跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林黃譽
研究生(外文):Lin, Huang-Yu
論文名稱:複合奈米結構與新穎奈米材料於氮化鎵發光二極體之研究
論文名稱(外文):Study of Hybrid Nanostructure and Novelty Nano- Materials for the GaN Based White LEDs
指導教授:郭浩中郭浩中引用關係陳皇銘
指導教授(外文):Kuo Hao-ChungHuang-Ming Chen
口試委員:程育人李柏璁陳登銘林建中施閔雄
口試委員(外文):Yuh-Jen ChengPo-Tsung LeeTeng-Ming ChenChien-Chung LinMin-Hsiung Shih
口試日期:2017-9-12
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:175
中文關鍵詞:發光二極體光子晶體奈米結構量子點高分子發光材料
外文關鍵詞:Light Emitting DiodesPhotonic crystalnano structurequantum dotpolymer emission material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:4
近年來,發光二極體發展迅速,且逐漸受歡迎並普遍用於生活中並取代傳統的鎢絲燈,雖然白光發光二極體具有優勢,但仍有許多光特性如發光效率、色均勻度、與光品質需要優化。在本研究中第一部分,我們設計光子晶體結構如布拉格反射鏡(DBR structure)優化白光發光二極體封裝體與全彩微顯示器、奈米蜂巢結構優化白光發光二極體封裝體與可撓式發光二極體。使用布拉格反射鏡將remote 狀封裝體之正負七十度的變角度色溫控制從1758K到280K,且因為優化藍光的光萃取提升10%左右的發光效率。另一方面,在全彩微顯示器上,我們使用布拉格反射鏡提升畫素的亮度:提升194 % 藍光強度, 173 % 綠光強度及183 % 紅光強度。除了布拉格反射鏡,另一種奈米結構-奈米蜂巢結構我們使用PS奈米小球轉印於矽膠上而成蜂巢結構螢光粉薄膜,再用於remote狀封裝體與可撓式發光二極體提升分別為10%與7%左右的亮度,另一方面也優化此光電元件之色均勻度。
除了發光效率與色均勻度外,色品質如演色性Ra與R9值為另一重要課題。本論文第二部分為使用新穎的奈米與複合發光材料來製作高品質的發光二極體。在本論文中我們結合複合量子點與高分子材料PFO-Green B發光材料發光二極體,主因Green B具有較高的量子效率與較廣的頻譜,可以取代量子效率較低的藍光量子點製作效率較純量子點發光二極體高,演色性較好的複合型白光發光二極體(Ra=90)。我們也開發將PFO-Green B結合PFO族之高分子發光材料:PFO、PFO-DBT製作成光致發光薄膜應用於可撓式發光二極體,並與開發完成的量子點薄膜製作的可撓式發光二極體比較其優缺點,其中高分子材料製作之可撓式發光二極體具有較優秀的色品質(演色性Ra與R9皆為96)。另一方面,我們也開發無毒的奈米發光材料:石磨烯量子點晶體與多孔矽量子點以液態封裝的方式來製作高演色性(CRI-Ra為96、CRI-R9為88)之白光發光二極體。這些前瞻發光材料使用液態封裝方式可以提升發光二極體的發光效率與維持其高品質的演色性,而用於可撓式發光二極體可以演示優秀的演色性並於未來適合用於特殊情境照明例如美術館、廚房、與手術間用照明。
Light-emitting diodes (LEDs) have become increasingly popular and gradually replaced the traditional lighting. Although the w-LEDs to use for lighting are with many advantages, there's still room for improvement such as the luminous efficiency, uniformity, and the color rendering index (CRI). In this study, the remote phosphor LED device with DBR structure that the CCT deviation can be improved from 1758K to 280K in a range of -70 to 70 degree and the luminous flux increases more than 10% due to the enhancement of the light extraction of the blue light. When the photonic crystal DBR structure combines with the quantum dots (QDs) micro-display device, the enhanced luminous flux is 194 % (blue), 173 % (green) and 183 % (red) more than that of the samples without the DBR structure. Another investigation of the photonic crystal is that we design the honeycomb PDMS structure by the nano-sphere, and then apply to the remote phosphor w-LEDs to improve the color uniformity and luminous efficiency of 10% for remote phosphor package and 7% for flexible white LED.
Besides the color uniformity and the luminous efficiency, the color rendering index (CRI) is also the important issue of w-LEDs. This research also proposed the hybrid PFO-Green B and quantum dots structure of the w-LEDs. The PFO-Green B is with the much higher quantum yield than blue quantum dot and which is with the broadband emission spectrum to improve the CRI (90). The emission polymer films fabricated by polyfluorene, PFO-Green B, and PFO-DBT have been demonstrate the excellent color quality (Both of CRI-Ra and CRI-R9 are approximate 96) flexible white LED. On the other hand, the nontoxic emission nano-scale materials have been developed by the liquid type package to demonstrate the w-LEDs with high CRI-Ra of 95 and CRI-R9 of 88. The liquid type package and for these novelty materials can improve their luminous efficiency and maintain their color quality and the flexible LEDs with the excellent color quality, which suitability for special applications, such as in the places of museum, kitchen or surgery room in the future, its high R9 and high CRI characteristics can provide high quality of services.
Contents
Chapter 1 Introduction 1
1-1 Light-Emitting Diodes 1
1-2 White Light-Emitting Diodes 1
1-3 Quantum dots 2
1-4 Overview of the thesis 4
Figure caption 7
Reference 9
Chapter 2 Theoretical Backgrounds 11
2-1 Principle of LED 11
2-2 Luminescence principle of quantum dots 15
2-3 Luminescence principle of polyfluorene 16
2.4 Colorimetry and CIE Chromaticity 18
2.5 Principle of photonics crystal 26
Figure caption 31
Reference 45
Chapter 3 Experimental setup 47
3-1 Fabrication machine 47
3-2 Measured Instrument 50
Figure caption 54
Reference 61
Chapter 4 Development of high light quality for white light-emitting diodes by photonic crystal 62
4-1 Introduction 62
4-2 Improvement in color uniformity of DBR structure for white LEDs 64
4-2.1 Motivation & Challenges 64
4-2.2 Experimental and setup 64
4-2.3 Result and discussion 65
4-2.4 Conclusion 67
4-3 Enhanced luminous efficiency of full-color micro display based on quantum-dot aerosol jet technology by the DBR structure 67
4-3.1 Motivation & Challenges 67
4-3.2 Experimental and setup 68
4-3.3 Result and discussion 71
4-3.4 Conclusion 74
4-4 Improve the property of emission by honeycomb nano structure for remote LED and flexible LED 75
4-4.1 Motivation & Challenges 75
4-4.2 Experimental and setup 75
4-4.3 Result and discussion 76
4-4.4 Conclusion 82
4-5 Summary 83
Figure caption 84
Table caption 99
Reference 101
Chapter 5 Optimization the performance of the white light-emitting diodes by novelty emission-materials. 106
5-1 Introduction 106
5-2 Excellent color quality of white light-emitting diodes by embedding quantum dots in polymers material 108
5-3 Investigation of excellent color quality flexible white light-emitting diodes by polymers 111
5-4 Liquid type white LED package by nontoxic emission materials 121
5-5 Summary 131
Figure caption 132
Table caption 157
Reference 161
Chapter 6 Future work 170
6-1 Introduction 170
6-2 Hybrid perovskite quantum dot fabricated film and liquid-type package for white LEDs. 171
6-3 Hybrid CdSe/ZnS quantum dot and perovskite quantum dot for full color micro display. 171
Figure caption 173
Reference 175
Chapter 1
Nakamura, S.; Mukai, T.; Senoh, M., Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes. Applied Physics Letters 1994, 64 (13), 1687-1689.
[2] Schubert, E. F.; Kim, J. K., Solid-state light sources getting smart. Science 2005, 308 (5726), 1274-1278.
[3] H. C.; Chen, K. J.; Wang, C. H.; Lin, C. C.; Yeh, C. C.; Tsai, H. H.; Shih, M. H.; Kuo, H. C.; Lu, T. C., A novel randomly textured phosphor structure for highly efficient white light-emitting diodes. Nanoscale research letters 2012, 7 (1), 188.
[4] Fujita, S.; Sakamoto, A.; Tanabe, S., Luminescence characteristics of YAG glass–ceramic phosphor for white LED. IEEE Journal of Selected Topics in Quantum Electronics 2008, 14 (5), 1387-1391.
[5] Huang, J.-K.; Lin, D.-W.; Shih, M.-H.; Lee, K.-Y.; Chen, J.-R.; Huang, H.-W.; Kuo, S.-Y.; Lin, C.-H.; Lee, P.-T.; Chi, G.-C., Investigation and comparison of the GaN-based light-emitting diodes grown on high aspect ratio nano-cone and general micro-cone patterned sapphire substrate. IEEE J. Disp. Technol. 2013, 9 (12), 947-952.
[6] Zheleva, T. S.; Nam, O.-H.; Bremser, M. D.; Davis, R. F., Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Appl. Phys. Lett. 1997, 71 (17), 2472-2474.
[7] Wuu, D.; Wang, W.; Wen, K.; Huang, S.; Lin, S.; Huang, S.; Lin, C.; Horng, R., Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template. Appl. Phys. Lett 2006, 89 (16), 161105.
[8] http://www-opto.e-technik.uni-ulm.de/lehre/cs/
[9] Steigerwald, D. A.; Bhat, J. C.; Collins, D.; Fletcher, R. M.; Holcomb, M. O.; Ludowise, M. J.; Martin, P. S.; Rudaz, S. L., Illumination with solid state lighting technology. IEEE Journal of Selected Topics in Quantum Electronics 2002, 8 (2), 310-320.
[10] Chen, Y.-H.; Lee, C.-H.; Lin, J.-H.; Ma, S.-H. In Analyzing of light pattern uniformity in multi-chips LED lighting, SPIE Optical Engineering+ Applications, International Society for Optics and Photonics: 2014; pp 91921B-91921B-7.
[11] Kim, J. K.; Luo, H.; Schubert, E. F.; Cho, J.; Sone, C.; Park, Y., Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup. Japanese Journal of Applied Physics 2005, 44 (5L), L649.
[12] Huang, C.-Y.; Su, Y.-K.; Chen, Y.-C.; Tsai, P.-C.; Wan, C.-T.; Li, W.-L., Hybrid CdSe-ZnS quantum dot-InGaN-GaN quantum well red light-emitting diodes. IEEE electron device letters 2008, 29 (7), 711-713.
[13] Chen, K.-J.; Lai, Y.-C.; Lin, B.-C.; Lin, C.-C.; Chiu, S.-H.; Tu, Z.-Y.; Shih, M.-H.; Yu, P.; Lee, P.-T.; Li, X., Efficient hybrid white light-emitting diodes by organic-inorganic materials at different CCT from 3000K to 9000K. Optics express 2015, 23 (7), A204-A210.
[14] Chung, W.; Park, K.; Yu, H. J.; Kim, J.; Chun, B.-H.; Kim, S. H., White emission using mixtures of CdSe quantum dots and PMMA as a phosphor. Optical Materials 2010, 32 (4), 515-521.
[15] Kathirgamanathan, P.; Bushby, L. M.; Kumaraverl, M.; Ravichandran, S.; Surendrakumar, S., Electroluminescent organic and quantum dot LEDs: The state of the art. Journal of Display Technology 2015, 11 (5), 480-493.
[16] Huang, C.-Y.; Su, Y.-K.; Chen, Y.-C.; Tsai, P.-C.; Wan, C.-T.; Li, W.-L., Hybrid CdSe-ZnS quantum dot-InGaN-GaN quantum well red light-emitting diodes. IEEE electron device letters 2008, 29 (7), 711-713.
[17] Chen, K.-J.; Lin, C.-C.; Han, H.-V.; Lee, C.-Y.; Chien, S.-H.; Wang, K.-Y.; Chiu, S.-H.; Tu, Z.-Y.; Li, J.-R.; Chen, T.-M., Wide-range correlated color temperature light generation from resonant cavity hybrid quantum dot light-emitting diodes. IEEE Journal of Selected Topics in Quantum Electronics 2015, 21 (4), 23-29.
[18] Kathirgamanathan, P.; Bushby, L. M.; Kumaraverl, M.; Ravichandran, S.; Surendrakumar, S., Electroluminescent organic and quantum dot LEDs: The state of the art. Journal of Display Technology 2015, 11 (5), 480-493.
[19] Herman, M. A.; Sitter, H., Molecular beam epitaxy: fundamentals and current status. Springer Science & Business Media: 2012; Vol. 7.
[20] Shen, C.-y.; Li, K.; Hou, Q.-l.; Feng, H.-j.; Dong, X.-y., White LED based on YAG: Ce, Gd phosphor and CdSe–ZnS core/shell quantum dots. IEEE Photonics Technology Letters 2010, 22 (12), 884-886.
[21] Shen, C.-C.; Tseng, W.-L., One-step synthesis of white-light-emitting quantum dots at low temperature. Inorganic chemistry 2009, 48 (18), 8689-869.
[22] Kitai, A., Luminescent materials and applications. John Wiley & Sons: 2008; Vol. 25.

Chapter 2

[1] Schubert, E. F.; Gessmann, T.; Kim, J. K., Light emitting diodes. Wiley Online Library: 2005.
[2] Fan, S.-W.; Srivastava, A. K.; Dravid, V. P., UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Applied Physics Letters 2009, 95 (14), 142106.
[3] Saleh, B. E.; Teich, M. C., Semiconductor photon detectors. Fundamentals of Photonics 2007, 644-695.
[4] Allen, S. C.; Steckl, A. J., A nearly ideal phosphor-converted white light-emitting diode. Applied Physics Letters 2008, 92 (14), 128.
[5] Walling, M. A.; Novak, J. A.; Shepard, J. R., Quantum dots for live cell and in vivo imaging. International journal of molecular sciences 2009, 10 (2), 441-491.
[6] Kathirgamanathan, P.; Bushby, L. M.; Kumaraverl, M.; Ravichandran, S.; Surendrakumar, S., Electroluminescent organic and quantum dot LEDs: The state of the art. Journal of Display Technology 2015, 11 (5), 480-493.
[7] Schroeder, R.; Ullrich, B.; Graupner, W.; Scherf, U., Excitation density and photoluminescence studies of polyfluorene excited by two-photon absorption. Journal of Physics: Condensed Matter 2001, 13 (16), L313.
[8] Schroeder, R.; Ullrich, B.; Graupner, W.; Scherf, U., Excitation density and photoluminescence studies of polyfluorene excited by two-photon absorption. Journal of Physics: Condensed Matter 2001, 13 (16), L313.
[9] Monkman, A.; Rothe, C.; King, S.; Dias, F., Polyfluorene photophysics. Polyfluorenes 2008, 187-225.
[10] https://thehumanevolutionblog.com/2015/01/12/the-poor-design-of-the-human-eye/
[11] https://littlewebgiants.com/how-do-we-perceive-colour/
[12] Phillips, J. M.; Coltrin, M. E.; Crawford, M. H.; Fischer, A. J.; Krames, M. R.; Mueller‐Mach, R.; Mueller, G. O.; Ohno, Y.; Rohwer, L. E.; Simmons, J. A., Research challenges to ultra‐efficient inorganic solid‐state lighting. Laser & Photonics Reviews 2007, 1 (4), 307-333.
[13] Erdem, T.; Nizamoglu, S.; Demir, H. V., Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes. Optics express 2012, 20 (3), 3275-3295.
[14] J Phillips, J. M.; Coltrin, M. E.; Crawford, M. H.; Fischer, A. J.; Krames, M. R.; Mueller‐Mach, R.; Mueller, G. O.; Ohno, Y.; Rohwer, L. E.; Simmons, J. A., Research challenges to ultra‐efficient inorganic solid‐state lighting. Laser & Photonics Reviews 2007, 1 (4), 307-333.
[15] Nizamoglu, S.; Erdem, T.; Sun, X. W.; Demir, H. V., Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering. Optics letters 2010, 35 (20), 3372-3374.
[16] Schubert, E. F.; Gessmann, T.; Kim, J. K., Light emitting diodes. Wiley Online Library: 2005.
[17] http://glossary.periodni.com/glossary.php?en=blackbody+radiation
[18] Renovation Store, “LED Lights,” [Online]. Available: http://www.renovatorstore.com.au/blog/led-lights-what-is-the-difference between-warm-white-and-cool-white/
[19] Erdem, T.; Nizamoglu, S.; Sun, X. W.; Demir, H. V., A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores. Optics express 2010, 18 (1), 340-347.
[20] https://livingonsolarpower.wordpress.com/2013/06/11/color-rendering-properties-of-light-sources/
[21] Kelly, G., Understand color science to maximize success with LEDs–Part 4. LED Magazine February 2013.
[22] http://viewsonicglobal.com/product-detail.php?item=VX4002-4K&pd=418
[23] Sukhoivanov, I. A.; Guryev, I. V., Introduction to Photonic Crystals. In Photonic Crystals, Springer: 2009; pp 1-12.
[24] Johnson, S. G.; Joannopoulos, J. D., Introduction to photonic crystals: Bloch’s theorem, band diagrams, and gaps (but no defects). Photonic Crystal Tutorial 2003, 1-16.
[25] Lekner, J., Light in periodically stratified media. JOSA A 1994, 11 (11), 2892-2899.
[26] Lekner, J., Omnidirectional reflection by multilayer dielectric mirrors. Journal of Optics A: Pure and Applied Optics 2000, 2 (5), 349.
[27] García, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S. In Design of semiconductor-based back reflectors for high V oc monolithic multijunction solar cells, Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, IEEE: 2012; pp 002042-002047.
[28] Choy, H. K. H. Design and fabrication of distributed Bragg reflectors for vertical-cavity surface-emitting lasers. Massachusetts Institute of Technology, 1998.

Chapter 3
[1] Krames, M. R.; Shchekin, O. B.; Mueller-Mach, R.; Mueller, G. O.; Zhou, L.; Harbers, G.; Craford, M. G., Status and future of high-power light-emitting diodes for solid-state lighting. Journal of Display Technology 2007, 3 (2), 160-175.
[2] Sher, C.-W.; Chen, K.-J.; Lin, C.-C.; Han, H.-V.; Lin, H.-Y.; Tu, Z.-Y.; Tu, H.-H.; Honjo, K.; Jiang, H.-Y.; Ou, S.-L., Large-area, uniform white light LED source on a flexible substrate. Optics express 2015, 23 (19), A1167-A1178.
[3] Mette, A.; Richter, P.; Hörteis, M.; Glunz, S., Metal aerosol jet printing for solar cell metallization. Progress in Photovoltaics: Research and Applications 2007, 15 (7), 621-627.
[4] Available:http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html
[5] Shih-Hsuan Chien, “Improving Luminous Efficiency and Light Quality of Cutting-edge Quantum Dots Light-Emitting Devices using Distributed Bragg Reflector,” Master thesis, 2015.

Chapter 4

[1] Nakamura, S.; Mukai, T.; Senoh, M., Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes. Applied Physics Letters 1994, 64 (13), 1687-1689.
[2] Schubert, E. F.; Kim, J. K., Solid-state light sources getting smart. Science 2005, 308 (5726), 1274-1278.
[3] Chen, H. C.; Chen, K. J.; Wang, C. H.; Lin, C. C.; Yeh, C. C.; Tsai, H. H.; Shih, M. H.; Kuo, H. C.; Lu, T. C., A novel randomly textured phosphor structure for highly efficient white light-emitting diodes. Nanoscale research letters 2012, 7 (1), 188.
[4] Fujita, S.; Sakamoto, A.; Tanabe, S., Luminescence characteristics of YAG glass–ceramic phosphor for white LED. IEEE Journal of Selected Topics in Quantum Electronics 2008, 14 (5), 1387-1391.
[5] Huang, J.-K.; Lin, D.-W.; Shih, M.-H.; Lee, K.-Y.; Chen, J.-R.; Huang, H.-W.; Kuo, S.-Y.; Lin, C.-H.; Lee, P.-T.; Chi, G.-C., Investigation and comparison of the GaN-based light-emitting diodes grown on high aspect ratio nano-cone and general micro-cone patterned sapphire substrate. Journal of Display Technology 2013, 9 (12), 947-952.
[6] Zheleva, T. S.; Nam, O.-H.; Bremser, M. D.; Davis, R. F., Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Applied Physics Letters 1997, 71 (17), 2472-2474.
[7] Zheleva, T. S.; Nam, O.-H.; Bremser, M. D.; Davis, R. F., Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Applied Physics Letters 1997, 71 (17), 2472-2474.
[8] Sugawara, H.; Itaya, K.; Hatakoshi, G.-i., Hybrid-type InGaAlP/GaAs distributed Bragg reflectors for InGaAlP light-emitting diodes. Japanese Journal of Applied Physics 1994, 33 (11R), 6195.
[9] Chiou, S.; Lee, C.; Huang, C.; Chen, C., Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes. Journal of Applied Physics 2000, 87 (4), 2052-2054.
[10] Oh, J. R.; Cho, S.-H.; Park, H. K.; Oh, J. H.; Lee, Y.-H.; Do, Y. R., Full down-conversion of amber-emitting phosphor-converted light-emitting diodes with powder phosphors and a long-wave pass filter. Optics express 2010, 18 (11), 11063-11072.
[11] Lin, H.-Y.; Chen, K.-J.; Wang, S.-W.; Lin, C.-C.; Wang, K.-Y.; Li, J.-R.; Lee, P.-T.; Shih, M.-H.; Li, X.; Chen, H.-M., Improvement of light quality by DBR structure in white LED. Optics express 2015, 23 (3), A27-A33.
[12] Yang, L.; Wang, S.; Lv, Z.; Liu, S., Color deviation controlling of phosphor conformal coating by advanced spray painting technology for white LEDs. Applied optics 2013, 52 (10), 2075-2079.
[13] Shuai, Y.; He, Y.; Tran, N. T.; Shi, F. G., Angular CCT uniformity of phosphor converted white LEDs: Effects of phosphor materials and packaging structures. IEEE Photonics Technology Letters 2011, 23 (3), 137-139.
[14] Liu, Z.; Liu, S.; Wang, K.; Luo, X., Optical analysis of color distribution in white LEDs with various packaging methods. IEEE Photonics Technology Letters 2008, 20 (24), 2027-2029.
[15] Yang, L.; Lv, Z.; Jiaojiao, Y.; Liu, S., Effects of melamine formaldehyde resin and CaCO 3 diffuser-loaded encapsulation on correlated color temperature uniformity of phosphor-converted LEDs. Applied optics 2013, 52 (22), 5539-5544.
[16] Liu, C.-Y.; Chen, K.-J.; Lin, D.-W.; Lee, C.-Y.; Lin, C.-C.; Chien, S.-H.; Shih, M.-H.; Chi, G.-C.; Chang, C.-Y.; Kuo, H.-C., Improvement of emission uniformity by using micro-cone patterned PDMS film. Optics express 2014, 22 (4), 4516-4522.
[17] Chen, L.-C.; Wang, C.-K.; Huang, J.-B.; Hong, L.-S., A nanoporous AlN layer patterned by anodic aluminum oxide and its application as a buffer layer in a GaN-based light-emitting diode. Nanotechnology 2009, 20 (8), 085303..
[18] Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," Appl. Phys. Lett. 2011, , 98 (15), 151102.
[19] Huang, J.-K.; Lin, D.-W.; Shih, M.-H.; Lee, K.-Y.; Chen, J.-R.; Huang, H.-W.; Kuo, S.-Y.; Lin, C.-H.; Lee, P.-T.; Chi, G.-C., Investigation and comparison of the GaN-based light-emitting diodes grown on high aspect ratio nano-cone and general micro-cone patterned sapphire substrate. Journal of Display Technology 2013, 9 (12), 947-952.
[20] Lee, Y.-J.; Chiu, C.-H.; Ke, C. C.; Lin, P. C.; Lu, T.-C.; Kuo, H.-C.; Wang, S.-C., Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate. IEEE Journal of Selected Topics in Quantum Electronics 2009, 15 (4), 1137-1143.
[21] Chiu, C.-H.; Lin, C.-C.; Han, H.-V.; Liu, C.-Y.; Chen, Y.-H.; Lan, Y.-P.; Yu, P.; Kuo, H.-C.; Lu, T.-C.; Wang, S.-C., High efficiency GaN-based light-emitting diodes with embedded air voids/SiO2 nanomasks. Nanotechnology 2012, 23 (4), 045303.
[22] Ali, M.; Romanov, A.; Suihkonen, S.; Svensk, O.; Sintonen, S.; Sopanen, M.; Lipsanen, H.; Nevedomsky, V.; Bert, N.; Odnoblyudov, M., Analysis of threading dislocations in void shape controlled GaN re-grown on hexagonally patterned mask-less GaN. Journal of Crystal Growth 2012, 344 (1), 59-64.
[23] Zhao, J.; Wang, A.; Green, M. A.; Ferrazza, F., 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters 1998, 73 (14), 1991-1993.
[24] Widawski, G.; Rawiso, M.; François, B., Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 1994, 369 (6479), 387-389.
[25] Li, L.; Zhong, Y.; Ma, C.; Li, J.; Chen, C.; Zhang, A.; Tang, D.; Xie, S.; Ma, Z., Honeycomb-patterned hybrid films and their template applications via a tunable amphiphilic block polymer/inorganic precursor system. Chemistry of Materials 2009, 21 (20), 4977-4983.
[26] Yeh, P.; Gu, C., Optics of liquid crystal displays. John Wiley & Sons: 2010; Vol. 67.
[27] Shieh, H.-P.; Huang, Y.-P.; Su, M.-J.; Wu, S.-T. In Single cell-gap transflective color TFT-LCD by using image-enhanced reflector, Optoelectronics, Proceedings of the Sixth Chinese Symposium, IEEE: 2003; pp 270-272.
[28] Riehemann, S.; Grossmann, C.; Vogel, U.; Richter, B.; Herold, R.; Notni, G., Ultra small OLED pico projector. Optik & Photonik 2009, 4 (2), 34-36.
[29] Liu, Z. J.; Chong, W. C.; Wong, K. M.; Tam, K. H.; Lau, K. M., A novel BLU-free full-color LED projector using LED on silicon micro-displays. IEEE Photonics Technology Letters 2013, 25 (23), 2267-2270.
[30] Liu, Z. J.; Chong, W. C.; Wong, K. M.; Lau, K. M., 360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays. Journal of Display Technology 2013, 9 (8), 678-682.
[31] Liu, Z. J.; Chong, W. C.; Wong, K. M.; Keung, C. W.; Lau, K. M., Investigation of forward voltage uniformity in monolithic light-emitting diode arrays. IEEE Photonics Technology Letters 2013, 25 (13), 1290-1293.
[32] Gong, Z.; Gu, E.; Jin, S.; Massoubre, D.; Guilhabert, B.; Zhang, H.; Dawson, M.; Poher, V.; Kennedy, G.; French, P., Efficient flip-chip InGaN micro-pixellated light-emitting diode arrays: promising candidates for micro-displays and colour conversion. Journal of Physics D: Applied Physics 2008, 41 (9), 094002.
[33] Chen, K.-J.; Chen, H.-C.; Lin, C.-C.; Wang, C.-H.; Yeh, C.-C.; Tsai, H.-H.; Chien, S.-H.; Shih, M.-H.; Kuo, H.-C., An investigation of the optical analysis in white light-emitting diodes with conformal and remote phosphor structure. Journal of Display Technology 2013, 9 (11), 915-920.
[34] Kuo, H.-C.; Hung, C.-W.; Chen, H.-C.; Chen, K.-J.; Wang, C.-H.; Sher, C.-W.; Yeh, C.-C.; Lin, C.-C.; Chen, C.-H.; Cheng, Y.-J., Patterned structure of remote phosphor for phosphor-converted white LEDs. Optics express 2011, 19 (104), A930-A936.
[35] Han, H.-V.; Lin, H.-Y.; Lin, C.-C.; Chong, W.-C.; Li, J.-R.; Chen, K.-J.; Yu, P.; Chen, T.-M.; Chen, H.-M.; Lau, K.-M., Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Optics express 2015, 23 (25), 32504-32515.
[36] Woods, A. J., Crosstalk in stereoscopic displays: a review. Journal of Electronic Imaging 2012, 21 (4), 040902-040902.
[37] Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G., Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389 (6653), 827.
[38] Jiang, C.; Zhong, Z.; Liu, B.; He, Z.; Zou, J.; Wang, L.; Wang, J.; Peng, J.; Cao, Y., Coffee-Ring-Free Quantum Dot Thin Film Using Inkjet Printing from a Mixed-Solvent System on Modified ZnO Transport Layer for Light-Emitting Devices. ACS Applied Materials & Interfaces 2016, 8 (39), 26162-26168.
[39] Wang, S.-W.; Lin, H.-Y.; Lin, C.-C.; Kao, T. S.; Chen, K.-J.; Han, H.-V.; Li, J.-R.; Lee, P.-T.; Chen, H.-M.; Hong, M.-H., Pulsed-laser micropatterned quantum-dot array for white light source. Scientific reports 2016, 6, 23563.
[40] Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishi, S.; Tobita, S., Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Physical Chemistry Chemical Physics 2009, 11 (42), 9850-9860.
[41] Hsu, S.-C.; Chen, Y.-H.; Tu, Z.-Y.; Han, H.-V.; Lin, S.-L.; Chen, T.-M.; Kuo, H.-C.; Lin, C.-C., Highly stable and efficient hybrid quantum dot light-emitting diodes. IEEE Photonics Journal 2015, 7 (5), 1-10.
[42] Lin, H.-Y.; Sher, C.-W.; Hsieh, D.-H.; Chen, X.-Y.; Chen, H.-M. P.; Chen, T.-M.; Lau, K.-M.; Chen, C.-H.; Lin, C.-C.; Kuo, H.-C., Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photonics Research 2017, 5 (5), 411-416.
[43] Chiu, H. T.; Chang, C. Y.; Chen, C. L.; Chiang, T. Y.; Guo, M. T., Preparation and characterization of UV‐curable organic/inorganic hybrid composites for NIR cutoff and antistatic coatings. Journal of Applied Polymer Science 2011, 120 (1), 202-211.
[44] Lin, C.-C.; Liu, W.-L.; Hsieh, C.-Y., Scalar scattering model of highly textured transparent conducting oxide. Journal of Applied Physics 2011, 109 (1), 014508.
[45] Shepard, R. N., Attention and the metric structure of the stimulus space. Journal of mathematical psychology 1964, 1 (1), 54-87.
[46] Moreno, I.; Molinar, L. M. In Color uniformity of the light distribution from several cluster configurations of multicolor LEDs, Proc. SPIE, 2005; p 59411S.
[47] Joo, B.-Y.; Ko, J.-H., Analysis of color uniformity of white LED lens packages for direct-lit LCD backlight applications. Journal of the Optical Society of Korea 2013, 17 (6), 506-512.
[48] Krauss, T. F., Slow light in photonic crystal waveguides. Journal of Physics D: Applied Physics 2007, 40 (9), 2666..
[49] Chiu, H. T.; Chang, C. Y.; Chen, C. L.; Chiang, T. Y.; Guo, M. T., Preparation and characterization of UV‐curable organic/inorganic hybrid composites for NIR cutoff and antistatic coatings. Journal of Applied Polymer Science 2011, 120 (1), 202-211.
[50] Tsai, Y.-L.; Liu, C.-Y.; Krishnan, C.; Lin, D.-W.; Chu, Y.-C.; Chen, T.-P.; Shen, T.-L.; Kao, T.-S.; Charlton, M. D.; Yu, P., Bridging the “green gap” of LEDs: giant light output enhancement and directional control of LEDs via embedded nano-void photonic crystals. Nanoscale 2016, 8 (2), 1192-1199.
[51] Chen, J.; Chang, W.-L.; Huang, C.; Sun, K., Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells. Optics express 2011, 19 (15), 14411-14419.
[52] Huang, C.; Sun, K.; Chang, W.-L., Efficiency enhancement of silicon solar cells using a nano-scale honeycomb broadband anti-reflection structure. Optics express 2012, 20 (101), A85-A93.
[53] Lin, H.-Y.; Wang, S.-W.; Lin, C.-C.; Tu, Z.-Y.; Lee, P.-T.; Chen, H.-M.; Kuo, H.-C., Effective optimization and analysis of white LED properties by using nano-honeycomb patterned phosphor film. Optics express 2016, 24 (17), 19032-19039.
[54] Lin, H.-Y.; Pai, Y.-M.; Shi, J.-x.; Chen, X.-Y.; Lin, C.-H.; Weng, C.-M.; Chen, T.-Y.; Lin, C.-C.; Charlton, M. D. B.; Huang, Y.-P., Optimization of nano-honeycomb structures for flexible w-LEDs. Optics express 2017, 25 (17), 20466-20476.

Chapter 5
[1] Kuo, H.-C.; Hung, C.-W.; Chen, H.-C.; Chen, K.-J.; Wang, C.-H.; Sher, C.-W.; Yeh, C.-C.; Lin, C.-C.; Chen, C.-H.; Cheng, Y.-J., Patterned structure of remote phosphor for phosphor-converted white LEDs. Optics express 2011, 19 (104), A930-A936.
[2] Lim, K.; Lee, J. C.; Panotopoulos, G.; Helbing, R. In Illumination and color management in solid state lighting, Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE, IEEE: 2006; pp 2616-2620.
[3] Ying, S. P.; Tang, C.-W.; Huang, B.-J. In Charaterizing LEDs for Mixture of Colored LED light sources, Electronic Materials and Packaging, 2006. EMAP 2006. International Conference on, IEEE: 2006; pp 1-5.
[4] He, G.; Zheng, L., Color temperature tunable white-light light-emitting diode clusters with high color rendering index. Applied optics 2010, 49 (24), 4670-4676.
[5] Anikeeva, P. O.; Halpert, J. E.; Bawendi, M. G.; Bulović, V., Electroluminescence from a mixed red− green− blue colloidal quantum dot monolayer. Nano Lett 2007, 7 (8), 2196-2200.
[6] Ziegler, J.; Xu, S.; Kucur, E.; Meister, F.; Batentschuk, M.; Gindele, F.; Nann, T., Silica‐Coated InP/ZnS Nanocrystals as Converter Material in White LEDs. Advanced Materials 2008, 20 (21), 4068-4073.
[7] Ali, M.; Chattopadhyay, S.; Nag, A.; Kumar, A.; Sapra, S.; Chakraborty, S.; Sarma, D., White-light emission from a blend of CdSeS nanocrystals of different Se: S ratio. Nanotechnology 2007, 18 (7), 075401.
[8] Nizamoglu, S.; Ozel, T.; Sari, E.; Demir, H., White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology 2007, 18 (6), 065709.
[9] Jang, E.; Jun, S.; Jang, H.; Lim, J.; Kim, B.; Kim, Y., White‐light‐emitting diodes with quantum dot color converters for display backlights. Advanced Materials 2010, 22 (28), 3076-3080.
[10] Sher, C. W.; Chen, K. J.; Lin, C. C.; Han, H. V.; Lin, H. Y.; Tu, Z. Y.; Tu, H.-H.; Honjo, K.; Jiang, H.-Y.; Ou, S.-L. Large-Area, Uniform White Light LED Source on a Flexible Substrate. Opt. Express 2015, 23 (19), A1167-A1178.
[11] Tu, P. M.; Chang, C. Y.; Huang, S. C.; Chiu, C. H.; Chang, J. R.; Chang, W. T.; Wuu, D.-S.; Zan, H. W.; Lin, C. C.; Kuo, H. C., Investigation of Efficiency Droop for Ingan-Based UV Light-Emitting Diodes with Inalgan Barrier. Appl. Phys. Lett. 2011, 98 (21), 211107.
[12] Akyol, F.; Nath, D.; Krishnamoorthy, S.; Park, P.; Rajan, S., Suppression of Electron Overflow and Efficiency Droop in N-Polar GaN Green Light Emitting Diodes. Appl. Phys. Lett. 2012, 100 (11), 111118.
[13] Cho, J.; Schubert, E. F.; Kim, J. K., Efficiency Droop in Light‐Emitting Diodes: Challenges and Countermeasures. Laser Photonics Rev. 2013, 7 (3), 408-421.
[14] Cho, K. S.; Lee, E. K.; Joo, W. J.; Jang, E.; Kim, T. H.; Lee, S. J.; Kwon, S. J.; Han, J. Y.; Kim, B. K.; Choi, B. L., High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat. Photonics 2009, 3 (6), 341-345.
[15] Nizamoglu, S.; Ozel, T.; Sari, E.; Demir, H., White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology 2007, 18 (6), 065709.
[16] Tu, C. C.; Tang, L.; Huang, J.; Voutsas, A.; Lin, L. Y., Visible Electroluminescence from Hybrid Colloidal Silicon Quantum Dot-Organic Light-Emitting Diodes. Appl. Phys. Lett. 2011, 98 (21), 213102.
[17] Yeh, T. F.; Teng, C. Y.; Chen, L. C.; Chen, S. J.; Teng, H., Graphene Oxide-Based Nanomaterials for Efficient Photoenergy Conversion. J. Mater. Chem. A 2016, 4 (6), 2014-2048.
[18] Tu, C. C.; Chou, Y. N.; Hung, H. C.; Wu, J.; Jiang, S.; Lin, L. Y., Fluorescent Porous Silicon Biological Probes with High Quantum Efficiency and Stability. Opt. Express 2014, 22 (24), 29996-30003.
[19] Chen, K. J.; Lin, C. C.; Han, H. V.; Lee, C. Y.; Chien, S. H.; Wang, K. Y.; Chiu, S. H.; Tu, Z. Y.; Li, J. R.; Chen, T. M., Wide-Range Correlated Color Temperature Light Generation from Resonant Cavity Hybrid Quantum Dot Light-Emitting Diodes. IEEE J. Sel. Top. Quantum Electron. 2015, 21 (4), 23-29.
[20] Sher, C. W.; Lin, C. H.; Lin, H. Y.; Lin, C. C.; Huang, C.-H.; Chen, K. J.; Li, J. R.; Wang, K. Y.; Tu, H. H.; Fu, C. C., A High Quality Liquid-Type Quantum Dot White Light-Emitting Diode. Nanoscale 2016, 8 (2), 1117-1122.
[21] Hummers Jr, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339-1339.
[22] Chen, L. C.; Yeh, T. F.; Lee, Y. L.; Teng, H., Incorporating Nitrogen-Doped Graphene Oxide Dots with Graphene Oxide Sheets for Stable and Effective Hydrogen Production Through Photocatalytic Water Decomposition. Appl. Catal., A 2016, 521, 118-124.
[23] Tu, C. C.; Chen, K. P.; Yang, T. A.; Chou, M.-Y.; Lin, L. Y.; Li, Y. K., Silicon Quantum Dot Nanoparticles with Antifouling Coatings for Immunostaining on Live Cancer Cells. ACS Appl. Mater. Interfaces 2016.
[24] Song, H.; Lee, S., Photoluminescent (Cdse) Zns Quantum Dot? Polymethylmethacrylate Polymer Composite Thin Films in The Visible Spectral Range. Nanotechnology 2007, 18 (5), 055402.
[25] R. Hu, X. Luo, and S. Liu, "Study on the optical properties of conformal coating light-emitting diode by Monte Carlo simulation," Photonics Technology Letters, IEEE, 2011(23), 1673-1675.
[26] C. F. Lai, J. Y. Chi, H. C. Kuo, H. H. Yen, C. E. Lee, C. H. Chao, W. Y. Yeh and T. C. Lu, “Far-field and near-field distribution of gan-based photonic crystal leds with guided mode extraction” IEEE J. Sel. Top. Quant., 2009 (15), 1234-1241,.
[27] P. M. Tu, C. Y. Chang, S. C. Huang, C. H. Chiu, J. R. Chang, W. T. Chang, D. S. Wuu, H. W. Zan, C. C. Lin, H. C. Kuo and C. P. Hsu, ““Investigation of efficiency droop for InGaN-based UV light-emitting diodes with InAlGaN barrier,” Appl. Phys. Lett., 2011(98), 211107.
[28] M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, et al., "Red-enhanced white-light-emitting diode using a new red phosphor," Japanese journal of applied physics, 2003 (42), L20,.
[29] Y. Narukawa, J. Narita, T. Sakamoto, T. Yamada, H. Narimatsu, M. Sano, et al., "Recent progress of high efficiency white LEDs," physica status solidi (a), 2007 (204), 2087-2093.
[30] http://www.eyelighting.com/resources/lighting-technology-education/general-lighting-basics/r9-color-rendering-value/
[31] Lin, H.-Y.; Wang, S.-W.; Lin, C.-C.; Chen, K.-J.; Han, H.-V.; Tu, Z.-Y.; Tu, H.-H.; Chen, T.-M.; Shih, M.-H.; Lee, P.-T., Excellent color quality of white-light-emitting diodes by embedding quantum dots in polymers material. IEEE Journal of Selected Topics in Quantum Electronics 2016, 22 (1), 35-41.
[32] Kang, D.; Gai, B.; Thompson, B.; Lee, S. M.; Malmstadt, N.; Yoon, J. Flexible Opto-Fluidic Fluorescence Sensors Based on Heterogeneously Integrated Micro-VCSELs and Silicon Photodiodes. ACS Photonics 2016, 3 (6), 912–918.
[33] Fan, D.; Lee, K.; Forrest, S. R. Flexible Thin-Film InGaAs Photodiode Focal Plane Array. ACS Photonics 2016, 3 (4), 670-676.
[34] Su, S. J.; Gonmori, E.; Sasabe, H.; Kido, J., Highly Efficient Organic Blue‐and White‐Light‐Emitting Devices Having a Carrier‐And Exciton‐Confining Structure for Reduced Efficiency Roll‐off. Adv. Mater. 2008, 20 (21), 4189-4194.
[35] Eom, S.-H.; Zheng, Y.; Wrzesniewski, E.; Lee, J.; Chopra, N.; So, F.; Xue, J., White Phosphorescent Organic Light-Emitting Devices with Dual Triple-Doped Emissive Layers. Appl. Phys. Lett. 2009, 94 (15), 153303.
[36] Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R., Management of Singlet and Triplet Excitons for Efficient White Organic Light-Emitting Devices. Nature 2006, 440 (7086), 908-912.
[37] Kalinowski, J.; Cocchi, M.; Virgili, D.; Fattori, V.; Williams, J. G., Mixing Of Excimer and Exciplex Emission: a New Way to Improve White Light Emitting Organic Electrophosphorescent Diodes. Adv. Mater. 2007, 19 (22), 4000-4005.
[38] Yang, H.; Shi, Y.; Zhao, Y.; Meng, Y.; Hu, W.; Hou, J.; Liu, S., High Colour Rendering Index White Organic Light-Emitting Devices with Three Emitting Layers. Displays 2008, 29 (4), 327-332.
[39] Chang, C. H.; Tien, K. C.; Chen, C. C.; Lin, M. S.; Cheng, H. C.; Liu, S. H.; Wu, C. C.; Hung, J. Y.; Chiu, Y. C.; Chi, Y., Efficient Phosphorescent White Oleds With High Color Rendering Capability. Org. Electron. 2010, 11 (3), 412-418.
[40] Zhou, G.; Wang, Q.; Ho, C. L.; Wong, W.-Y.; Ma, D.; Wang, L., Duplicating “Sunlight” from Simple WOLEDs for Lighting Applications. Chem. Commun. 2009, (24), 3574-3576.
[41] Jou, J. H.; Shen, S. M.; Lin, C. R.; Wang, Y. S.; Chou, Y. C.; Chen, S. Z.; Jou, Y. C., Efficient Very-High Color Rendering Index Organic Light-Emitting Diode. Org. Electron. 2011, 12 (5), 865-868.
[42] Jou, J. H.; Chiu, Y. S.; Wang, C. P.; Wang, R. Y.; Hu, H. C., Efficient, Color-Stable Fluorescent White Organic Light-Emitting Diodes with Single Emission Layer by Vapor Deposition from Solvent Premixed Deposition Source. Appl. Phys. Lett. 2006, 88 (19), 193501.
[43] Li, Y.; Xu, K.; Wen, X.; Zhang, L.; Yin, Y.; Liu, S.; Piao, X.; Xie, W., High General and Special Color Rendering Index White Organic Light-Emitting Device with Bipolar Homojunction Emitting Layers. Org. Electron. 2013, 14 (8), 1946-1951.
[44] Li, Y.; Zhang, W.; Zhang, L.; Wen, X.; Yin, Y.; Liu, S.; Xie, W.; Zhao, H.; Tao, S., Ultra-High General and Special Color Rendering Index White Organic Light-Emitting Device Based on a Deep Red Phosphorescent Dye. Org. Electron. 2013, 14 (12), 3201-3205.
[45] Wang, Q.; Zhao, Y.; Qiu, P.; Wu, C.; Chen, J.; Ma, D., Highly Efficient Homojunction Organic Light-Emitting Diodes. J. Mater. Chem. C 2015, 3 (26), 6862-6867.
[46] Liu, X.; Wang, S.; Yao, B.; Zhang, B.; Ho, C. L.; Wong, W. Y.; Cheng, Y.; Xie, Z., New Deep-Red Heteroleptic Iridium Complex With 3-Hexylthiophene for Solution-Processed Organic Light-Emitting Diodes Emitting Saturated Red and High CRI White Colors. Org. Electron. 2015, 21, 1-8.
[47] Su, S. J.; Gonmori, E.; Sasabe, H.; Kido, J. Highly Efficient Organic Blue‐and White‐Light‐Emitting Devices Having a Carrier‐And Exciton‐Confining Structure for Reduced Efficiency Roll‐Off. Adv. Mater. 2008, 20 (21), 4189-4194.
[48] Eom, S.-H.; Zheng, Y.; Wrzesniewski, E.; Lee, J.; Chopra, N.; So, F.; Xue, J. White Phosphorescent Organic Light-Emitting Devices with Dual Triple-Doped Emissive Layers. Appl. Phys. Lett. 2009, 94 (15), 153303.
[49] Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R., Management of Singlet and Triplet Excitons for Efficient White Organic Light-Emitting Devices. Nature 2006, 440 (7086), 908-912.
[50] Kalinowski, J.; Cocchi, M.; Virgili, D.; Fattori, V.; Williams, J. G. Mixing of Excimer and Exciplex Emission: a New Way to Improve White Light Emitting Organic Electrophosphorescent Diodes. Adv. Mater. 2007, 19 (22), 4000-4005.
[51] Zhou, G.; Wang, Q.; Ho, C. L.; Wong, W. Y.; Ma, D.; Wang, L. Duplicating “Sunlight” From Simple Woleds for Lighting Applications. Chem. Commun. 2009, (24), 3574-3576.
[52] Müller-Buschbaum, P., Grazing Incidence Small-Angle X-Ray Scattering: an Advanced Scattering Technique for the Investigation of Nanostructured Polymer Films. Anal. Bioanal. Chem. 2003, 376 (1), 3-10.
[53] Müller-Buschbaum, P., Dewetting and Pattern Formation in Thin Polymer Films as Investigated in Real and Reciprocal Space. J. Phys.: Condens. Matter 2003, 15 (36), R1549.
[54] Gutmann, J. S.; Müller-Buschbaum, P.; Stamm, M., Complex Pattern Formation by Phase Separation of Polymer Blends in Thin Films. Faraday Discuss. 1999, 112, 285-297.
[55] Lu, L. P.; Kabra, D.; Johnson, K.; Friend, R. H., Charge‐Carrier Balance and Color Purity in Polyfluorene Polymer Blends for Blue Light‐Emitting Diodes. Adv. Funct. Mater. 2012, 22 (1), 144-150.
[56] Herguth, P.; Jiang, X.; Liu, M. S.; Jen, A. K.-Y., Highly Efficient Fluorene-and Benzothiadiazole-based Conjugated Copolymers for Polymer Light-emitting diodes. Macromolecules 2002, 35 (16), 6094-6100.
[57] Hodgkiss, J. M.; Tu, G.; Albert-Seifried, S.; Huck, W. T.; Friend, R. H., Ion-induced Formation of Charge-transfer States in Conjugated Polyelectrolytes. J. Am. Chem. Soc. 2009, 131 (25), 8913-8921.
[58] Chen, K. J.; Lai, Y. C.; Lin, B. C.; Lin, C. C.; Chiu, S. H.; Tu, Z. Y.; Shih, M. H.; Yu, P.; Lee, P. T.; Li, X. Efficient Hybrid White Light-Emitting Diodes by Organic-Inorganic Materials at Different CCT From 3000K To 9000K. Opt. Express 2015, 23 (7), A204-A210.
[59] Lin, H. Y.; Wang, S. W.; Lin, C. C.; Chen, K. J.; Han, H. V.; Tu, Z. Y.; Tu, H. H.; Chen, T. M.; Shih, M.-H.; Lee, P. T. Excellent Color Quality of White-Light-Emitting Diodes by Embedding Quantum Dots in Polymers Material. IEEE J. Sel. Top. Quantum Electron. 2016, 22 (1), 1-7.
[60] Sher, C. W.; Chen, K. J.; Lin, C. C.; Han, H. V.; Lin, H. Y.; Tu, Z. Y.; Tu, H.-H.; Honjo, K.; Jiang, H.-Y.; Ou, S.-L. Large-Area, Uniform White Light LED Source on a Flexible Substrate. Opt. Express 2015, 23 (19), A1167-A1178.
[61] Tu, P. M.; Chang, C. Y.; Huang, S. C.; Chiu, C. H.; Chang, J. R.; Chang, W. T.; Wuu, D.-S.; Zan, H. W.; Lin, C. C.; Kuo, H. C., Investigation of Efficiency Droop for Ingan-Based UV Light-Emitting Diodes with Inalgan Barrier. Appl. Phys. Lett. 2011, 98 (21), 211107.
[62] Akyol, F.; Nath, D.; Krishnamoorthy, S.; Park, P.; Rajan, S., Suppression of Electron Overflow and Efficiency Droop in N-Polar GaN Green Light Emitting Diodes. Appl. Phys. Lett. 2012, 100 (11), 111118.
[63] Cho, J.; Schubert, E. F.; Kim, J. K., Efficiency Droop in Light‐Emitting Diodes: Challenges and Countermeasures. Laser Photonics Rev. 2013, 7 (3), 408-421.
[64] Shukla, M.; Brahme, N.; Kher, R.; Khokhar, M., Elementary Approach to Calculate Quantum Efficiency of Polymer Light Emitting Diodes. Indian J. Pure Appl. Phys. 2011, 49 (2), 142-145.
[65] Narukawa, Y.; Narita, J.; Sakamoto, T.; Yamada, T.; Narimatsu, H.; Sano, M.; Mukai, T. Recent Progress of High Efficiency White LEDs. Phys. Status Solidi A 2007, 204 (6), 2087-2093.
[66] Sun, Q.; Wang, Y. A.; Li, L. S.; Wang, D.; Zhu, T.; Xu, J.; Yang, C.; Li, Y., Bright, Multicoloured Light-Emitting Diodes Based on Quantum Dots. Nat. Photonics 2007, 1 (12), 717-722.
[67] Kim, T.-H.; Cho, K.-S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J.-Y.; Amaratunga, G.; Lee, S. Y., Full-Colour Quantum Dot Displays Fabricated by Transfer Printing. Nat. Photonics 2011, 5 (3), 176-182.
[68] Wang, X.; Yan, X.; Li, W.; Sun, K., Doped Quantum Dots for White‐Light‐Emitting Diodes Without Reabsorption of Multiphase Phosphors. Adv. Mater. 2012, 24 (20), 2742-2747.
[69] Xuan, T.-T.; Liu, J.-Q.; Xie, R.-J.; Li, H.-L.; Sun, Z., Microwave-Assisted Synthesis Of Cds/Zns: Cu Quantum Dots for White Light-Emitting Diodes with High Color Rendition. Chem. Mater. 2015, 27 (4), 1187-1193.
[70] Michiel, K. Improving Thermal Analysis of LEDs; EE Times-Asia Technology Report, May, 2013
[71] Poppe, A.; Farkas, G.; Horváth, G. Electrical, Thermal and Optical Characterization of Power LED Assemblies. arXiv preprint arXiv:0709.1815 2007.
[72] Incropera, F. P.; Dewitt, D. P.; Bergman, T. L.; Lavine, A. S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons, Inc. 2007, 1, 12.
[73] Poppe, A.; Farkas, G.; Horváth, G., Electrical, Thermal and Optical Characterization of Power LED Assemblies. arXiv preprint arXiv:0709.1815 2007.
[74] W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, "Highly Efficient Green‐Light‐Emitting Diodes Based on CdSe@ ZnS Quantum Dots with a Chemical‐Composition Gradient," Adv. Mater. 2009, 21, 1690-1694.
[75] Tu, C. C.; Tang, L.; Huang, J.; Voutsas, A.; Lin, L. Y., Visible Electroluminescence from Hybrid Colloidal Silicon Quantum Dot-Organic Light-Emitting Diodes. Appl. Phys. Lett. 2011, 98 (21), 213102.
[76] Yeh, T. F.; Teng, C. Y.; Chen, L. C.; Chen, S. J.; Teng, H., Graphene Oxide-Based Nanomaterials for Efficient Photoenergy Conversion. J. Mater. Chem. A 2016, 4 (6), 2014-2048.
[77] Tu, C. C.; Chou, Y. N.; Hung, H. C.; Wu, J.; Jiang, S.; Lin, L. Y., Fluorescent Porous Silicon Biological Probes with High Quantum Efficiency and Stability. Opt. Express 2014, 22 (24), 29996-30003.
[78] Hummers Jr, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339-1339.
[79] Chen, L. C.; Yeh, T. F.; Lee, Y. L.; Teng, H., Incorporating Nitrogen-Doped Graphene Oxide Dots with Graphene Oxide Sheets for Stable and Effective Hydrogen Production Through Photocatalytic Water Decomposition. Appl. Catal., A 2016, 521, 118-124.
[80] Tu, C. C.; Hoo, J. H.; Böhringer, K. F.; Lin, L. Y.; Cao, G., Red-Emitting Silicon Quantum Dot Phosphors in Warm White Leds with Excellent Color Rendering. Opt. Express 2014, 22 (102), A276-A281.
[81] Tu, C. C.; Chen, K. P.; Yang, T. A.; Chou, M. Y.; Lin, L. Y.; Li, Y. K., Silicon quantum dot nanoparticles with antifouling coatings for immunostaining on live cancer cells. ACS Appl. Mater. & Interfaces 2016, 8 (22), 13714-13723.
[82] Sieval, A.; Demirel, A.; Nissink, J.; Linford, M.; Van der Maas, J.; De Jeu, W.; Zuilhof, H.; Sudhölter, E., Highly Stable Si-C Linked Functionalized Monolayers on the Silicon (100) Surface. Langmuir 1998, 14 (7), 1759-1768.
[83] Zhu, S., Tang, S., Zhang, J. & Yang, B. Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem. Commun. 48, 4527-4539 (2012).
[84] Shen, J., Zhu, Y., Yang, X. & Li, C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686-3699 (2012).
[85] Wilson, N. R.; Pandey, P. A.; Beanland, R.; Young, R. J.; Kinloch, I. A.; Gong, L.; Liu, Z.; Suenaga, K.; Rourke, J. P.; York, S. J., Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy. ACS nano 2009, 3 (9), 2547-2556.
[86] Yuan, Y.; Zhang, J.; Liang, G.; Yang, X., Rapid Fluorescent Detection of Neurogenin by CdTe Quantum Dot Aggregation. Analyst 2012, 137 (8), 1775-1778.
[87] Pai, Y.-H.; Lin, G.-R., Spatially Confined Synthesis of SiO X Nano-Rod with Size-Controlled Si Quantum Dots in Nano-Porous Anodic Aluminum Oxide Membrane. Opt. Express 2011, 19 (2), 896-905.
[88] Tai, H.-Y.; Lin, Y.-Hf.; Lin, G.-R., Wavelength-Shifted Yellow Electroluminescence of Si Quantum-Dot Embedded 20-Pair SiNx/SiOx Superlattice by Ostwald Ripening Effect. IEEE Photonics J. 2013, 5 (1), 6600110-6600110.
[89] Wu, M.; Mukherjee, P.; Lamont, D. N.; Waldeck, D. H., Electron Transfer and Fluorescence Quenching of Nanoparticle Assemblies. J. Phys. Chem. C 2010, 114 (13), 5751-5759.
[90] Kagan, C.; Murray, C.; Nirmal, M.; Bawendi, M., Electronic Energy Transfer in CdSe Quantum Dot Solids. Phys. Rev. Lett. 1996, 76 (9), 1517.
[91] Franzl, T.; Koktysh, D.; Klar, T.; Rogach, A.; Feldmann, J.; Gaponik, N., Fast Energy Transfer in Layer-by-Layer Assembled CdTe Nanocrystal Bilayers. Appl. Phys. Lett. 2004, 84 (15), 2904-2906.
[92] Crooker, S.; Hollingsworth, J.; Tretiak, S.; Klimov, V., Spectrally Resolved Dynamics of Energy Transfer in Quantum-Dot Assemblies: Towards Engineered Energy Flows in Artificial Materials. Phys. Rev. Lett. 2002, 89 (18), 186802.
[93] Narukawa, Y.; Narita, J.; Sakamoto, T.; Yamada, T.; Narimatsu, H.; Sano, M.; Mukai, T., Recent Progress of High Efficiency White Leds. Phys. Status Solidi A 2007, 204 (6), 2087-2093.
[94] Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K. S.; Luk, C. M.; Zeng, S.; Hao, J., Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS nano 2012, 6 (6), 5102-5110.
[95] Feng, X.; Zhang, F.; Wang, Y.; Zhang, Y.; Yang, Y.; Liu, X., Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes. Appl. Phys. Lett. 2015, 107 (21), 213102.
[96] Wang, Y.; Yin, Z.; Xie, Z.; Zhao, X.; Zhou, C.; Zhou, S.; Chen, P., Polysiloxane Functionalized Carbon Dots and Their Cross-Linked Flexible Silicone Rubbers for Color Conversion and Encapsulation of White LEDs. ACS Appl. Mater. Interfaces 2016, 8 (15), 9961-9968.
[97] Luk, C.; Tang, L.; Zhang, W.; Yu, S.; Teng, K.; Lau, S., An efficient and stable fluorescent graphene quantum dot–agar composite as a converting material in white light emitting diodes. J. Mater. Chem. 2012, 22 (42), 22378-22381.
[98] Tetsuka, H.; Nagoya, A.; Asahi, R., Highly luminescent flexible amino-functionalized graphene quantum dots@ cellulose nanofiber–clay hybrids for white-light emitting diodes. J. Mater. Chem. C 2015, 3 (15), 3536-3541.
[99] Wang, Y.; Zhao, Y.; Zhang, Y.; Zhang, F.; Feng, X.; Chen, L.; Yang, Y.; Liu, X., A single-phase heteroatom doped carbon dot phosphor toward white light-emitting diodes. RSC Adv. 2016, 6 (45), 38761-38768.
[100] Poppe, A.; Farkas, G.; Horváth, G., Electrical Thermal and Optical Characterization of Power LED Assemblies. arXiv preprint arXiv:0709.1815 2007.
[101] Michiel, K. Improving Thermal Analysis of LEDs; EE Times-Asia technology report, May, 2013
[102] Brodie, G.; Jacob, M. V.; Farrell, P., Microwave and Radio-Frequency Technologies in Agriculture: an introduction for agriculturalists and engineers. Walter de Gruyter GmbH & Co KG: 2016, 156.
[103] Blaine, R., Interlaboratory precision and bias for thermal conductivity and specific heat capacity by modulated differential scanning calorimetry. Therm Cond 2005, 26, 309-18.

Chapter 6
[1] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
[2] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338 (6107), 643-647.
[3] Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grätzel, M., Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345 (6204), 1593-1596.
[4] Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-g.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y., Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS nano 2015, 9 (4), 4533-4542.
[5] Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 2015, 15 (6), 3692-3696.
[6] Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V., Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I). Nano letters 2015, 15 (8), 5635-5640.
[7] Bi, K.; Wang, D.; Wang, P.; Duan, B.; Zhang, T.; Wang, Y.; Zhang, H.; Zhang, Y., Cesium lead halide perovskite quantum dot-based warm white light-emitting diodes with high color rendering index. Journal of Nanoparticle Research 2017, 19 (5), 174.
[8] Singh, B. P.; Lin, S.-Y.; Wang, H.-C.; Tang, A.-C.; Tong, H.-C.; Chen, C.-Y.; Lee, Y.-C.; Tsai, T.-L.; Liu, R.-S., Inorganic red perovskite quantum dot integrated blue chip: a promising candidate for high color-rendering in w-LEDs. RSC Advances 2016, 6 (83), 79410-79414.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊