(3.220.231.235) 您好!臺灣時間:2021/03/09 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王基琳
研究生(外文):Wang, Ji-Lin
論文名稱:對稱式低金屬污染鎳金屬側向誘發結晶複晶矽薄膜電晶體之研究
論文名稱(外文):Investigation on Symmetrical Ni Induced Lateral Crystallization Poly-Si TFTs with Low Metal Contaminations
指導教授:劉柏村劉柏村引用關係
指導教授(外文):Liu, Po-Tsun
口試委員:趙天生吳耀銓冉曉雯
口試委員(外文):Chao, Tien-ShengWu, Yew-ChungZan, Hsiao-Wen
口試日期:2017-08-16
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:67
中文關鍵詞:複晶矽薄膜電晶體金屬誘發結晶低污染對稱式
外文關鍵詞:poly-Si thin film transistorsNi induced lateral crystallizationlow metal contaminationssymmectrical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要 I
Abstract III
Acknowledgement VI
Table of contents VIII
Figure Captions XI
Table Captions XV
Chapter 1 Introduction 1
1.1 Overview of Poly Silicon Thin Film Transistors 1
1.2 Crystallization Methods of Amorphous Silicon Thin Films 1
1.2.1 Solid Phase Crystallization (SPC) 2
1.2.2 Excimer Laser Crystallization (ELC) 3
1.2.3 Metal Induced (MIC)/Metal Induced Lateral Crystallization (MILC) 5
1.3 Device Parameters Determination and Extraction Methods 9
1.3.1 Basic Electrical Characteristics Measurement 9
1.3.2 Determination of Threshold Voltage 10
1.3.3 Determination of Subthreshold Swing 10
1.3.4 Determination of Field-Effect Mobility 11
1.3.5 Determination of on/off Current Ratio (Ion/Ioff) 12
1.3.6 Grain-Boundary Trap-State Extraction (Ntrap) 12
1.3.7 Interface-Trap-State Extraction (Nit) 13
1.4 Motivations 14
1.5 Organization of the Thesis 16
Chapter 2 Low Metal Contamination Nickel Induced Crystallization (LC-NIC) Poly-Si TFTs with Low Temperature Pre-Heating 17
2.1 Material Preparation and Characterization 17
2.2 Material Properties of LC-NIC Poly-Si Thin Film 18
2.3 LC-NIC Devices Fabrication Procedures 21
2.4 Electrical Characteristics and Discussions 23
2.4.1 Effects of Heating Temperature 24
2.4.2 Effects of Ni Thickness 27
2.5 Summary 1 29
Chapter 3 Symmetric S/D Low Metal Contamination Nickel Induced Lateral Crystallization (LC-NILC) Poly-Si TFTs with Low Temperature Pre-heating 30
3.1 Material Preparation and Characterization 30
3.2 Material Properties of LC-NILC Thin Film 32
3.3 LC-NILC Devices Fabrication Procedures 36
3.4 Electrical Characteristics and Discussions 39
3.4.1 Effects of Heating Temperature 39
3.4.2 Effects of Recrystallization by Rapid Thermal Annealing (RTA) 46
3.4.3 Electrical Reliability of LC-NILC Poly-Si TFTs 49
3.4.4 Effects of Active Region Layout 57
3.4.5 Effects of Gate Insulator 58
3.5 Summary 2 59
Chapter 4 Conclusions and Future Works 61
4.1 Conclusions 61
4.2 Future Works 62
References 63
Vita 67
[1] A. T. Voutsas and M. K. Hatalis, "Structure of as‐deposited LPCVD silicon films at low deposition temperatures and pressures," J. Electrochem. Soc., vol. 139, no. 9, pp. 2659-2665, Sep. 1992.
[2] L. Haji, P. Joubert, J. Stoemenos, and N. A. Economou, "Mode of growth and microstructure of polycrystalline silicon obtained by solid‐phase crystallization of an amorphous silicon film," J. Appl. Phys., vol. 75, no. 8, pp. 3944-3952, Apr. 1994.
[3] A. Nakamura, F. Emoto, E. Fujii, A. Yamamoto, Y. Uemoto, K. Senda, and G. Kano, "Analysis of solid phase crystallization in amorphized polycrystalline Si films on quartz substrates," J. Appl. Phys., vol. 66, no. 9, pp. 4248-4251, Nov. 1989.
[4] W.-E. Hong and J.-S. Ro, "Kinetics of solid phase crystallization of amorphous silicon analyzed by Raman spectroscopy," J. Appl. Phys., vol. 114, no. 7, pp. 073511-1-073511-6, Aug. 2013.
[5] C.-C. Kuo, "Recrystallization mechanism of amorphous silicon thin films upon excimer laser crystallization " J. Optoelectron. Adv. Mater., vol. 1, no. 1, pp. 25-30, Jan. 2007.
[6] J. S. Im, H. J. Kim, and M. O. Thompson, "Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films," Appl. Phys. Lett., vol. 63, no. 14, pp. 1969-1971, Oct. 1993.
[7] J. S. Im and H. J. Kim, "On the super lateral growth phenomenon observed in excimer laser‐induced crystallization of thin Si films," Appl. Phys. Lett., vol. 64, no. 17, pp. 2303-2305, Apr. 1994.
[8] S. R. Stiffler, M. O. Thompson, and P. S. Peercy, "Transient nucleation following pulsed-laser melting of thin silicon films," Phys. Rev. B, vol. 43, no. 12, pp. 9851-9855, Apr. 1991.
[9] R. S. Wagner and W. C. Ellis, "Vapor-liquid-solid mechanism of single crystal growth," Appl. Phys. Lett., vol. 4, no. 5, pp. 89-90, Mar. 1964.
[10] L. Seok-Woon and J. Seung-Ki, "Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization," IEEE Electron Device Lett., vol. 17, no. 4, pp. 160-162, Apr. 1996.
[11] L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engström, and P. A. Psaras, "Crystallization of amorphous silicon during thin‐film gold reaction," J. Appl. Phys., vol. 62, no. 9, pp. 3647-3655, Nov. 1987.
[12] S. Y. Yoon, K. H. Kim, C. O. Kim, J. Y. Oh, and J. Jang, "Low temperature metal induced crystallization of amorphous silicon using a Ni solution," J. Appl. Phys., vol. 82, no. 11, pp. 5865-5867, Dec. 1997.
[13] F. A. Quli and J. Singh, "Transmission electron microscopy studies of metal-induced crystallization of amorphous silicon," Mater. Sci. Eng. B, vol. 67, no. 3, pp. 139-144, Dec. 1999.
[14] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, "Nickel induced crystallization of amorphous silicon thin films," J. Appl. Phys., vol. 84, no. 1, pp. 194-200, Jul. 1998.
[15] S. W. Lee, Y. C. Jeon, and S. K. Joo, "Pd induced lateral crystallization of amorphous Si thin films," Appl. Phys. Lett., vol. 66, no. 13, pp. 1671-1673, Mar. 1995.
[16] S.-W. Lee, B.-I. Lee, T.-K. Kim, and S.-K. Joo, "Pd2Si-assisted crystallization of amorphous silicon thin films at low temperature," J. Appl. Phys., vol. 85, no. 10, pp. 7180-7184, May 1999.
[17] C. Hayzelden and J. L. Batstone, "Silicide formation and silicide‐mediated crystallization of nickel‐implanted amorphous silicon thin films," J. Appl. Phys., vol. 73, no. 12, pp. 8279-8289, Jun. 1993.
[18] A. R. Joshi, T. Krishnamohan, and K. C. Saraswat, "A model for crystal growth during metal induced lateral crystallization of amorphous silicon," J. Appl. Phys., vol. 93, no. 1, pp. 175-181, Jan. 2002.
[19] 胡晟民, 「鎳金屬誘發非晶矽薄膜側向結晶-成長機制、金屬捉聚與低溫複晶矽薄膜電晶體效能之研究」, 國立交通大學, 博士論文, 民國97年.
[20] M. L. Reed and J. D. Plummer, "Chemistry of Si‐SiO2 interface trap annealing," J. Appl. Phys., vol. 63, no. 12, pp. 5776-5793, Jun. 1988.
[21] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, "Conductivity behavior in polycrystalline semiconductor thin film transistors," J. Appl. Phys., vol. 53, no. 2, pp. 1193-1202, Feb. 1982.
[22] R. E. Proano, R. S. Misage, and D. G. Ast, "Development and electrical properties of undoped polycrystalline silicon thin-film transistors," IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1915-1922, Sep. 1989.
[23] T. J. King, M. G. Hack, and I. W. Wu, "Effective density‐of‐states distributions for accurate modeling of polycrystalline‐silicon thin‐film transistors," J. Appl. Phys., vol. 75, no. 2, pp. 908-913, Jan. 1994.
[24] C. A. Dimitriadis, P. A. Coxon, L. Dozsa, L. Papadimitriou, and N. Economou, "Performance of thin-film transistors on polysilicon films grown by low-pressure chemical vapor deposition at various pressures," IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 598-606, Mar. 1992.
[25] E. Campo, E. Scheid, D. Bielle-Daspet, and J. P. Guillemet, "Influence of rapid thermal and low temperature processing on the electrical properties of polysilicon thin film transistors," IEEE Trans. Semicond. Manuf., vol. 8, no. 3, pp. 298-303, Aug. 1995.
[26] S. Nagata, G. Nakagawa, and T. Asano, "Grain filtering in MILC and its impact on performance of n- and p-channel TFTs," in Proc. TENCON 2010 - 2010 IEEE Region 10 Conference, Fukuoka, Japan, Nov. 2010, pp. 951-956.
[27] L. Seok-Woon, I. Tae-Hyung, and J. Seung-Ki, "Fabrication of high-mobility p-channel poly-Si thin film transistors by self-aligned metal-induced lateral crystallization," IEEE Electron Device Lett., vol. 17, no. 8, pp. 407-409, Aug. 1996.
[28] Y. Hua, "Studies of a new chemical etching method-152 Secco Etch in failure analysis of wafer fabrication," in Proc. ICSE '98, Bangi, Malaysia, Nov. 1998, pp. 20-26.
[29] F. Secco d' Aragona, "Dislocation Etch for (100) Planes in Silicon," J. Electrochem. Soc., vol. 119, no. 7, pp. 948-951, Jul. 1972.
[30] J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, "Near-infrared femtosecond laser-induced crystallization of amorphous silicon," Appl. Phys. Lett., vol. 85, no. 7, pp. 1232-1234, Aug. 2004.
[31] Y. Kuo and P. M. Kozlowski, "Polycrystalline silicon formation by pulsed rapid thermal annealing of amorphous silicon," Appl. Phys. Lett., vol. 69, no. 8, pp. 1092-1094, Aug. 1996.
[32] J. Jang, "Poly-Si TFTs by Non-Laser Crystallization Methods," in Thin Film Transistors: Materials and Processes. vol. 6, Y. Kuo, Ed. New York: Kluwer Academic, 2004, pp. 220-253.
[33] C. E. Blat, E. H. Nicollian, and E. H. Poindexter, "Mechanism of negative‐bias‐temperature instability," J. Appl. Phys., vol. 69, no. 3, pp. 1712-1720, Feb. 1991.
[34] S. Ogawa and N. Shiono, "Generalized diffusion-reaction model for the low-field charge-buildup instability at the Si/SiO2 interface," Phys. Rev. B, vol. 51, no. 7, pp. 4218-4230, Feb. 1995.
[35] C. Y. Chen, J. W. Lee, S. D. Wang, M. S. Shieh, P. H. Lee, W. C. Chen, H. Y. Lin, K. L. Yeh, and T. F. Lei, "Negative bias temperature instability in low-temperature polycrystalline silicon thin-film transistors," IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 2993-3000, Nov. 2006.
[36] H.-C. Lin, C.-H. Hung, W.-C. Chen, Z.-M. Lin, H.-H. Hsu, and T.-Y. Hunag, "Origin of hysteresis in current-voltage characteristics of polycrystalline silicon thin-film transistors," J. Appl. Phys., vol. 105, no. 5, pp. 054502-1-054502-6, Mar. 2009.
[37] G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-κ gate dielectrics: Current status and materials properties considerations," J. Appl. Phys., vol. 89, no. 10, pp. 5243-5275, May 2001.
[38] L. Kang, B. H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, "Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric," IEEE Electron Device Lett., vol. 21, no. 4, pp. 181-183, Apr. 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔