “Particle swarm optimization.” Proc., IEEE Int. Conf. on Neural Networks. IEEE service center, Piscataway, NJ, Vol. 4, 1942-1948.
[2] Baruch, M., and Itzhack, Y. B. (1978). “Optimal weighted orthogonalization of measured modes.” AIAA Journal, 16(4), 346-351.
[3] Berman, A., and Nagy, E. J. (1983). “Improvement of a large analytical model using test data.” AIAA Journal, 21(8), 1168-1173.
[4] Kabe, A. M. (1985). “Stiffness matrix adjustment using mode data.” AIAA Journal, 23(9), 143l-1436.
[5] Smith, S. W., and Beattie, C. A. (1991). “Secant-method adjustment for structural models.” AIAA Journal, 29(1), 119-126.
[6] Halevi, Y., and Bucher, I. (2003). “Model updating via weighted reference basis with connectivity constraints.” Journal of Sound and Vibration, 265, 561-581.
[7] Fox, R. L., and Kapoor, M. P. (1968). “Rates of change of eigenvalues and eigenvectors.” AIAA Journal, 6(12), 2426-2429.
[8] Smith, J. M., and Hutton, S. G. (1992). “Frequency modification using newton’s method and inverse iteration eigenvector updating.” AIAA Journal, 30(7), 1886-1891.
[9] Zhang, Q. W., Chang, C. C., and Chang. T. Y. P. (2000). “Finite element modal updating for structures with parametric constraints.” Earthquake Engineering and Structural Dynamics, 29, 927- 944.
[10] Teughels, A., and Roeck, G. D. (2005). “Damage detection and parameter identification by finite element model updating.” Archives of computational methods in engineering, 12(2), 123-164.
[11] Wang, J. F., Lin, C. C., and Yen, S. M. (2007). “A story damage index of seismically-excited buildings based on modal frequency and mode shape.” Engineering Structures, 29, 2143-2157.
[12] Carl, D. B. (1978). A Practical Guide to Splines. Springer-Verlag, New York.
[13] Carne, T. G., and Dohrmann, C. F. (1995). “A modal test design strategy model correlation.”, Proc., the 13th International Modal Analysis Conference., Albuquerque, New Mexico USA, 927.
[14] Shi, Y., and Eberhart, R. C. (1998). “A modified particle swarm optimizer.” Proc., IEEE Int. Conf. on Evolutionary Computation., IEEE service center, Piscataway, NJ, 69-73.
[15] Kennedy, J., Eberhart, R. C., and Shi, Y. (2001). Swarm intelligence. Morgan Kaufmann Publishers, San Francisco.
[16] Shi, Y., and Eberhart, R. C. (1999). “Empirical study of particle swarm optimization.” Proc., IEEE Congress on Evolutionary Computation (CEC), 1945-1950.
[17] Trelea, I. C. (2003). “The particle swarm optimization algorithm: convergence analysis and parameter selection.” Information. Processing Letters, 85(6), 317-325.
[18] Chen, C. T. (1999). Linear System Theory and Design (3rd ed). Oxford University Press, New York.
[19] Kim, B. H., Stubbs, N., and Park, T. (2005). “A new method to extract modal parameters using output-only responses.” Journal of Sound and Vibration, 282(1-2), 215-230.
[20] 林傑文,「應用貝氏機率法及模態域法於建築物健康診斷」,國立交通大學,碩士論文,民國105年。
[21] Kidder, R. L. (1973). “Reduction of structural frequency equations.” AIAA Journal, 11(6), 892-892.
[22] 吳維珉,「應用勁度修正指標與非監督式模糊類神經網路於剪力構架之結構勁度參數修正」,國立交通大學,碩士論文,民國105年。

[23] Bansal, J. C. et al. (2011). “Inertia Weight Strategies in Particle Swarm Optimization.” Third World Congress on Nature and Biologically Inspired Computing. IEEE, 640-647.
[24] Eberhart, R.C., and Shi, Y. (2002). “Tracking and optimizing dynamic systems with particle swarms.” Proc., Evolutionary Computation, 2001, IEEE, 1, 94-100.
[25] Nikabadi, A., and Ebadzadeh, M. (2008). “Particle swarm optimization algorithms with adaptive Inertia Weight : A survey of the state of the art and a Novel method.” IEEE journal of evolutionary computation.
[26] Feng, Y., Teng, G. F., Wang, A. X., and Yao, Y. M. (2008). “Chaotic Inertia Weight in Particle Swarm Optimization” Proc., Innovative Computing, Information and Control, 2007. ICICIC’07. Second International Conference on, IEEE, 475.
[27] Arumugam, M. S., and M. Rao, V. C. (2006). “On the performance of the particle swarm optimization algorithm with various Inertia Weight variants for computing optimal control of a class of hybrid systems.” Discrete Dynamics in Nature and Society, 2006.
[28] Al-Hassan, W., Fayek, M. B., and Shaheen, S. I. (2007). “Psosa: An optimized particle swarm technique for solving the urban planning problem.” Proc., Computer Engineering and Systems, The 2006 International Conference on, IEEE, 401–405.
[29] Chen, G., Huang, X., Jia, J., and Min, Z. (2006). “Natural exponential Inertia Weight strategy in particle swarm optimization.” Proc., Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on, IEEE, 1, 3672-3675.
[30] Gao, Y., An, X., and Liu, J. (2008). “A Particle Swarm Optimization Algorithm with Logarithm Decreasing Inertia Weight and Chaos Mutation.” Proc., Computational Intelligence and Security, 2008. CIS’08. International Conference on, IEEE, 1, 61-65.
[31] Li, H. R., and Gao, Y. L. (2009). “Particle Swarm Optimization Algorithm with Exponent Decreasing Inertia Weight and Stochastic Mutation.” Proc., 2009 Second International Conference on Information and Computing Science, IEEE, 66-69.
[32] Clough, R. W., and Penzien, J. (1995). Dynamics of structures (3rd ed.). Computers & Structures, Inc., USA.
[33] 李辉、丁桦 (2016)。结构动力模型修正方法研究进展。力学进展,35(2),170-180。
[34] Alvin, K. F., Robertson, A. N., Reich, G. W., and Park, K. C. (2003). “Structural system identification: from reality to models.” Computers & Structures, 81, 1149-1176.
[35] Bui, Q. B., Hans, S., and Boutin, C. (2014). “Dynamic behaviour of an asymmetric building: Experimental and numerical studies.” Case Studies in Nondestructive Testing and Evaluation, 2, 38-48.
[36] Chen, H. P. (2010). “Mode shape expansion using perturbed force approach.” Journal of Sound and Vibration, 329, 1177-1190.
[37] 莊勝雄(譯) (民84)。工程最佳化-方法與應用(上、下冊) (原作者:G. V. Reklaitis and A. Ravindran and K. M. Ragsdell)。臺北市:國立編譯館。
[38] Kennedy, J., and Eberhart, R. C. (1995). “A new optimizer using particle swarm theory.” Proc., the sixth international symposium on micro machine and human science., IEEE service center, Piscataway, NJ, Nagoya, Japan, 39-43.
[39] Schmitt, M., and Wanka, R. (2015). “Particle swarm optimization almost surely finds local optima.” Theoretical Computer Science, 561, 57-72.
[40] Yang, J. N., Lei1, Y., Pan1, S., and Huang, N. (2003). “System identification of linear structures based on Hilbert–Huang spectral analysis. Part 1: normal modes.” Earthquake Engineering and Structural Dynamics, 32, 1443-1467.
[41] Ibrahim, S. R., and Pappa, R. S. (1982). “Large Modal Survey Testing Using the Ibrahim Time Domain Identification Technique.”, Journal of Spacecraft and Rockets, 19(5), 459-465.
[42] Brincker, R., Zhang, L., and Andersen, P. (2001). “Modal identification of output-only systems using frequency domain decomposition.” Smart Materials and Structures, 10 (3), 441.
[43] Chang, S. H. (2013). “Step-by-step integration method with high computational efficiency.” Journal of the Chinese Institute of Civil and Hydraulic Engineering, 25(3), 251-256.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊