(3.238.174.50) 您好!臺灣時間:2021/04/20 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊崇煒
研究生(外文):Yang, Chung-Wei
論文名稱:面內撓曲阻尼器之耐震性能試驗與分析
論文名稱(外文):Seismic Performance Test and Analysis of in-Plane Oval Damper
指導教授:王彥博
指導教授(外文):Wang, Yen-Po
口試委員:王彥博蘇南袁宇秉李建良
口試委員(外文):Wang, Yen-PoSu, NanYuen, Yu-PingLee, Chien-Liang
口試日期:2018-07-02
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:118
中文關鍵詞:面內撓曲阻尼器振動台試驗耐震性能試驗遲滯迴圈
外文關鍵詞:in-plane flexural modeshake table testseismic performance testhysteresis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:62
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為兼顧抗震設計目標與材料使用效率,將金屬降伏阻尼器設計成面內撓曲的受力模式近年來受到廣泛青睞。一種稱之為面內撓曲卵形阻尼器的新型金屬降伏阻尼器已發展出來,經元件測試證明其具備穩定可靠的遲滯消能特性,並透過參數研究建立其設計經驗公式。本研究進一步提出面內撓曲卵形阻尼器與結構的結合方式,以利實際工程應用之推廣。本文提出將面內撓曲卵形阻尼器嵌入上、下成對的反力座之間組成制震壁–稱之為內建i-POD制震壁,利用相鄰樓層在往復運動過程中的層間變位驅動阻尼器兩連結端,形成交替的拉、壓變形,以其反作用力回饋至結構形成抗震機制。
本文以一座五層樓鋼構模型為對象,規劃並完成一系列振動台試驗,以評估內建i-POD制震壁之抗震性能表現。縮尺i-POD元件的設計係以前述之經驗公式結合ANSYS軟體做應力分析來掌握其力學特性,避免阻尼器設計強度不足或過高導致試驗結果的不合理。振動台試驗結果顯示,加裝阻尼器後,結構各樓層加速度及頂層位移反應峰值都有明顯折減,且減震程度隨震度增加而愈為顯著,這是因振動反應變大迫使阻尼器降伏範圍擴大,消能效果自然提升。減震效益由各樓層加速度均方根的比較則更為顯著,因均方根值與振動能量成正比,且是整段歷時的累積結果,因此更能反映能量衰減的總體表現。此外,減震控制效應亦反映在結構的動力特性改變上。系統識別分析結果顯示,各振態之等效阻尼比均明顯增加,基本上亦隨震度增大而上升,尤以第一振態阻尼比的變化最為顯著。應用SAP2000之模擬分析預測值與試驗結果在趨勢上有一致性,但反應峰值的預測結果落差較大,此乃因五層樓鋼構模型在經年使用後已有局部受損,因而與理想條件下的SAP2000結構分析模型有些出入。儘管如此,兩者之動態歷時反應趨勢仍有很好的相關性,在初步設計階段,SAP2000的模擬分析結果仍有參考價值。
As an effort to enhance effective utilization of material while achieving the design goal, metallic yielding dampers (MYDs) designed to deform in an in-plane flexural mode have attracted extensive attentions recently. A new type of MYD referred to as the in-plane oval damper (i-POD) has been proposed. The i-POD proves to possess stable and reliable energy dissipative characteristics via component tests. Empirical design formula for i-POD has been proposed through a comprehensive parametric study. This study further proposes a way to integrate the in-plane oval damper with the structure as an effort towards practical application of the technology in the engineering industry. Proposed in this thesis is to connect the i-PODs to a pair of reacting frames between adjacent floors in form of a module referred to as the i-POD-inside seismic wall. The damper is alternately pulled and pressed with its two ends connecting to the reactive frames that convert the storydrift between adjacent floors during earthquakes with the reactive forces fedback to the structure for seismic response control.
In this thesis, a series of shake table tests has been conducted to assess the seismic performance of the i-POD using a five-story steel modal structure as the object. Design of the scaled-down i-PODs for the tests is based on the aforementioned empirical formula with the aid of ANSYS for stress analysis to avoid getting inadequate test results by either over or under design of the dampers. Results of shake table tests indicate that, with dampers implemented, significant reductions have been achieved simultaneously in both acceleration and displacement responses of the structure. The control efficiency increases with the intensity of the input excitation as larger responses increase the extent of the yielding area in the steel plate and dissipate more energy as a result. The control effect is even more evident if assessed in terms of the root-mean-square responses (RMS) of the acceleration as the RMS is proportional to vibrating energy and accumulated over the entire time history. This reflects better the overall performance of the damper in terms of energy dissipation. In addition, the controlling effect of the damper also reflects in the change of dynamic characteristics of the structure. Results from system identification analysis indicate that the effective modal damping ratios of the structure increase commonly with the earthquake intensity, and in particular most evident for the first mode.
Analytical predictions by using SAP2000 agree fairly well with the test results, however, with a larger discrepancy in the peak responses. This is likely due to some existing local damages in the five-story steel model after being repeatedly and extensively tested over the years. The structure physically diverts from the ideal SAP2000 model considered in the analysis. Nevertheless, the trends of the dynamic responses for both analytical and experimental results are still well correlated. Simulation results by SAP2000 still provide useful information in the preliminary design stage.
摘要 I
Abstract III
誌謝 VI
目錄 VII
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 研究動機與目的 1
1.2 論文架構 7
第二章 面內撓曲卵形阻尼器之元件設計與測試 9
2.1前言 9
2.2縮尺試驗之元件設計 10
2.2.1 i-POD阻尼器特性與無因次參數( )之關係 10
2.2.2 i-POD元件之ANSYS模擬分析 10
2.3元件測試 13
2.3.1 試驗架構 14
2.3.2 試驗規劃與量測系統 14
2.3.3試驗結果 15
2.4試驗結果與分析結果比較 16
2.5小結 16
第三章 面內撓曲卵形阻尼器之耐震性能測試 17
3.1 前言 17
3.2 測試機構與量測系統 17
3.3 試驗規劃 20
3.4 ARX系統識別分析原理 21
3.5 耐震性能試驗與效益評估 24
3.6 小結 30
第四章 試驗分析與比較 31
4.1 前言 31
4.2 SAP2000數值模擬 31
4.2.1 結構模型之建立與參數設定 31
4.2.2 輸入震波 32
4.2.3 訊號擷取位置 32
4.3 分析結果與試驗比較 32
4.3.1 未作減震控制之試驗與模擬分析結果比較 33
4.3.2 減震控制之試驗與模擬分析結果比較 34
4.4 小結 40
第五章 結論與建議 41
參考文獻 43
1. Whittaker, A.S., Bertero, V.V., Thompson, C.L. and Alonso, L.J. (1991),”Seismic Testing of Steel Plate Energy Dissipation Devices” Earthquake Spectra, 7(4), pp.563-604.
2. Tsai K.C., Chen H.W., Hong C.P., Su Y.F. (1993), “Design of Steel Triangular Plate Energy Absorbers for Seismic-Resistant Construction” Earthquake Spectra; 9(3), pp. 505-528.
3. Wang, Y.P. and Chang Chien C.S. (2009), “A Study on Using Pre-Bent Steel Strips as Seismic Energy-Dissipative Devices” Earthquake Engineering & Structural Dynamics, 38, pp.1009-1026.
4. Yen-Po Wang, Di-Hong Chen and Chien-Liang Lee (2015),” An Experimental Study on in-Plane Arch-shaped Flexural Damper,” Implementing Innovative Ideas in Structural Engineering and Project Management, Proceedings of ISEC-8, Nov. 23~28, Parramatta, Australia, pp. 293-298.
5. J.H. Park & K. H. Lee (2012), “Cyclic Loading Tests of Steel Dampers Utilizing Flexure-Analogy Deformation” in Proceedings of the 15TH World Conference on Earthquake Engineering, Lisbon, Portugal, September 24~28, paper no. 1228.
6. 王為元 (2014),「面內撓曲式拱形阻尼器之材料力學理論與試驗」,國立交通大學土木工程學系,碩士論文。
7. 梁誠偉 (2014),「面內撓曲式拱形阻尼器之彈性力學理論與試驗」,國立交通大學土木工程學系,碩士論文。
8. James M. Gere, Barry J. Goodno (2009), “Mechanics of Materials”, seventh edition, Cengage Learning, Massachusetts.
9. S.P. Timoshenko,J.N. Goodier (1970), Theory of Elasticity, Third edition, New York, McGraw-Hill.
10. A.N. Eraslan, E. Arslan (2008), “A Concise Analytical Treatment of Elastic-Plastic Bending of a Strain Hardening Curved Beam,” ZAMM, Vol. 88, No. 8, pp. 600-616.
11. A.N. Eraslan, E. Arslan (2008), “A Computational Study on the Nonlinear Hardening Curved Beam Problem,” International J. Pure and Applied Mathematics, Vol. 43, no. 1, pp. 129-143.
12. E. Arslan, A.N. Eraslan (2010), “Analytical Solution to the Bending of a Nonlinearly Hardening Wide Curved Bar,” Acta Mechanica, Vol. 210, pp.71-84.
13. E. Arslan, A.N. Eraslan (2013), “Bending of graded curved bars at elastic limits and beyond,” International Journal of Solids and Structures, Vol. 50, pp.806-814.
14. R.M. Jones (2009), Deformation Theory of Plasticity, Blacksburg, Virginia, Bull Ridge Publishing.
15. A.P. Boresi, K. P. Chong, J.D. Lee (2011), Elasticity in Engineering Mechanics, Third edition, Hoboken, New Jersey, John Wiley and Sons, Inc.
16. Jong, I., Springer, W. (2009), “Teaching Von Mises Stress: From Principal Axes To Nonprincipal Axes,”Annual Conference & Exposition, Austin, Texas.
17. Wang, Y.P., Lee, C.L. and Huang S.C. (2016), “Inelastic Stress Analysis of Curved Beams with Bending and Shear Coupling,” Proceedings of the World Congress on Civil, Structural, and Environmental Engineering ,(CSEE’16), Prague, Czech Republic.
18. 黃詩喬 (2016),「曲梁在彎-剪耦合條件下之非彈性應力分析」,國立交通大學土木工程學系,碩士論文。
19. Sung N. Ha (2001), “A Nonlinear Shooting Method for Two-Point Boundary Value Problems,” Computers and Mathematics with Applications, Vol. 42, pp.1411-1420.
20. D. Houcque(2005), “Applications of MATLAB: Ordinary Differential Equations, ” Internal Communication, Northwestern University, pp. 1–12.
21. Wang, Y.P., Lee, C.L. ,Huang S.C. and Tu, M.C.(2017) , “Inelastic Analysis of Circular Dampers under in-Plane Loading,” Proceedings of the World Congress on Civil, Structural, and Environmental Engineering ,(CSEE’17), Prague, Czech Republic.
22. 陳逸軒 (2010),「結構系統識別與損傷探測之研究」,國立交通大學土木工程學系,博士論文
23. 杜旻哲 (2017),「封閉式面內撓曲阻尼器之設計與試驗」,國立交通大學土木工程學系,碩士論文。
24. Chien-Liang Lee, Yen-Po Wang , Meng-Yan Cai (2017),”An Experimental Verification of Seismic Structural Control Using in-Plane Metallic Dampers,” 3rd International Conference on Architecture, Materials and Construction (ICAMC 2017), Amsterdam, Netherlands, 11-13 December, 2017, Paper No. ICAMC 11.
25. Chien-Liang Lee, Yen-Po Wang , Meng-Yan Cai (2018),”An Experimental Study of in-plane Oval Damper,” Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering (CSEE’18), Budapest, Hungary – April 8 - 10, 2018, Paper No. ICSENM 110 .)
電子全文 電子全文(網際網路公開日期:20230704)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔