(3.239.33.139) 您好!臺灣時間:2021/03/05 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂紹正
研究生(外文):Lu, Shao-Cheng
論文名稱:過敏原蛋白在大腸桿菌系統下之表現與純化
論文名稱(外文):Expression and purification of allergenic proteins in large-scale Escherichia coli expression system
指導教授:蕭育源
指導教授(外文):Hsiao, Yu-Yuan
口試委員:高智飛莊碧簪
口試委員(外文):Kao, Chih-FeiJuang, Bi-Tzen
口試日期:2017-09-15
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:72
中文關鍵詞:過敏原蛋白大腸桿菌表現系統過敏反應
外文關鍵詞:Allergenic proteinE. coli expression systemhypersensitivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過敏是一種現代人常見的疾病,難以預防以及治療,因為環境中過敏原的增加而造成現今過敏人口持續上升中,為了預防過敏的發生,可使用過敏原檢測及相關檢敏療法,但是目前醫療上可檢驗的過敏原種類太少。因此我們的目標是透過大腸桿菌系統大量表現並純化過敏原蛋白,以了解免疫反應引發的過敏分子機制,並應用在生物醫學檢測上。我們總共挑選18個過敏原蛋白作為研究目標,依序可分為五類,包括食物類 (Ara h 1、Ara h 2、Gly m 5和Pen a 1),花粉類 (Phl p 1、Phl p 5、Amb a 1、Art v 1、Par j 2、Cry j 1、Cry j 2、Cup s 1、Jun a 2和Pla a 1),橡膠類 (Hev b 5和Hev b 6),毒液類 (Ves v 1) 以及真菌類 (Asp f 1)。將所有的過敏原基因我們轉殖到pET22b或是pET28a的質體上,利用大腸桿菌系統進行蛋白質表現,再透過管柱層析法萃取蛋白質,並將過敏原蛋白合成抗體,以供日後作為生物醫學檢測上的應用。此外,我們希望透過結構生物學解析過敏原蛋白之晶體結構,更深入探討過敏原所造成的免疫反應之分子機制。
Allergy is a common disease for modern people, and is difficult to prevent and treat. Due to the increase of allergens in the modern environment, people suffering allergy become more and more. Hypersensitivity to allergy can be prevented by combining allergen specific tests and immunotherapy, but the types of allergens that have been tested are very few. Therefore, we aim to purify allergenic proteins in large scale through the E.coli expression system in order to understand the mechanism of allergen induced by immune responses and for applyication in biomedical detection. We selected 18 allergenic proteins, which are divided into five types: the food type (Ara h 1, Ara h 2, Gly m 5 and Pen a 1), the pollen type (Phl p 1, Phl p 5, Amb a 1, Art v 1, Par j 2, Cry j 1, Cry j 2, Cup s 1, Jun a 2 and Pla a 1), the rubber type (Hev b 5 and Hev b 6), the venom type (Ves v 1) and the microorganism type (Asp f 1). The allergenic genes were cloned into pET22b or pET28a plasmids and then expressed through the E. coli expression system. These proteins were further purified in a homogenous state by column chromatography and used on antibody synthesizion for application in biomedical detection. In addition, we will try to determine the crystal structures of these allergenic proteins to understand the allergen induced immune responses.
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
縮寫及符號 ix
第一章 緒論 1
1.1 過敏反應 1
1.1.1 過敏反應之引發機制與病理症狀 1
1.1.2 過敏原蛋白之分類與來源 2
1.2 重組蛋白質表現之策略 5
1.2.1 菌種介紹 5
1.2.2 載體介紹 7
1.3 研究目的 7
第二章 材料與方法 8
2.1 質體構築 8
2.2 實驗菌種培養與保存 8
2.3 勝任細胞的製備 8
2.4 大腸桿菌轉型作用 8
2.5 過敏原蛋白小量表現測試 9
2.5.1 聚丙烯醯胺膠體電泳 9
2.5.2 西方墨點法 10
2.6 過敏原蛋白大量表現及純化 10
2.6.1 親和性管柱層析 11
2.6.1.1 親和性鈷離子螯合樹脂 11
2.6.1.2 親和性鎳離子螯合樹脂 11
2.6.2 陰陽離子交換管柱層析 11
2.6.2.1 陰離子交換樹脂 12
2.6.2.2 陽離子交換樹脂 12
2.6.3 膠體過濾管柱層析 12
2.6.3.1 HiLoad 16/60 Superdex 75 prep grade 13
2.6.3.2 HiLoad 16/60 Superdex 200 prep grade 13
2.6.4 蛋白質濃度測量 13
2.7 質譜儀鑑定 14
第三章 實驗結果 15
3.1 七種已建立完善純化流程之過敏原蛋白 15
3.1.1 Ara h 1蛋白表現與純化結果 15
3.1.2 Ara h 2蛋白表現與純化結果 15
3.1.3 Art v 1蛋白表現與純化結果 16
3.1.4 Asp f 1蛋白表現與純化結果 16
3.1.5 Pen a 1蛋白表現與純化結果 17
3.1.6 Phl p 1蛋白表現與純化結果 17
3.1.7 Pla a 1蛋白表現與純化結果 17
3.2 尚未建立完善純化流程之過敏原蛋白 18
3.2.1 Hev b 5蛋白表現與純化結果 18
3.2.2 Phl p 5蛋白表現與純化結果 18
3.2.3 Amb a 1蛋白表現結果 19
3.2.4 Cry j 1蛋白表現結果 19
3.2.5 Cry j 2蛋白表現結果 19
3.2.6 Cup s 1蛋白表現結果 19
3.2.7 Gly m 5蛋白表現結果 19
3.2.8 Hev b 6蛋白表現結果 20
3.2.9 Jun a 2蛋白表現結果 20
3.2.10 Par j 2蛋白表現結果 20
3.2.11 Ves v 1蛋白表現結果 20
第四章 討論 21
4.1 不同大腸桿菌菌株造成蛋白質的表現差異 21
4.2 不同質體造成蛋白質的表現差異 21
4.3 過敏原蛋白質純化結果討論 22
4.4 保守區塊和交叉反應的關聯性 22
4.5 生物醫學之相關應用性 23
參考文獻 64
1. Pawankar R, C.G., ST Holgate ST, Lockey RF, Blaiss M, The WAO White Book on Allergy (Update. 2013). 2011.
2. Lozano, R., et al., Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012. 380(9859): p. 2095-128.
3. Lee, J.K. and P. Vadas, Anaphylaxis: mechanisms and management. Clin Exp Allergy, 2011. 41(7): p. 923-38.
4. Kindt, T.J., Goldsby, R. A., Osborne, B. A., & Kuby, J., Kuby immunology (6th ed.). 2007.
5. de Jong, E.C., et al., Identification and partial characterization of multiple major allergens in peanut proteins. Clin Exp Allergy, 1998. 28(6): p. 743-51.
6. Kleber-Janke, T., et al., Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int Arch Allergy Immunol, 1999. 119(4): p. 265-74.
7. Wichers, H.J., et al., The major peanut allergen Ara h 1 and its cleaved-off N-terminal peptide; possible implications for peanut allergen detection. J Agric Food Chem, 2004. 52(15): p. 4903-7.
8. Bindslev-Jensen, C., D. Briggs, and M. Osterballe, Can we determine a threshold level for allergenic foods by statistical analysis of published data in the literature? Allergy, 2002. 57(8): p. 741-6.
9. Emmett, S.E., et al., Perceived prevalence of peanut allergy in Great Britain and its association with other atopic conditions and with peanut allergy in other household members. Allergy, 1999. 54(4): p. 380-5.
10. Grundy, J., et al., Rising prevalence of allergy to peanut in children: Data from 2 sequential cohorts. J Allergy Clin Immunol, 2002. 110(5): p. 784-9.
11. Osterballe, M., et al., The prevalence of food hypersensitivity in an unselected population of children and adults. Pediatr Allergy Immunol, 2005. 16(7): p. 567-73.
12. Sicherer, S.H., et al., Prevalence of peanut and tree nut allergy in the US determined by a random digit dial telephone survey. J Allergy Clin Immunol, 1999. 103(4): p. 559-62.
13. Sicherer, S.H., A. Munoz-Furlong, and H.A. Sampson, Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit dial telephone survey: a 5-year follow-up study. J Allergy Clin Immunol, 2003. 112(6): p. 1203-7.
14. Wikipedia contributors. Oral allergy syndrome. 9 July 2017 07:34 UTC; Available from: https://en.wikipedia.org/w/index.php?title=Oral_allergy_syndrome&oldid=789738796.
15. Bock, S.A., A. Munoz-Furlong, and H.A. Sampson, Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol, 2001. 107(1): p. 191-3.
16. Roberts, G., Anaphylaxis to foods. Pediatr Allergy Immunol, 2007. 18(6): p. 543-8.
17. Skolnick, H.S., et al., The natural history of peanut allergy. J Allergy Clin Immunol, 2001. 107(2): p. 367-74.
18. Maleki, S.J., et al., The major peanut allergen, Ara h 2, functions as a trypsin inhibitor, and roasting enhances this function. J Allergy Clin Immunol, 2003. 112(1): p. 190-5.
19. Wensing, M., et al., The distribution of individual threshold doses eliciting allergic reactions in a population with peanut allergy. J Allergy Clin Immunol, 2002. 110(6): p. 915-20.
20. Bock, S.A., A. Munoz-Furlong, and H.A. Sampson, Further fatalities caused by anaphylactic reactions to food, 2001-2006. J Allergy Clin Immunol, 2007. 119(4): p. 1016-8.
21. Stanley, J.S., et al., Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys, 1997. 342(2): p. 244-53.
22. Koppelman, S.J., et al., Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clin Exp Allergy, 2004. 34(4): p. 583-90.
23. Palmer, G.W., et al., Comparative potency of Ara h 1 and Ara h 2 in immunochemical and functional assays of allergenicity. Clin Immunol, 2005. 115(3): p. 302-12.
24. Sampson, H.A., Update on food allergy. J Allergy Clin Immunol, 2004. 113(5): p. 805-19; quiz 820.
25. Lehmann, K., et al., Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions. Biochem J, 2006. 395(3): p. 463-72.
26. Flinterman, A.E., et al., Children with peanut allergy recognize predominantly Ara h2 and Ara h6, which remains stable over time. Clin Exp Allergy, 2007. 37(8): p. 1221-8.
27. Pastorello, E.A., et al., Lipid transfer proteins and 2S albumins as allergens. Allergy, 2001. 56 Suppl 67: p. 45-7.
28. Holzhauser, T., et al., Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J Allergy Clin Immunol, 2009. 123(2): p. 452-8.
29. Mittag, D., et al., Soybean allergy in patients allergic to birch pollen: clinical investigation and molecular characterization of allergens. J Allergy Clin Immunol, 2004. 113(1): p. 148-54.
30. Kleine-Tebbe, J., et al., Severe oral allergy syndrome and anaphylactic reactions caused by a Bet v 1- related PR-10 protein in soybean, SAM22. J Allergy Clin Immunol, 2002. 110(5): p. 797-804.
31. Reese, G., R. Ayuso, and S.B. Lehrer, Tropomyosin: an invertebrate pan-allergen. Int Arch Allergy Immunol, 1999. 119(4): p. 247-58.
32. Shanti, K.N., et al., Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J Immunol, 1993. 151(10): p. 5354-63.
33. Davies, D.P., Food and food additive intolerance in childhood. Arch Dis Child, 1993. 69(4): p. 473.
34. Ferrari, G.G. and P.A. Eng, IgE-mediated food allergies in Swiss infants and children. Swiss Med Wkly, 2011. 141: p. w13269.
35. Andersson, K. and J. Lidholm, Characteristics and immunobiology of grass pollen allergens. Int Arch Allergy Immunol, 2003. 130(2): p. 87-107.
36. Johnson, P. and D.G. Marsh, 'Isoallergens' from rye grass pollen. Nature, 1965. 206(987): p. 935-7.
37. Freidhoff, L.R., et al., A study of the human immune response to Lolium perenne (rye) pollen and its components, Lol p I and Lol p II (rye I and rye II). I. Prevalence of reactivity to the allergens and correlations among skin test, IgE antibody, and IgG antibody data. J Allergy Clin Immunol, 1986. 78(6): p. 1190-201.
38. Laffer, S., et al., Common IgE-epitopes of recombinant Phl p I, the major timothy grass pollen allergen and natural group I grass pollen isoallergens. Mol Immunol, 1996. 33(4-5): p. 417-26.
39. Ghunaim, N., et al., Antibody profiles and self-reported symptoms to pollen-related food allergens in grass pollen-allergic patients from northern Europe. Allergy, 2005. 60(2): p. 185-91.
40. Petersen, A., W.M. Becker, and M. Schlaak, Characterization of grass group I allergens in timothy grass pollen. J Allergy Clin Immunol, 1993. 92(6): p. 789-96.
41. Suphioglu, C., et al., Mechanism of grass-pollen-induced asthma. Lancet, 1992. 339(8793): p. 569-72.
42. Knox, R.B., et al., Major grass pollen allergen Lol p 1 binds to diesel exhaust particles: implications for asthma and air pollution. Clin Exp Allergy, 1997. 27(3): p. 246-51.
43. Rossi, R.E., G. Monasterolo, and S. Monasterolo, Measurement of IgE antibodies against purified grass-pollen allergens (Phl p 1, 2, 3, 4, 5, 6, 7, 11, and 12) in sera of patients allergic to grass pollen. Allergy, 2001. 56(12): p. 1180-5.
44. Mari, A., Skin test with a timothy grass (Phleum pratense) pollen extract vs. IgE to a timothy extract vs. IgE to rPhl p 1, rPhl p 2, nPhl p 4, rPhl p 5, rPhl p 6, rPhl p 7, rPhl p 11, and rPhl p 12: epidemiological and diagnostic data. Clin Exp Allergy, 2003. 33(1): p. 43-51.
45. Scaparrotta, A., et al., Sensitization to timothy grass pollen allergenic molecules in children. Multidiscip Respir Med, 2013. 8(1): p. 17.
46. Wopfner, N., et al., The spectrum of allergens in ragweed and mugwort pollen. Int Arch Allergy Immunol, 2005. 138(4): p. 337-46.
47. Taramarcaz, P., et al., Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Med Wkly, 2005. 135(37-38): p. 538-48.
48. Rafnar, T., et al., Cloning of Amb a I (antigen E), the major allergen family of short ragweed pollen. J Biol Chem, 1991. 266(2): p. 1229-36.
49. Ferreira, F., et al., Modified recombinant allergens for safer immunotherapy. Inflamm Allergy Drug Targets, 2006. 5(1): p. 5-14.
50. Holm, J., et al., Allergy vaccine engineering: epitope modulation of recombinant Bet v 1 reduces IgE binding but retains protein folding pattern for induction of protective blocking-antibody responses. J Immunol, 2004. 173(8): p. 5258-67.
51. Larche, M., C.A. Akdis, and R. Valenta, Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol, 2006. 6(10): p. 761-71.
52. Wallner, M., et al., Allergy multivaccines created by DNA shuffling of tree pollen allergens. J Allergy Clin Immunol, 2007. 120(2): p. 374-80.
53. Jutel, M., et al., Allergen-specific immunotherapy with recombinant grass pollen allergens. J Allergy Clin Immunol, 2005. 116(3): p. 608-13.
54. Niederberger, V., et al., Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc Natl Acad Sci U S A, 2004. 101 Suppl 2: p. 14677-82.
55. Himly, M., et al., Art v 1, the major allergen of mugwort pollen, is a modular glycoprotein with a defensin-like and a hydroxyproline-rich domain. FASEB J, 2003. 17(1): p. 106-8.
56. Hirschwehr, R., et al., Identification of common allergenic structures in mugwort and ragweed pollen. J Allergy Clin Immunol, 1998. 101(2 Pt 1): p. 196-206.
57. Lagares, A., L. Puerta, and L. Caraballo, [Polymorphism in allergens]. Biomedica, 2002. 22(1): p. 51-62.
58. Arquint, O., et al., Reduced in vivo allergenicity of Bet v 1d isoform, a natural component of birch pollen. J Allergy Clin Immunol, 1999. 104(6): p. 1239-43.
59. Ferreira, F., et al., Dissection of immunoglobulin E and T lymphocyte reactivity of isoforms of the major birch pollen allergen Bet v 1: potential use of hypoallergenic isoforms for immunotherapy. J Exp Med, 1996. 183(2): p. 599-609.
60. Yamada, M., Lipid transfer proteins in plants and microorganisms. Plant and cell physiology, 1992. 33(1): p. 1-6.
61. Kader, J.-C., Lipid-transfer proteins: a puzzling family of plant proteins. Trends in plant science, 1997. 2(2): p. 66-70.
62. Douliez, J.P., et al., Disulfide bond assignment, lipid transfer activity and secondary structure of a 7-kDa plant lipid transfer protein, LTP2. Eur J Biochem, 2001. 268(5): p. 1400-3.
63. Garcia-Olmedo, F., et al., The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol, 1995. 3(2): p. 72-4.
64. Ge, X., et al., Preliminary study on the structural basis of the antifungal activity of a rice lipid transfer protein. Protein Eng, 2003. 16(6): p. 387-90.
65. Buhot, N., et al., Modulation of the biological activity of a tobacco LTP1 by lipid complexation. Mol Biol Cell, 2004. 15(11): p. 5047-52.
66. Carvalho Ade, O. and V.M. Gomes, Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides, 2007. 28(5): p. 1144-53.
67. Blein, J.P., et al., From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci, 2002. 7(7): p. 293-6.
68. Yamada, T., H. Saito, and S. Fujieda, Present state of Japanese cedar pollinosis: the national affliction. J Allergy Clin Immunol, 2014. 133(3): p. 632-9 e5.
69. Saito, Y., Japanese cedar pollinosis: discovery, nomenclature, and epidemiological trends. Proc Jpn Acad Ser B Phys Biol Sci, 2014. 90(6): p. 203-10.
70. Fujimura, T., et al., Two-dimensional IgE-binding spectrum of Japanese cedar (Cryptomeria japonica) pollen allergens. Int Arch Allergy Immunol, 2004. 133(2): p. 125-35.
71. Yasueda, H., et al., Isolation and partial characterization of the major allergen from Japanese cedar (Cryptomeria japonica) pollen. J Allergy Clin Immunol, 1983. 71(1 Pt 1): p. 77-86.
72. Sakaguchi, M., et al., Identification of the second major allergen of Japanese cedar pollen. Allergy, 1990. 45(4): p. 309-12.
73. Fujimura, T., et al., Recombinant Fusion Allergens, Cry j 1 and Cry j 2 from Japanese Cedar Pollen, Conjugated with Polyethylene Glycol Potentiate the Attenuation of Cry j 1-Specific IgE Production in Cry j 1-Sensitized Mice and Japanese Cedar Pollen Allergen-Sensitized Monkeys. Int Arch Allergy Immunol, 2015. 168(1): p. 32-43.
74. Aceituno, E., et al., Molecular cloning of major allergen from Cupressus arizonica pollen: Cup a 1. Clin Exp Allergy, 2000. 30(12): p. 1750-8.
75. Midoro-Horiuti, T., et al., Isolation and characterization of the mountain cedar (Juniperus ashei) pollen major allergen, Jun a 1. J Allergy Clin Immunol, 1999. 104(3 Pt 1): p. 608-12.
76. Ito, H., et al., Specific IgE to Japanese cypress (Chamaecyparis obtusa) in patients with nasal allergy. Ann Allergy Asthma Immunol, 1995. 74(4): p. 299-303.
77. Goto-Fukuda, Y., et al., [Investigation of the variation of Cry j 2 concentration in pollen among sugi (Cryptomeria japonica d. Don) trees using a newly established extraction method]. Arerugi, 2007. 56(10): p. 1262-9.
78. Kondo, Y., et al., Assessment of cross-reactivity between Japanese cedar (Cryptomeria japonica) pollen and tomato fruit extracts by RAST inhibition and immunoblot inhibition. Clin Exp Allergy, 2002. 32(4): p. 590-4.
79. Arilla, M.C., et al., Quantification assay for the major allergen of Cupressus sempervirens pollen, Cup s 1, by sandwich ELISA. Allergol Immunopathol (Madr), 2004. 32(6): p. 319-25.
80. Panzani, R., G. Centanni, and M. Brunel, Increase of respiratory allergy to the pollens of cypresses in the south of France. Ann Allergy, 1986. 56(6): p. 460-3.
81. Bousquet, J., et al., Allergy in the Mediterranean area. I. Pollen counts and pollinosis of Montpellier. Clin Allergy, 1984. 14(3): p. 249-58.
82. Dubus, J.C., et al., Allergy to cypress pollen. Allergy, 2000. 55(4): p. 410-1.
83. Panzani, R.C., [History of allergy to cypress pollen]. Allerg Immunol (Paris), 2000. 32(3): p. 142-4.
84. Dhivert-Donnadieu, H., [Allergy to cypress: clinical aspects]. Allerg Immunol (Paris), 2000. 32(3): p. 133-5.
85. Charpin, D., Epidemiology of cypress allergy. Allerg Immunol (Paris), 2000. 32(3): p. 83-5.
86. Gonzalez, E.M., M. Villalba, and R. Rodriguez, Allergenic cross-reactivity of olive pollen. Allergy, 2000. 55(7): p. 658-63.
87. Pham, N.H. and B.A. Baldo, Allergenic relationship between taxonomically diverse pollens. Clin Exp Allergy, 1995. 25(7): p. 599-606.
88. Yokoyama, M., et al., Purification, identification, and cDNA cloning of Jun a 2, the second major allergen of mountain cedar pollen. Biochem Biophys Res Commun, 2000. 275(1): p. 195-202.
89. Ramirez, D.A., The natural history of mountain cedar pollinosis. Allerg Immunol (Paris), 2000. 32(3): p. 86-91.
90. Jacobs, R., et al., Effectiveness of fluticasone furoate 110 microg once daily in the treatment of nasal and ocular symptoms of seasonal allergic rhinitis in adults and adolescents sensitized to mountain cedar pollen. Curr Med Res Opin, 2009. 25(6): p. 1393-401.
91. Kaufman, H.S. and K. Ranck, Antigen recognition in Filipinos, Japanese, Chinese, and Caucasians. Ann Allergy, 1988. 60(1): p. 53-6.
92. Weber, R.W., Mountain cedar. Ann Allergy Asthma Immunol, 2001. 86(1): p. A3.
93. Hothorn, M., et al., Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell, 2004. 16(12): p. 3437-47.
94. Asturias, J.A., et al., The major Platanus acerifolia pollen allergen Pla a 1 has sequence homology to invertase inhibitors. Clin Exp Allergy, 2003. 33(7): p. 978-85.
95. Bousquet, J., et al., Clinical and immunologic reactivity of patients allergic to grass pollens and to multiple pollen species. I. Clinical and immunologic characteristics. J Allergy Clin Immunol, 1991. 87(3): p. 737-46.
96. Carretero Aníbarro P, J.P.S., García González F, Alloza Gómez P, Pérez Giménez R, Blanco Carmona J, Reinares Ten C, Vicente Serrano J, Bascones O, Allergenic pollens and pollinosis in the city of Burgos. Alergol Inmunol Clin, 2005. 20(3): p. 90-4.
97. Belver, M.T., et al., Associations among pollen sensitizations from different botanical species in patients living in the northern area of Madrid. J Investig Allergol Clin Immunol, 2007. 17(3): p. 157-9.
98. Hejjaoui, A., et al., Systemic reactions occurring during immunotherapy with standardized pollen extracts. J Allergy Clin Immunol, 1992. 89(5): p. 925-33.
99. Cuesta-Herranz, J., et al., Differences among pollen-allergic patients with and without plant food allergy. Int Arch Allergy Immunol, 2010. 153(2): p. 182-92.
100. Palosuo, T., et al., Latex medical gloves: time for a reappraisal. Int Arch Allergy Immunol, 2011. 156(3): p. 234-46.
101. Wrangsjo, K., et al., Primary prevention of latex allergy in healthcare-spectrum of strategies including the European glove standardization. Contact Dermatitis, 2012. 66(4): p. 165-71.
102. Amarasekera, M., et al., Prevalence of latex allergy among healthcare workers. Int J Occup Med Environ Health, 2010. 23(4): p. 391-6.
103. Cremer, R., et al., Natural rubber latex sensitisation and allergy in patients with spina bifida, urogenital disorders and oesophageal atresia compared with a normal paediatric population. Eur J Pediatr Surg, 2007. 17(3): p. 194-8.
104. Lee, M.F., et al., Estimating allergenicity of latex gloves using Hev b 1 and hevamine. J Investig Allergol Clin Immunol, 2010. 20(6): p. 499-505.
105. Peixinho, C.M., et al., Different in vivo reactivity profile in health care workers and patients with spina bifida to internal and external latex glove surface-derived allergen extracts. Br J Dermatol, 2012. 166(3): p. 518-24.
106. Golias, J., et al., Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy. PLoS One, 2012. 7(5): p. e37156.
107. Maleki, S.J., et al., The effects of roasting on the allergenic properties of peanut proteins. J Allergy Clin Immunol, 2000. 106(4): p. 763-8.
108. Olmo, N., et al., Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis. Eur J Biochem, 2001. 268(7): p. 2113-23.
109. Kao, R., et al., Mitogillin and related fungal ribotoxins. Methods Enzymol, 2001. 341: p. 324-35.
110. Endo, Y. and I.G. Wool, The site of action of alpha-sarcin on eukaryotic ribosomes. The sequence at the alpha-sarcin cleavage site in 28 S ribosomal ribonucleic acid. J Biol Chem, 1982. 257(15): p. 9054-60.
111. Correll, C.C., I.G. Wool, and A. Munishkin, The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 A resolution. J Mol Biol, 1999. 292(2): p. 275-87.
112. Lichtenstein, L.M., M.D. Valentine, and A.K. Sobotka, Insect allergy: the state of the art. J Allergy Clin Immunol, 1979. 64(1): p. 5-12.
113. King, T.P., A. Joslyn, and L. Kochoumian, Antigenic cross-reactivity of venom proteins from hornets, wasps, and yellow jackets. J Allergy Clin Immunol, 1985. 75(5): p. 621-8.
114. Monteiro, M.C., P.R. Romao, and A.M. Soares, Pharmacological perspectives of wasp venom. Protein Pept Lett, 2009. 16(8): p. 944-52.
115. Pesek, R.D. and R.F. Lockey, Management of insect sting hypersensitivity: an update. Allergy Asthma Immunol Res, 2013. 5(3): p. 129-37.
116. Vachvanichsanong, P., P. Dissaneewate, and W. Mitarnun, Non-fatal acute renal failure due to wasp stings in children. Pediatr Nephrol, 1997. 11(6): p. 734-6.
117. Daher Ede, F., et al., Acute renal failure after massive honeybee stings. Rev Inst Med Trop Sao Paulo, 2003. 45(1): p. 45-50.
118. Ebo, D.G., M.M. Hagendorens, and W.J. Stevens, Hymenoptera venom allergy. Expert Rev Clin Immunol, 2005. 1(1): p. 169-75.
119. Charpin, D., et al., Prevalence of allergy to hymenoptera stings in different samples of the general population. J Allergy Clin Immunol, 1992. 90(3 Pt 1): p. 331-4.
120. Mosbech, H., [Deaths resulting from bee and wasp stings in Denmark 1960-1980]. Ugeskr Laeger, 1983. 145(23): p. 1757-60.
121. Burr, M.L., Epidemiology of clinical allergy. Introduction. Monogr Allergy, 1993. 31: p. 1-8.
122. Rosano, G.L. and E.A. Ceccarelli, Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol, 2014. 5: p. 172.
123. Takagi, K., R. Teshima, and J. Sawada, Determination of human linear IgE epitopes of Japanese cedar allergen Cry j 1. Biol Pharm Bull, 2005. 28(8): p. 1496-9.
電子全文 電子全文(網際網路公開日期:20221010)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔