(3.238.7.202) 您好!臺灣時間:2021/03/02 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林彥璋
研究生(外文):Lin, Yan-Zhang
論文名稱:奈米級 GaAs 太陽能電池之模擬
論文名稱(外文):Simulation of GaAs solar cells in nanoscale
指導教授:林建中林建中引用關係
指導教授(外文):Lin,Chien-Chung
口試委員:賴聰賢郭政煌郭浩中
口試委員(外文):Lay,Tsong-ShengKuo, Cheng-HuangKuo, Hao-Chung
口試日期:2017-08-21
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電系統研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:58
中文關鍵詞:太陽能電池砷化鎵模擬鈍化層
外文關鍵詞:solar cellGaAssimulationpassivation layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們在GaAs奈米柱太陽能電池的側壁加入一層SiO2作為鈍化層進行對光學及電性模組之模擬。在光學模組模擬中,考慮SiO2層的高度和厚度,觀察在不同的高度和厚度下的吸收、反射及穿透來了解SiO2層對光學特性的影響,並在模擬中計算了奈米柱的generation profile並作為在電性模擬中的generation rate進行電性模擬,在電性模擬中,討論SiO2對太陽能電池JV的影響,頂部、側壁以及底部的金屬接觸均視為理想歐姆接觸來忽略金屬和半導體之間的相對電阻,在理想歐姆接觸的情況,加入SiO2層後能提高整體的電流電壓特性曲線來達到更好的Jsc,但在較低高度的SiO2層下Jsc的變化浮動,無法穩定提升Jsc,而在較高高度下,鈍化層的影響慢慢下降使得Jsc下降。對於厚度的影響,鈍化層需要一定的厚度才能有效的提高Jsc。而由於奈米柱太陽能電池具有較大的surface-to-volume ratio,因此表面複合也是影響太陽能電池性能的重要因素。
We simulate both of optical and electrical modules into GaAs nanorod solar cell with SiO2 side-contact as the passivation of sidewall. In optical simulation, consider the height and thickness of SiO2 layer. Absorption, reflection and transmission were observed to know the influence of the SiO2 side-contact layer in the optical characteristic. Among this, also compute the total generation profile in nanorod which we assume as the interpolation of the generation rate into electrical simulation. In electrical simulation, study the height and thickness dependence of SiO2 contact layer. The all contact (top, side and bottom contact) are assumed as ideal contact which can ignore the relative resistance between metal and semiconductor connected. Under the set up above, SiO2 layer can enhance the current-voltage characteristic to higher Jsc. At short height of SiO2, the enhancement is probably unstable that Jsc moves up and down. while at tall height of SiO2 layer, the influence of passivation layer becomes lower that lead Jsc beginning decrease. In thickness dependence, the layer must be thick enough to obtain better performance efficiently. Since the nanorod solar cells have larger surface-to-volume ratio, surface recombination is an important factor which heavily influence the performance of nanoscale solar cells.
摘要 i
Abstract ii
致謝 iii
Content iv
List of Figures vii
List of Tables xi
Chapter 1 Introduction 1
1-1 Solar cells 1
1-2 Nanorod Solar cells 2
Chapter 2 Fundamentals 3
2-1 Electromagnetics 3
2-1-1 Introduction 3
2-1-2 Maxwell equations 4
2-1-3 S-parameter calculations 5
2-1-4 Electromagnetic Energy 6
2-2 Semiconductor physics 7
2-2-1 Introduction 7
2-2-2 Carrier transport and Poisson’s equation 8
2-2-3 Recombination 9
2-3 Solar cell performance 12
2-3-1 Introduction 12
2-3-2 Solar spectrum 13
2-3-3 Current and Voltage 14
2-3-4 Efficiency 16
Chapter 3 Optical simulation of GaAs nanorod solar cells 18
3-1 Model and modeling method 19
3-2 Height dependence 20
3-3 Thickness dependence 21
3-4 Results and conclusions 22
Chapter 4 Electrical simulation- Axial junction GaAs nanorod solar cells with SiO2 side-contact layer 23
4-1 Introduction to the method of electrical simulation 23
4-2 Model details of axial junction GaAs nanorod solar cell with side-contact 24
4-3 Height dependence 26
4-4 Thickness dependence 27
4-5 Geometry dependence with Oblique incident light 29
4-6 Results and discussions 30
Chapter 5 Electrical simulation- Surface Recombination 32
5-1 Model details of core-shell GaAs nanorod solar cells. 32
5-1-1 J-V characteristic 33
5-1-2 band-diagram 34
5-2 Model details of axial junction GaAs nanorod solar cells 36
5-2-1 Top surface recombination 37
5-2-2 Side surface recombination 41
5-3 Comparison of axial junction and radial junction solar cells 47
5-4 Variation of n-region thickness 50
5-5 Results and discussion 54
Chapter 6 Summary and Future work 56
Reference 57
[1] H. Ekinci, V. V. Kuryatkov, I. Gherasoiu, and S. A. Nikishin, "Effect of passivation on III-nitride/silicon tandem solar cells," in 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), 2015, pp. 148-151.
[2] H. Hasegawa, "Electronic and microstructural properties of disorder-induced gap states at compound semiconductor–insulator interfaces," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 5, no. 4, 1987.
[3] S. Jan, K. Mark, and C. Andrés, "Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO 2 /plasma SiN stacks," Semiconductor Science and Technology, vol. 16, no. 3, p. 164, 2001.
[4] A. D. Mallorquí et al., "Field-effect passivation on silicon nanowire solar cells," Nano Research, vol. 8, no. 2, pp. 673-681, 2014.
[5] G. S. Oehrlein, "Study of sidewall passivation and microscopic silicon roughness phenomena in chlorine-based reactive ion etching of silicon trenches," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 8, no. 6, 1990.
[6] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. v. de Sanden, and W. M. M. Kessels, "Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3," Progress in Photovoltaics: Research and Applications, vol. 16, no. 6, pp. 461-466, 2008.
[7] M. T. Sheldon, C. N. Eisler, and H. A. Atwater, "GaAs Passivation with Trioctylphosphine Sulfide for Enhanced Solar Cell Efficiency and Durability," Advanced Energy Materials, vol. 2, no. 3, pp. 339-344, 2012.
[8] M. D. Kelzenberg et al., "High-performance Si microwire photovoltaics," Energy & Environmental Science, vol. 4, no. 3, 2011.
[9] C. C. Chang et al., "Electrical and optical characterization of surface passivation in GaAs nanowires," Nano Lett, vol. 12, no. 9, pp. 4484-9, Sep 12 2012.
[10] A. H. Trojnar, C. E. Valdivia, R. R. LaPierre, K. Hinzer, and J. J. Krich, "Optimizations of GaAs Nanowire Solar Cells," IEEE Journal of Photovoltaics, vol. 6, no. 6, pp. 1494-1501, 2016.
[11] R. R. LaPierre, "Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells," Journal of Applied Physics, vol. 109, no. 3, 2011.
[12] E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, "Nanowire Solar Cells," Annual Review of Materials Research, vol. 41, no. 1, pp. 269-295, 2011.
[13] R. R. LaPierre, "Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell," Journal of Applied Physics, vol. 110, no. 1, 2011.
[14] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 48)," Progress in Photovoltaics: Research and Applications, vol. 24, no. 7, pp. 905-913, 2016.
[15] A. Kovetz, The principles of electromagnetic theory. CUP Archive, 1990.
[16] S. Sze and K. N. Kwok, "Physics of semiconductor devices 3rd Edition," Wiley Online Library, 2007.
[17] J. Nelson, "The physics of Solar Cells, vol. 57," ed: World Scientific, 2003.
[18] D. A. Neamen, Semiconductor physics and devices. McGraw-Hill Higher Education, 2003.
[19] J. Kim, J. Hwang, K. Song, N. Kim, J. C. Shin, and J. Lee, "Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives," Applied Physics Letters, vol. 108, no. 25, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔