|
1. Pawankar R, C.G., ST Holgate ST, Lockey RF, Blaiss M, The WAO White Book on Allergy (Update. 2013). 2011. 2. Lozano, R., et al., Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012. 380(9859): p. 2095-128. 3. Lee, J.K. and P. Vadas, Anaphylaxis: mechanisms and management. Clin Exp Allergy, 2011. 41(7): p. 923-38. 4. Kindt, T.J., Goldsby, R. A., Osborne, B. A., & Kuby, J., Kuby immunology (6th ed.). 2007. 5. de Jong, E.C., et al., Identification and partial characterization of multiple major allergens in peanut proteins. Clin Exp Allergy, 1998. 28(6): p. 743-51. 6. Kleber-Janke, T., et al., Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int Arch Allergy Immunol, 1999. 119(4): p. 265-74. 7. Wichers, H.J., et al., The major peanut allergen Ara h 1 and its cleaved-off N-terminal peptide; possible implications for peanut allergen detection. J Agric Food Chem, 2004. 52(15): p. 4903-7. 8. Bindslev-Jensen, C., D. Briggs, and M. Osterballe, Can we determine a threshold level for allergenic foods by statistical analysis of published data in the literature? Allergy, 2002. 57(8): p. 741-6. 9. Emmett, S.E., et al., Perceived prevalence of peanut allergy in Great Britain and its association with other atopic conditions and with peanut allergy in other household members. Allergy, 1999. 54(4): p. 380-5. 10. Grundy, J., et al., Rising prevalence of allergy to peanut in children: Data from 2 sequential cohorts. J Allergy Clin Immunol, 2002. 110(5): p. 784-9. 11. Osterballe, M., et al., The prevalence of food hypersensitivity in an unselected population of children and adults. Pediatr Allergy Immunol, 2005. 16(7): p. 567-73. 12. Sicherer, S.H., et al., Prevalence of peanut and tree nut allergy in the US determined by a random digit dial telephone survey. J Allergy Clin Immunol, 1999. 103(4): p. 559-62. 13. Sicherer, S.H., A. Munoz-Furlong, and H.A. Sampson, Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit dial telephone survey: a 5-year follow-up study. J Allergy Clin Immunol, 2003. 112(6): p. 1203-7. 14. Wikipedia contributors. Oral allergy syndrome. 9 July 2017 07:34 UTC; Available from: https://en.wikipedia.org/w/index.php?title=Oral_allergy_syndrome&oldid=789738796. 15. Bock, S.A., A. Munoz-Furlong, and H.A. Sampson, Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol, 2001. 107(1): p. 191-3. 16. Roberts, G., Anaphylaxis to foods. Pediatr Allergy Immunol, 2007. 18(6): p. 543-8. 17. Skolnick, H.S., et al., The natural history of peanut allergy. J Allergy Clin Immunol, 2001. 107(2): p. 367-74. 18. Maleki, S.J., et al., The major peanut allergen, Ara h 2, functions as a trypsin inhibitor, and roasting enhances this function. J Allergy Clin Immunol, 2003. 112(1): p. 190-5. 19. Wensing, M., et al., The distribution of individual threshold doses eliciting allergic reactions in a population with peanut allergy. J Allergy Clin Immunol, 2002. 110(6): p. 915-20. 20. Bock, S.A., A. Munoz-Furlong, and H.A. Sampson, Further fatalities caused by anaphylactic reactions to food, 2001-2006. J Allergy Clin Immunol, 2007. 119(4): p. 1016-8. 21. Stanley, J.S., et al., Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys, 1997. 342(2): p. 244-53. 22. Koppelman, S.J., et al., Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clin Exp Allergy, 2004. 34(4): p. 583-90. 23. Palmer, G.W., et al., Comparative potency of Ara h 1 and Ara h 2 in immunochemical and functional assays of allergenicity. Clin Immunol, 2005. 115(3): p. 302-12. 24. Sampson, H.A., Update on food allergy. J Allergy Clin Immunol, 2004. 113(5): p. 805-19; quiz 820. 25. Lehmann, K., et al., Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions. Biochem J, 2006. 395(3): p. 463-72. 26. Flinterman, A.E., et al., Children with peanut allergy recognize predominantly Ara h2 and Ara h6, which remains stable over time. Clin Exp Allergy, 2007. 37(8): p. 1221-8. 27. Pastorello, E.A., et al., Lipid transfer proteins and 2S albumins as allergens. Allergy, 2001. 56 Suppl 67: p. 45-7. 28. Holzhauser, T., et al., Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J Allergy Clin Immunol, 2009. 123(2): p. 452-8. 29. Mittag, D., et al., Soybean allergy in patients allergic to birch pollen: clinical investigation and molecular characterization of allergens. J Allergy Clin Immunol, 2004. 113(1): p. 148-54. 30. Kleine-Tebbe, J., et al., Severe oral allergy syndrome and anaphylactic reactions caused by a Bet v 1- related PR-10 protein in soybean, SAM22. J Allergy Clin Immunol, 2002. 110(5): p. 797-804. 31. Reese, G., R. Ayuso, and S.B. Lehrer, Tropomyosin: an invertebrate pan-allergen. Int Arch Allergy Immunol, 1999. 119(4): p. 247-58. 32. Shanti, K.N., et al., Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J Immunol, 1993. 151(10): p. 5354-63. 33. Davies, D.P., Food and food additive intolerance in childhood. Arch Dis Child, 1993. 69(4): p. 473. 34. Ferrari, G.G. and P.A. Eng, IgE-mediated food allergies in Swiss infants and children. Swiss Med Wkly, 2011. 141: p. w13269. 35. Andersson, K. and J. Lidholm, Characteristics and immunobiology of grass pollen allergens. Int Arch Allergy Immunol, 2003. 130(2): p. 87-107. 36. Johnson, P. and D.G. Marsh, 'Isoallergens' from rye grass pollen. Nature, 1965. 206(987): p. 935-7. 37. Freidhoff, L.R., et al., A study of the human immune response to Lolium perenne (rye) pollen and its components, Lol p I and Lol p II (rye I and rye II). I. Prevalence of reactivity to the allergens and correlations among skin test, IgE antibody, and IgG antibody data. J Allergy Clin Immunol, 1986. 78(6): p. 1190-201. 38. Laffer, S., et al., Common IgE-epitopes of recombinant Phl p I, the major timothy grass pollen allergen and natural group I grass pollen isoallergens. Mol Immunol, 1996. 33(4-5): p. 417-26. 39. Ghunaim, N., et al., Antibody profiles and self-reported symptoms to pollen-related food allergens in grass pollen-allergic patients from northern Europe. Allergy, 2005. 60(2): p. 185-91. 40. Petersen, A., W.M. Becker, and M. Schlaak, Characterization of grass group I allergens in timothy grass pollen. J Allergy Clin Immunol, 1993. 92(6): p. 789-96. 41. Suphioglu, C., et al., Mechanism of grass-pollen-induced asthma. Lancet, 1992. 339(8793): p. 569-72. 42. Knox, R.B., et al., Major grass pollen allergen Lol p 1 binds to diesel exhaust particles: implications for asthma and air pollution. Clin Exp Allergy, 1997. 27(3): p. 246-51. 43. Rossi, R.E., G. Monasterolo, and S. Monasterolo, Measurement of IgE antibodies against purified grass-pollen allergens (Phl p 1, 2, 3, 4, 5, 6, 7, 11, and 12) in sera of patients allergic to grass pollen. Allergy, 2001. 56(12): p. 1180-5. 44. Mari, A., Skin test with a timothy grass (Phleum pratense) pollen extract vs. IgE to a timothy extract vs. IgE to rPhl p 1, rPhl p 2, nPhl p 4, rPhl p 5, rPhl p 6, rPhl p 7, rPhl p 11, and rPhl p 12: epidemiological and diagnostic data. Clin Exp Allergy, 2003. 33(1): p. 43-51. 45. Scaparrotta, A., et al., Sensitization to timothy grass pollen allergenic molecules in children. Multidiscip Respir Med, 2013. 8(1): p. 17. 46. Wopfner, N., et al., The spectrum of allergens in ragweed and mugwort pollen. Int Arch Allergy Immunol, 2005. 138(4): p. 337-46. 47. Taramarcaz, P., et al., Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Med Wkly, 2005. 135(37-38): p. 538-48. 48. Rafnar, T., et al., Cloning of Amb a I (antigen E), the major allergen family of short ragweed pollen. J Biol Chem, 1991. 266(2): p. 1229-36. 49. Ferreira, F., et al., Modified recombinant allergens for safer immunotherapy. Inflamm Allergy Drug Targets, 2006. 5(1): p. 5-14. 50. Holm, J., et al., Allergy vaccine engineering: epitope modulation of recombinant Bet v 1 reduces IgE binding but retains protein folding pattern for induction of protective blocking-antibody responses. J Immunol, 2004. 173(8): p. 5258-67. 51. Larche, M., C.A. Akdis, and R. Valenta, Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol, 2006. 6(10): p. 761-71. 52. Wallner, M., et al., Allergy multivaccines created by DNA shuffling of tree pollen allergens. J Allergy Clin Immunol, 2007. 120(2): p. 374-80. 53. Jutel, M., et al., Allergen-specific immunotherapy with recombinant grass pollen allergens. J Allergy Clin Immunol, 2005. 116(3): p. 608-13. 54. Niederberger, V., et al., Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc Natl Acad Sci U S A, 2004. 101 Suppl 2: p. 14677-82. 55. Himly, M., et al., Art v 1, the major allergen of mugwort pollen, is a modular glycoprotein with a defensin-like and a hydroxyproline-rich domain. FASEB J, 2003. 17(1): p. 106-8. 56. Hirschwehr, R., et al., Identification of common allergenic structures in mugwort and ragweed pollen. J Allergy Clin Immunol, 1998. 101(2 Pt 1): p. 196-206. 57. Lagares, A., L. Puerta, and L. Caraballo, [Polymorphism in allergens]. Biomedica, 2002. 22(1): p. 51-62. 58. Arquint, O., et al., Reduced in vivo allergenicity of Bet v 1d isoform, a natural component of birch pollen. J Allergy Clin Immunol, 1999. 104(6): p. 1239-43. 59. Ferreira, F., et al., Dissection of immunoglobulin E and T lymphocyte reactivity of isoforms of the major birch pollen allergen Bet v 1: potential use of hypoallergenic isoforms for immunotherapy. J Exp Med, 1996. 183(2): p. 599-609. 60. Yamada, M., Lipid transfer proteins in plants and microorganisms. Plant and cell physiology, 1992. 33(1): p. 1-6. 61. Kader, J.-C., Lipid-transfer proteins: a puzzling family of plant proteins. Trends in plant science, 1997. 2(2): p. 66-70. 62. Douliez, J.P., et al., Disulfide bond assignment, lipid transfer activity and secondary structure of a 7-kDa plant lipid transfer protein, LTP2. Eur J Biochem, 2001. 268(5): p. 1400-3. 63. Garcia-Olmedo, F., et al., The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol, 1995. 3(2): p. 72-4. 64. Ge, X., et al., Preliminary study on the structural basis of the antifungal activity of a rice lipid transfer protein. Protein Eng, 2003. 16(6): p. 387-90. 65. Buhot, N., et al., Modulation of the biological activity of a tobacco LTP1 by lipid complexation. Mol Biol Cell, 2004. 15(11): p. 5047-52. 66. Carvalho Ade, O. and V.M. Gomes, Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides, 2007. 28(5): p. 1144-53. 67. Blein, J.P., et al., From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci, 2002. 7(7): p. 293-6. 68. Yamada, T., H. Saito, and S. Fujieda, Present state of Japanese cedar pollinosis: the national affliction. J Allergy Clin Immunol, 2014. 133(3): p. 632-9 e5. 69. Saito, Y., Japanese cedar pollinosis: discovery, nomenclature, and epidemiological trends. Proc Jpn Acad Ser B Phys Biol Sci, 2014. 90(6): p. 203-10. 70. Fujimura, T., et al., Two-dimensional IgE-binding spectrum of Japanese cedar (Cryptomeria japonica) pollen allergens. Int Arch Allergy Immunol, 2004. 133(2): p. 125-35. 71. Yasueda, H., et al., Isolation and partial characterization of the major allergen from Japanese cedar (Cryptomeria japonica) pollen. J Allergy Clin Immunol, 1983. 71(1 Pt 1): p. 77-86. 72. Sakaguchi, M., et al., Identification of the second major allergen of Japanese cedar pollen. Allergy, 1990. 45(4): p. 309-12. 73. Fujimura, T., et al., Recombinant Fusion Allergens, Cry j 1 and Cry j 2 from Japanese Cedar Pollen, Conjugated with Polyethylene Glycol Potentiate the Attenuation of Cry j 1-Specific IgE Production in Cry j 1-Sensitized Mice and Japanese Cedar Pollen Allergen-Sensitized Monkeys. Int Arch Allergy Immunol, 2015. 168(1): p. 32-43. 74. Aceituno, E., et al., Molecular cloning of major allergen from Cupressus arizonica pollen: Cup a 1. Clin Exp Allergy, 2000. 30(12): p. 1750-8. 75. Midoro-Horiuti, T., et al., Isolation and characterization of the mountain cedar (Juniperus ashei) pollen major allergen, Jun a 1. J Allergy Clin Immunol, 1999. 104(3 Pt 1): p. 608-12. 76. Ito, H., et al., Specific IgE to Japanese cypress (Chamaecyparis obtusa) in patients with nasal allergy. Ann Allergy Asthma Immunol, 1995. 74(4): p. 299-303. 77. Goto-Fukuda, Y., et al., [Investigation of the variation of Cry j 2 concentration in pollen among sugi (Cryptomeria japonica d. Don) trees using a newly established extraction method]. Arerugi, 2007. 56(10): p. 1262-9. 78. Kondo, Y., et al., Assessment of cross-reactivity between Japanese cedar (Cryptomeria japonica) pollen and tomato fruit extracts by RAST inhibition and immunoblot inhibition. Clin Exp Allergy, 2002. 32(4): p. 590-4. 79. Arilla, M.C., et al., Quantification assay for the major allergen of Cupressus sempervirens pollen, Cup s 1, by sandwich ELISA. Allergol Immunopathol (Madr), 2004. 32(6): p. 319-25. 80. Panzani, R., G. Centanni, and M. Brunel, Increase of respiratory allergy to the pollens of cypresses in the south of France. Ann Allergy, 1986. 56(6): p. 460-3. 81. Bousquet, J., et al., Allergy in the Mediterranean area. I. Pollen counts and pollinosis of Montpellier. Clin Allergy, 1984. 14(3): p. 249-58. 82. Dubus, J.C., et al., Allergy to cypress pollen. Allergy, 2000. 55(4): p. 410-1. 83. Panzani, R.C., [History of allergy to cypress pollen]. Allerg Immunol (Paris), 2000. 32(3): p. 142-4. 84. Dhivert-Donnadieu, H., [Allergy to cypress: clinical aspects]. Allerg Immunol (Paris), 2000. 32(3): p. 133-5. 85. Charpin, D., Epidemiology of cypress allergy. Allerg Immunol (Paris), 2000. 32(3): p. 83-5. 86. Gonzalez, E.M., M. Villalba, and R. Rodriguez, Allergenic cross-reactivity of olive pollen. Allergy, 2000. 55(7): p. 658-63. 87. Pham, N.H. and B.A. Baldo, Allergenic relationship between taxonomically diverse pollens. Clin Exp Allergy, 1995. 25(7): p. 599-606. 88. Yokoyama, M., et al., Purification, identification, and cDNA cloning of Jun a 2, the second major allergen of mountain cedar pollen. Biochem Biophys Res Commun, 2000. 275(1): p. 195-202. 89. Ramirez, D.A., The natural history of mountain cedar pollinosis. Allerg Immunol (Paris), 2000. 32(3): p. 86-91. 90. Jacobs, R., et al., Effectiveness of fluticasone furoate 110 microg once daily in the treatment of nasal and ocular symptoms of seasonal allergic rhinitis in adults and adolescents sensitized to mountain cedar pollen. Curr Med Res Opin, 2009. 25(6): p. 1393-401. 91. Kaufman, H.S. and K. Ranck, Antigen recognition in Filipinos, Japanese, Chinese, and Caucasians. Ann Allergy, 1988. 60(1): p. 53-6. 92. Weber, R.W., Mountain cedar. Ann Allergy Asthma Immunol, 2001. 86(1): p. A3. 93. Hothorn, M., et al., Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell, 2004. 16(12): p. 3437-47. 94. Asturias, J.A., et al., The major Platanus acerifolia pollen allergen Pla a 1 has sequence homology to invertase inhibitors. Clin Exp Allergy, 2003. 33(7): p. 978-85. 95. Bousquet, J., et al., Clinical and immunologic reactivity of patients allergic to grass pollens and to multiple pollen species. I. Clinical and immunologic characteristics. J Allergy Clin Immunol, 1991. 87(3): p. 737-46. 96. Carretero Aníbarro P, J.P.S., García González F, Alloza Gómez P, Pérez Giménez R, Blanco Carmona J, Reinares Ten C, Vicente Serrano J, Bascones O, Allergenic pollens and pollinosis in the city of Burgos. Alergol Inmunol Clin, 2005. 20(3): p. 90-4. 97. Belver, M.T., et al., Associations among pollen sensitizations from different botanical species in patients living in the northern area of Madrid. J Investig Allergol Clin Immunol, 2007. 17(3): p. 157-9. 98. Hejjaoui, A., et al., Systemic reactions occurring during immunotherapy with standardized pollen extracts. J Allergy Clin Immunol, 1992. 89(5): p. 925-33. 99. Cuesta-Herranz, J., et al., Differences among pollen-allergic patients with and without plant food allergy. Int Arch Allergy Immunol, 2010. 153(2): p. 182-92. 100. Palosuo, T., et al., Latex medical gloves: time for a reappraisal. Int Arch Allergy Immunol, 2011. 156(3): p. 234-46. 101. Wrangsjo, K., et al., Primary prevention of latex allergy in healthcare-spectrum of strategies including the European glove standardization. Contact Dermatitis, 2012. 66(4): p. 165-71. 102. Amarasekera, M., et al., Prevalence of latex allergy among healthcare workers. Int J Occup Med Environ Health, 2010. 23(4): p. 391-6. 103. Cremer, R., et al., Natural rubber latex sensitisation and allergy in patients with spina bifida, urogenital disorders and oesophageal atresia compared with a normal paediatric population. Eur J Pediatr Surg, 2007. 17(3): p. 194-8. 104. Lee, M.F., et al., Estimating allergenicity of latex gloves using Hev b 1 and hevamine. J Investig Allergol Clin Immunol, 2010. 20(6): p. 499-505. 105. Peixinho, C.M., et al., Different in vivo reactivity profile in health care workers and patients with spina bifida to internal and external latex glove surface-derived allergen extracts. Br J Dermatol, 2012. 166(3): p. 518-24. 106. Golias, J., et al., Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy. PLoS One, 2012. 7(5): p. e37156. 107. Maleki, S.J., et al., The effects of roasting on the allergenic properties of peanut proteins. J Allergy Clin Immunol, 2000. 106(4): p. 763-8. 108. Olmo, N., et al., Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis. Eur J Biochem, 2001. 268(7): p. 2113-23. 109. Kao, R., et al., Mitogillin and related fungal ribotoxins. Methods Enzymol, 2001. 341: p. 324-35. 110. Endo, Y. and I.G. Wool, The site of action of alpha-sarcin on eukaryotic ribosomes. The sequence at the alpha-sarcin cleavage site in 28 S ribosomal ribonucleic acid. J Biol Chem, 1982. 257(15): p. 9054-60. 111. Correll, C.C., I.G. Wool, and A. Munishkin, The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 A resolution. J Mol Biol, 1999. 292(2): p. 275-87. 112. Lichtenstein, L.M., M.D. Valentine, and A.K. Sobotka, Insect allergy: the state of the art. J Allergy Clin Immunol, 1979. 64(1): p. 5-12. 113. King, T.P., A. Joslyn, and L. Kochoumian, Antigenic cross-reactivity of venom proteins from hornets, wasps, and yellow jackets. J Allergy Clin Immunol, 1985. 75(5): p. 621-8. 114. Monteiro, M.C., P.R. Romao, and A.M. Soares, Pharmacological perspectives of wasp venom. Protein Pept Lett, 2009. 16(8): p. 944-52. 115. Pesek, R.D. and R.F. Lockey, Management of insect sting hypersensitivity: an update. Allergy Asthma Immunol Res, 2013. 5(3): p. 129-37. 116. Vachvanichsanong, P., P. Dissaneewate, and W. Mitarnun, Non-fatal acute renal failure due to wasp stings in children. Pediatr Nephrol, 1997. 11(6): p. 734-6. 117. Daher Ede, F., et al., Acute renal failure after massive honeybee stings. Rev Inst Med Trop Sao Paulo, 2003. 45(1): p. 45-50. 118. Ebo, D.G., M.M. Hagendorens, and W.J. Stevens, Hymenoptera venom allergy. Expert Rev Clin Immunol, 2005. 1(1): p. 169-75. 119. Charpin, D., et al., Prevalence of allergy to hymenoptera stings in different samples of the general population. J Allergy Clin Immunol, 1992. 90(3 Pt 1): p. 331-4. 120. Mosbech, H., [Deaths resulting from bee and wasp stings in Denmark 1960-1980]. Ugeskr Laeger, 1983. 145(23): p. 1757-60. 121. Burr, M.L., Epidemiology of clinical allergy. Introduction. Monogr Allergy, 1993. 31: p. 1-8. 122. Rosano, G.L. and E.A. Ceccarelli, Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol, 2014. 5: p. 172. 123. Takagi, K., R. Teshima, and J. Sawada, Determination of human linear IgE epitopes of Japanese cedar allergen Cry j 1. Biol Pharm Bull, 2005. 28(8): p. 1496-9.
|