跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 03:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳昕瑜
研究生(外文):Wu, Hsin-Yu
論文名稱:四千億位元高速正交分頻分波多工之長距被動光網路
論文名稱(外文):A 400Gb/s High-Speed WDM-OFDM Long Reach Passive Optical Network
指導教授:陳智弘陳智弘引用關係
指導教授(外文):Chen, Jyehong
口試委員:賴暎杰馮開明魏嘉建
口試委員(外文):Lai, Yin-ChiehFeng, Kai-MingWei, Chia-Chien
口試日期:2017-08-18
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:59
中文關鍵詞:光纖通訊被動式光網路正交分頻
外文關鍵詞:Optical CommunicationPONOFDM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
隨著資訊大爆炸的時代來臨,人們對社群網站及軟體的依賴,對資訊傳輸流量的要求也日漸升高,被動光網路是一個有效解決需求量的極佳辦法。國際組織FSAN制定了命名為NGPON2的下世代被動式光網路,光纖傳輸距離為20公里至100公里,並提供40Gb/s網路傳輸量,支援每個用戶1Gbps的使用流量。
在本篇討論中,我們使用正交多頻分波多工的系統傳輸,將系統分成八個通道,使用自相位調變(SPM)解決RF Power Fading,並用非線性失真補償技術提高傳輸速率。在整個傳輸過程中沒有使用光放大器並且重新使用了10GHz的電吸收調變器(EAM)和感光二極體(PIN),在經過60公里的傳輸之後總傳輸量可達400Gbps,每個通道的損耗預算為24-dB,支援64位用戶超過6Gbps的使用流量。
Since the era of information explosion is coming and public’s reliance of social media, the needs of data transmission is getting larger nowadays. Passive optical network (PON) is a promising way to achieve the requirement. In the standard of next-generation PON (NGPON2) by Full Service Access Network, the fiber distance is 20-km to 1000-km, and provides 40-Gbps network transmission capacity to support 1-Gbps data rate per optical network unit (ONU).
In this paper, we employ WDM-OFDM PON system to the eight channels. We solve the RF power fading by self-phase modulation (SPM) effect and improve the data rate by the non-linear distortion compensation technology. There are not any inline amplifier and pre-amplifier through the entire system, and we reuse the 10-GHz EAM and PIN, the data rate after 60-km transmission can reach 400Gbps data rate, the loss budget is 24-dB per channel. Therefore it can support 64 ONUs with >6-Gbps capacity.
Content
Acknowledgement………………………………………………………i
Chinese abstract…………………………………………………………ii
English Abstract…………………………………………………………iii
Contents………………………………………………………………….iv
List of Figures…………………………………………………………viii
List of Tables………………………………………………………xi
Chapter 1 Introduction 1
1.1 Fiber optic communication 1
1.1.1 The evolution of communication 2
1.1.2 Metro traffic 5
1.2 The passive-optical network (PON) 6
1.2.1 The roadmap of PON 7
1.2.2 Next generation PON technology 8
1.3 Motivation 9
Chapter 2 Optical OFDM-IMDD PON system 11
2.1 Introduction of OFDM signal 11
2.1.1 The basic structure of OFDM 12
2.1.2 The advantages and disadvantages of OFDM signal 13
2.2 Challenge of OFDM-IMDD PON 16
2.2.1 RF power fading 17
2.3 Self-Phase Modulation Analysis 19
2.4 Bit-loading algorithm 21
Chapter 3 Volterra series analysis 23
3.1 Introduction 23
3.2 Volterra series: time domain analysis 23
3.2.1 MSE function 23
3.2.2 Wiener solution 24
3.2.3 Volterra nonlinear series expansion from wiener filter 27
Chapter 4 Experimental analysis on 60-km 8-channels OFDM long reach PON 29
4.1 60km 1-channel OFDM transmission system 29
4.1.1 Experimental setup 29
4.2 Fading effect 30
4.2.1 Solution of RF power fading by fading cancelling 32
4.2.2 Solution of RF power fading by SPM effect 33
4.3 60-km 8-channel OFDM transmission system 34
4.3.1 Experimental setup 34
4.3.2 Challenge of WDM 38
Chapter 5 Conclusions 50
5.1 Overview of the thesis 50
5.2 Benchmark 52
5.3 Future work 54
References 55
[1]Agrawal, P.Govind., “Fiber-optic communication systems”, Vol. 222. John Wiley & Sons, 2010.
[2]J.Gantz, D.Reinsel “The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east”, IDC report, 2012
[3]A. Jones, Historical Sketch of the Electrical Telegraph, Putnam, New York, 1852
[4]A. G. Bell, U.S. Patent pp. 174,465 (1876)
[5]K. C. Kao and G. A. Hockham, Proc. IEE 113, 1151 (1966); A. Werts, Onde Electr. Pp. 45,967 (1966).
[6]Agrawal, P.Govind., Lightwave Technology: Telecommunication Systems, John Wiley & Sons, 2005.
[7]Cisco, “The zettabyte era – trends and analysis”, white paper., 2014
[8]J.R. Stern, J. W. Balance, D.W. Faulkner, S. Hornung, D.B. Payne, K. Oakely, Passive optical local networks for telephony applications and beyond, Electron. Lett. 23 (24) (1987) 1255-1256.
[9]P. Chanclou, “Network operator requirements for the next generation of optical access networks” IEEE Network, 2012
[10]T. Koonen, “Fiber to the Home/Fiber to the Premises: What, Where, and When?” , Proc. Of the IEEE 94, vol. 94, no. 5, pp.911-934, 2006
[11]H. Nakamura, “NG-PON2 technologies”, Proc. Of OFC/NFOEC, tutorial, 2013
[12]P. Vetter, “Next generation optical access technologies”,Proc. ECOC, tutorial, 2012.
[13]N. Cvijetic, “OFDM for next generation optical access netwroks”, EEE J. Lightwave Technol, vol. 30, no. 4, pp. 384-398, 2012.
[14]http://www.radio-electronics.com
[15]Agrawal, P.Govind., “Fiber-optic communication systems”, Vol. 222. John Wiley & Sons, 2010.
[16]K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-Reach Coherent Coherent WDM PON Employing Self-Polarization-Stablization Technique”, IEEE J. Lightwave Technol., vol. 29, no. 4, pp. 456–462, 2011.
[17]Yan, Weizhen,"100 Gb/s Optical IM-DD Transmission with 10G-Class Devices Enabled by 65 GSamples/s CMOS DAC Core", OFC/NFOEC, 2013
[18]Fiber optic measurement techniques, R.Hui, pp. 276-291
[19]C. C. Wei, “Analysis and iterative equalization of transient and adiabatic chirp effects in DML-based OFDM transmission systems,” Opt. Express 18(26), pp. 25774-25789 (2012)
[20]D. Z. Hsu et al., “21 Gb/s after 100 km OFDM long-reach PON transmission using cost-effective electro-absorption modulator,” Opt. Express 18(26), pp. 27758-27763 (2012)
[21]G. Zhang et al., “A survey on OFDM-based elastic core optical networking”, IEEE Communications Surveys and Tutorials 15, pp. 65-87 (2013)
[22]G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (2001).
[23]C.-C. Wei et al., "32-dB Loss Budget High-Capacity OFDM Long-Reach PON over 60-km Transmission without Optical Amplifier," in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), Th3G.1.
[24]J. Lu, K. B. Letaief, J. C-I Chuang, and M. L. Liou, “M-PSK and M-QAM BER computation using signal-space concepts,” IEEE Transactions on Communications, vol. 47, no. 2, pp. 181-184, Feb. (1999).
[25]J. Campello et al., “Optimal discrete bit loading for multicarrier modulation system,” in Proc. ISIT’98, pp. 193(1998).
[26]T.N. Duong, N. Genay, M Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J.C. Simon, “ Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON system Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photonics Technology Letters, vol. 21 pp.790~792, May-Jun (2009)
[27]A.Garcia-Armarda, “SNR gap approximation for M-PSK-based bit loading,” IEEE Transactions on Wireless Communication, vol. 5, pp.57~60, Jan (2006).
[28]Adaptive filtering, P. Diniz, the 3rd edition, pp. 34-88
[29]Adaptive filter theory, S. Haykin, pp. 94-126
[30]Performance Assessment of SubcarrierMultiplexed Optical Systems: Implications of Laser Nonlinearities, Henrique, pp. 58-77
[31]Adaptive filtering, P. Diniz, the 3rd edition, pp. 451-480
[32]W.Z Yan, B. Liu, L. Li, Z. Tao, T. Takahara, J. Rasmussen, “Nonlinear Distortion and DSP-based Compensation in Metroand Access Networks using Discrete Multi-tone”, Optical Communications (ECOC), 2012
[33]N.S. Andre, K. Louchet, A. Richter, “Equalization techniques for high-speed OFDM-based access systems using direct modulation and direct detection”, ICTON, pp. 1-6, 2013
[34]www.telecomengineering.com/downloads/DWDM%20ITU%20Table%20-%20100%20GHz.pdf
[35]H.Y. Chen, C.C. Wei, C.Y. Lin, L.W. Chen, I.C. Lu, J. Chen, “A 200-Gbps OFDM Long-Reach PON over 60-km Transmission without Inline and Pre-Amplifier”, OFC/NFOEC, 2015
[36]Jianhe Gao, “Demonstration of a Real-Time 25-Gb/s TDM-PON System with 25-Gb/s Downstream Based on Optical Duobinary and 10-Gb/s Burst-Mode Upstream Based on NRZ”, OFC/NFOEC, 2016
[37]Minghui Tao, Lei Zhou, Shuchang Yao, Ding Zou, Shengpin Li, Huafeng Lin, Xiang Liu, “28-Gb/s/λ TDM-PON with Narrow Filter Compensation and Enhanced FEC Supporting 31.5 dB Link Loss Budget after 20-km Downstream Transmission in the C-band”, OFC/NFOEC, 2016
[38]Jianwei Man, Shengmeng Fu, Hongguang Zhang, Jianghe Gao, Li Zeng, and Xiang Liu, ” Downstream Transmission of Pre-Distorted 25-Gb/s Faster-than-Nyquist PON with 10G-Class Optics Achieving over 31 dB Link Budget without Optical Amplification”, OFC/NFOEC, 2016
[39]M. Artiglia, F. Bottoni, R. Corsini, M. Presi, M. Rannello, M. Valvo, E. Ciaramella, “4×10 Gb/s Coherent WDM-PON System over 110km Single Mode Fibre and with 55 dB ODN Power Budget”, OFC/NFOEC, 2016
[40]Zhiguo Zhang, “IMDD-based Channel-reuse, Bidirectional 40 Gb/s/λ WDM-PON”, CLEO, 2016
[41]K.Z. Chen, L.W. Chen, C.Y. Lin, W.J. Huang, C.C. Wei, J. Chen “224-Gbps Transmission for Next-Generation WDM Long-Reach PON Using CAP Modulation”, OFC/NFOEC, 2016
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 混和型拉曼/摻鉺光纖放大器之高速正交分頻多工系統被動光網路系統
2. 室內LED光源應用正交分頻多工技術之高速可見光通訊
3. 混和型拉曼/摻鉺光纖放大器之高速正交分頻 多工系統被動光網路系統應用雪崩式光電二極體與人工神經網路
4. 藉由正規化和剪裁方式降低非線性均衡器之複雜度技術並應用於850奈米垂直共振腔面射型雷射光連結系統
5. 應用LASSO和QR正交化分解來達成低複雜度的Volterra濾波器並應用在長距離被動式光纖系統中
6. 高速且長距離之正交分頻多工強度調變直接偵測系統中的非線性失真補償
7. 基於波長850奈米垂直共振腔面射型雷射之高速率距離乘積光連結系統應用非線性失真補償技術
8. 高速正交分頻多工長距離被動光網路系統透過降低OFDM過高峰均功率比技術
9. 矽晶光電同調收發傳輸系統數位訊號處理技術應用
10. 短距離光連結系統以波長850奈米垂直共振腔體面射型雷射為基礎應用非線性失真補償技術
11. 在光互連系統採用垂直共振腔面射型雷射並作非線性失真補償技術
12. 以多目標基因演算法來降低非線性等化器之複雜度與其 應用在超過10 公里高速光連接系統
13. 運用創新之混合型人工神經網路架構於高速正交分頻多工被動光網路系統
14. 高資訊量傳輸應用於資料中心之光連結系統應用非線性失真補償技術基於波長850奈米及940奈米垂直共振腔面射型雷射
15. 開發類神經網路非線性分類器及降低其複雜度之方法並應用於高速光傳輸系統