|
Chapter 1 Nakamura, S.; Mukai, T.; Senoh, M., Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes. Applied Physics Letters 1994, 64 (13), 1687-1689. [2] Schubert, E. F.; Kim, J. K., Solid-state light sources getting smart. Science 2005, 308 (5726), 1274-1278. [3] H. C.; Chen, K. J.; Wang, C. H.; Lin, C. C.; Yeh, C. C.; Tsai, H. H.; Shih, M. H.; Kuo, H. C.; Lu, T. C., A novel randomly textured phosphor structure for highly efficient white light-emitting diodes. Nanoscale research letters 2012, 7 (1), 188. [4] Fujita, S.; Sakamoto, A.; Tanabe, S., Luminescence characteristics of YAG glass–ceramic phosphor for white LED. IEEE Journal of Selected Topics in Quantum Electronics 2008, 14 (5), 1387-1391. [5] Huang, J.-K.; Lin, D.-W.; Shih, M.-H.; Lee, K.-Y.; Chen, J.-R.; Huang, H.-W.; Kuo, S.-Y.; Lin, C.-H.; Lee, P.-T.; Chi, G.-C., Investigation and comparison of the GaN-based light-emitting diodes grown on high aspect ratio nano-cone and general micro-cone patterned sapphire substrate. IEEE J. Disp. Technol. 2013, 9 (12), 947-952. [6] Zheleva, T. S.; Nam, O.-H.; Bremser, M. D.; Davis, R. F., Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Appl. Phys. Lett. 1997, 71 (17), 2472-2474. [7] Wuu, D.; Wang, W.; Wen, K.; Huang, S.; Lin, S.; Huang, S.; Lin, C.; Horng, R., Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template. Appl. Phys. Lett 2006, 89 (16), 161105. [8] http://www-opto.e-technik.uni-ulm.de/lehre/cs/ [9] Steigerwald, D. A.; Bhat, J. C.; Collins, D.; Fletcher, R. M.; Holcomb, M. O.; Ludowise, M. J.; Martin, P. S.; Rudaz, S. L., Illumination with solid state lighting technology. IEEE Journal of Selected Topics in Quantum Electronics 2002, 8 (2), 310-320. [10] Chen, Y.-H.; Lee, C.-H.; Lin, J.-H.; Ma, S.-H. In Analyzing of light pattern uniformity in multi-chips LED lighting, SPIE Optical Engineering+ Applications, International Society for Optics and Photonics: 2014; pp 91921B-91921B-7. [11] Kim, J. K.; Luo, H.; Schubert, E. F.; Cho, J.; Sone, C.; Park, Y., Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup. Japanese Journal of Applied Physics 2005, 44 (5L), L649. [12] Huang, C.-Y.; Su, Y.-K.; Chen, Y.-C.; Tsai, P.-C.; Wan, C.-T.; Li, W.-L., Hybrid CdSe-ZnS quantum dot-InGaN-GaN quantum well red light-emitting diodes. IEEE electron device letters 2008, 29 (7), 711-713. [13] Chen, K.-J.; Lai, Y.-C.; Lin, B.-C.; Lin, C.-C.; Chiu, S.-H.; Tu, Z.-Y.; Shih, M.-H.; Yu, P.; Lee, P.-T.; Li, X., Efficient hybrid white light-emitting diodes by organic-inorganic materials at different CCT from 3000K to 9000K. Optics express 2015, 23 (7), A204-A210. [14] Chung, W.; Park, K.; Yu, H. J.; Kim, J.; Chun, B.-H.; Kim, S. H., White emission using mixtures of CdSe quantum dots and PMMA as a phosphor. Optical Materials 2010, 32 (4), 515-521. [15] Kathirgamanathan, P.; Bushby, L. M.; Kumaraverl, M.; Ravichandran, S.; Surendrakumar, S., Electroluminescent organic and quantum dot LEDs: The state of the art. Journal of Display Technology 2015, 11 (5), 480-493. [16] Huang, C.-Y.; Su, Y.-K.; Chen, Y.-C.; Tsai, P.-C.; Wan, C.-T.; Li, W.-L., Hybrid CdSe-ZnS quantum dot-InGaN-GaN quantum well red light-emitting diodes. IEEE electron device letters 2008, 29 (7), 711-713. [17] Chen, K.-J.; Lin, C.-C.; Han, H.-V.; Lee, C.-Y.; Chien, S.-H.; Wang, K.-Y.; Chiu, S.-H.; Tu, Z.-Y.; Li, J.-R.; Chen, T.-M., Wide-range correlated color temperature light generation from resonant cavity hybrid quantum dot light-emitting diodes. IEEE Journal of Selected Topics in Quantum Electronics 2015, 21 (4), 23-29. [18] Kathirgamanathan, P.; Bushby, L. M.; Kumaraverl, M.; Ravichandran, S.; Surendrakumar, S., Electroluminescent organic and quantum dot LEDs: The state of the art. Journal of Display Technology 2015, 11 (5), 480-493. [19] Herman, M. A.; Sitter, H., Molecular beam epitaxy: fundamentals and current status. Springer Science & Business Media: 2012; Vol. 7. [20] Shen, C.-y.; Li, K.; Hou, Q.-l.; Feng, H.-j.; Dong, X.-y., White LED based on YAG: Ce, Gd phosphor and CdSe–ZnS core/shell quantum dots. IEEE Photonics Technology Letters 2010, 22 (12), 884-886. [21] Shen, C.-C.; Tseng, W.-L., One-step synthesis of white-light-emitting quantum dots at low temperature. Inorganic chemistry 2009, 48 (18), 8689-869. [22] Kitai, A., Luminescent materials and applications. John Wiley & Sons: 2008; Vol. 25.
Chapter 2
[1] Schubert, E. F.; Gessmann, T.; Kim, J. K., Light emitting diodes. Wiley Online Library: 2005. [2] Fan, S.-W.; Srivastava, A. K.; Dravid, V. P., UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Applied Physics Letters 2009, 95 (14), 142106. [3] Saleh, B. E.; Teich, M. C., Semiconductor photon detectors. Fundamentals of Photonics 2007, 644-695. [4] Allen, S. C.; Steckl, A. J., A nearly ideal phosphor-converted white light-emitting diode. Applied Physics Letters 2008, 92 (14), 128. [5] Walling, M. A.; Novak, J. A.; Shepard, J. R., Quantum dots for live cell and in vivo imaging. International journal of molecular sciences 2009, 10 (2), 441-491. [6] Kathirgamanathan, P.; Bushby, L. M.; Kumaraverl, M.; Ravichandran, S.; Surendrakumar, S., Electroluminescent organic and quantum dot LEDs: The state of the art. Journal of Display Technology 2015, 11 (5), 480-493. [7] Schroeder, R.; Ullrich, B.; Graupner, W.; Scherf, U., Excitation density and photoluminescence studies of polyfluorene excited by two-photon absorption. Journal of Physics: Condensed Matter 2001, 13 (16), L313. [8] Schroeder, R.; Ullrich, B.; Graupner, W.; Scherf, U., Excitation density and photoluminescence studies of polyfluorene excited by two-photon absorption. Journal of Physics: Condensed Matter 2001, 13 (16), L313. [9] Monkman, A.; Rothe, C.; King, S.; Dias, F., Polyfluorene photophysics. Polyfluorenes 2008, 187-225. [10] https://thehumanevolutionblog.com/2015/01/12/the-poor-design-of-the-human-eye/ [11] https://littlewebgiants.com/how-do-we-perceive-colour/ [12] Phillips, J. M.; Coltrin, M. E.; Crawford, M. H.; Fischer, A. J.; Krames, M. R.; Mueller‐Mach, R.; Mueller, G. O.; Ohno, Y.; Rohwer, L. E.; Simmons, J. A., Research challenges to ultra‐efficient inorganic solid‐state lighting. Laser & Photonics Reviews 2007, 1 (4), 307-333. [13] Erdem, T.; Nizamoglu, S.; Demir, H. V., Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes. Optics express 2012, 20 (3), 3275-3295. [14] J Phillips, J. M.; Coltrin, M. E.; Crawford, M. H.; Fischer, A. J.; Krames, M. R.; Mueller‐Mach, R.; Mueller, G. O.; Ohno, Y.; Rohwer, L. E.; Simmons, J. A., Research challenges to ultra‐efficient inorganic solid‐state lighting. Laser & Photonics Reviews 2007, 1 (4), 307-333. [15] Nizamoglu, S.; Erdem, T.; Sun, X. W.; Demir, H. V., Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering. Optics letters 2010, 35 (20), 3372-3374. [16] Schubert, E. F.; Gessmann, T.; Kim, J. K., Light emitting diodes. Wiley Online Library: 2005. [17] http://glossary.periodni.com/glossary.php?en=blackbody+radiation [18] Renovation Store, “LED Lights,” [Online]. Available: http://www.renovatorstore.com.au/blog/led-lights-what-is-the-difference between-warm-white-and-cool-white/ [19] Erdem, T.; Nizamoglu, S.; Sun, X. W.; Demir, H. V., A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores. Optics express 2010, 18 (1), 340-347. [20] https://livingonsolarpower.wordpress.com/2013/06/11/color-rendering-properties-of-light-sources/ [21] Kelly, G., Understand color science to maximize success with LEDs–Part 4. LED Magazine February 2013. [22] http://viewsonicglobal.com/product-detail.php?item=VX4002-4K&pd=418 [23] Sukhoivanov, I. A.; Guryev, I. V., Introduction to Photonic Crystals. In Photonic Crystals, Springer: 2009; pp 1-12. [24] Johnson, S. G.; Joannopoulos, J. D., Introduction to photonic crystals: Bloch’s theorem, band diagrams, and gaps (but no defects). Photonic Crystal Tutorial 2003, 1-16. [25] Lekner, J., Light in periodically stratified media. JOSA A 1994, 11 (11), 2892-2899. [26] Lekner, J., Omnidirectional reflection by multilayer dielectric mirrors. Journal of Optics A: Pure and Applied Optics 2000, 2 (5), 349. [27] García, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S. In Design of semiconductor-based back reflectors for high V oc monolithic multijunction solar cells, Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, IEEE: 2012; pp 002042-002047. [28] Choy, H. K. H. Design and fabrication of distributed Bragg reflectors for vertical-cavity surface-emitting lasers. Massachusetts Institute of Technology, 1998.
Chapter 3 [1] Krames, M. R.; Shchekin, O. B.; Mueller-Mach, R.; Mueller, G. O.; Zhou, L.; Harbers, G.; Craford, M. G., Status and future of high-power light-emitting diodes for solid-state lighting. Journal of Display Technology 2007, 3 (2), 160-175. [2] Sher, C.-W.; Chen, K.-J.; Lin, C.-C.; Han, H.-V.; Lin, H.-Y.; Tu, Z.-Y.; Tu, H.-H.; Honjo, K.; Jiang, H.-Y.; Ou, S.-L., Large-area, uniform white light LED source on a flexible substrate. Optics express 2015, 23 (19), A1167-A1178. [3] Mette, A.; Richter, P.; Hörteis, M.; Glunz, S., Metal aerosol jet printing for solar cell metallization. Progress in Photovoltaics: Research and Applications 2007, 15 (7), 621-627. [4] Available:http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html [5] Shih-Hsuan Chien, “Improving Luminous Efficiency and Light Quality of Cutting-edge Quantum Dots Light-Emitting Devices using Distributed Bragg Reflector,” Master thesis, 2015.
Chapter 4
[1] Nakamura, S.; Mukai, T.; Senoh, M., Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes. Applied Physics Letters 1994, 64 (13), 1687-1689. [2] Schubert, E. F.; Kim, J. K., Solid-state light sources getting smart. Science 2005, 308 (5726), 1274-1278. [3] Chen, H. C.; Chen, K. J.; Wang, C. H.; Lin, C. C.; Yeh, C. C.; Tsai, H. H.; Shih, M. H.; Kuo, H. C.; Lu, T. C., A novel randomly textured phosphor structure for highly efficient white light-emitting diodes. Nanoscale research letters 2012, 7 (1), 188. [4] Fujita, S.; Sakamoto, A.; Tanabe, S., Luminescence characteristics of YAG glass–ceramic phosphor for white LED. IEEE Journal of Selected Topics in Quantum Electronics 2008, 14 (5), 1387-1391. [5] Huang, J.-K.; Lin, D.-W.; Shih, M.-H.; Lee, K.-Y.; Chen, J.-R.; Huang, H.-W.; Kuo, S.-Y.; Lin, C.-H.; Lee, P.-T.; Chi, G.-C., Investigation and comparison of the GaN-based light-emitting diodes grown on high aspect ratio nano-cone and general micro-cone patterned sapphire substrate. Journal of Display Technology 2013, 9 (12), 947-952. [6] Zheleva, T. S.; Nam, O.-H.; Bremser, M. D.; Davis, R. F., Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Applied Physics Letters 1997, 71 (17), 2472-2474. [7] Zheleva, T. S.; Nam, O.-H.; Bremser, M. D.; Davis, R. F., Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Applied Physics Letters 1997, 71 (17), 2472-2474. [8] Sugawara, H.; Itaya, K.; Hatakoshi, G.-i., Hybrid-type InGaAlP/GaAs distributed Bragg reflectors for InGaAlP light-emitting diodes. Japanese Journal of Applied Physics 1994, 33 (11R), 6195. [9] Chiou, S.; Lee, C.; Huang, C.; Chen, C., Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes. Journal of Applied Physics 2000, 87 (4), 2052-2054. [10] Oh, J. R.; Cho, S.-H.; Park, H. K.; Oh, J. H.; Lee, Y.-H.; Do, Y. R., Full down-conversion of amber-emitting phosphor-converted light-emitting diodes with powder phosphors and a long-wave pass filter. Optics express 2010, 18 (11), 11063-11072. [11] Lin, H.-Y.; Chen, K.-J.; Wang, S.-W.; Lin, C.-C.; Wang, K.-Y.; Li, J.-R.; Lee, P.-T.; Shih, M.-H.; Li, X.; Chen, H.-M., Improvement of light quality by DBR structure in white LED. Optics express 2015, 23 (3), A27-A33. [12] Yang, L.; Wang, S.; Lv, Z.; Liu, S., Color deviation controlling of phosphor conformal coating by advanced spray painting technology for white LEDs. Applied optics 2013, 52 (10), 2075-2079. [13] Shuai, Y.; He, Y.; Tran, N. T.; Shi, F. G., Angular CCT uniformity of phosphor converted white LEDs: Effects of phosphor materials and packaging structures. IEEE Photonics Technology Letters 2011, 23 (3), 137-139. [14] Liu, Z.; Liu, S.; Wang, K.; Luo, X., Optical analysis of color distribution in white LEDs with various packaging methods. IEEE Photonics Technology Letters 2008, 20 (24), 2027-2029. [15] Yang, L.; Lv, Z.; Jiaojiao, Y.; Liu, S., Effects of melamine formaldehyde resin and CaCO 3 diffuser-loaded encapsulation on correlated color temperature uniformity of phosphor-converted LEDs. Applied optics 2013, 52 (22), 5539-5544. [16] Liu, C.-Y.; Chen, K.-J.; Lin, D.-W.; Lee, C.-Y.; Lin, C.-C.; Chien, S.-H.; Shih, M.-H.; Chi, G.-C.; Chang, C.-Y.; Kuo, H.-C., Improvement of emission uniformity by using micro-cone patterned PDMS film. Optics express 2014, 22 (4), 4516-4522. [17] Chen, L.-C.; Wang, C.-K.; Huang, J.-B.; Hong, L.-S., A nanoporous AlN layer patterned by anodic aluminum oxide and its application as a buffer layer in a GaN-based light-emitting diode. Nanotechnology 2009, 20 (8), 085303.. [18] Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," Appl. Phys. Lett. 2011, , 98 (15), 151102. [19] Huang, J.-K.; Lin, D.-W.; Shih, M.-H.; Lee, K.-Y.; Chen, J.-R.; Huang, H.-W.; Kuo, S.-Y.; Lin, C.-H.; Lee, P.-T.; Chi, G.-C., Investigation and comparison of the GaN-based light-emitting diodes grown on high aspect ratio nano-cone and general micro-cone patterned sapphire substrate. Journal of Display Technology 2013, 9 (12), 947-952. [20] Lee, Y.-J.; Chiu, C.-H.; Ke, C. C.; Lin, P. C.; Lu, T.-C.; Kuo, H.-C.; Wang, S.-C., Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate. IEEE Journal of Selected Topics in Quantum Electronics 2009, 15 (4), 1137-1143. [21] Chiu, C.-H.; Lin, C.-C.; Han, H.-V.; Liu, C.-Y.; Chen, Y.-H.; Lan, Y.-P.; Yu, P.; Kuo, H.-C.; Lu, T.-C.; Wang, S.-C., High efficiency GaN-based light-emitting diodes with embedded air voids/SiO2 nanomasks. Nanotechnology 2012, 23 (4), 045303. [22] Ali, M.; Romanov, A.; Suihkonen, S.; Svensk, O.; Sintonen, S.; Sopanen, M.; Lipsanen, H.; Nevedomsky, V.; Bert, N.; Odnoblyudov, M., Analysis of threading dislocations in void shape controlled GaN re-grown on hexagonally patterned mask-less GaN. Journal of Crystal Growth 2012, 344 (1), 59-64. [23] Zhao, J.; Wang, A.; Green, M. A.; Ferrazza, F., 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters 1998, 73 (14), 1991-1993. [24] Widawski, G.; Rawiso, M.; François, B., Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 1994, 369 (6479), 387-389. [25] Li, L.; Zhong, Y.; Ma, C.; Li, J.; Chen, C.; Zhang, A.; Tang, D.; Xie, S.; Ma, Z., Honeycomb-patterned hybrid films and their template applications via a tunable amphiphilic block polymer/inorganic precursor system. Chemistry of Materials 2009, 21 (20), 4977-4983. [26] Yeh, P.; Gu, C., Optics of liquid crystal displays. John Wiley & Sons: 2010; Vol. 67. [27] Shieh, H.-P.; Huang, Y.-P.; Su, M.-J.; Wu, S.-T. In Single cell-gap transflective color TFT-LCD by using image-enhanced reflector, Optoelectronics, Proceedings of the Sixth Chinese Symposium, IEEE: 2003; pp 270-272. [28] Riehemann, S.; Grossmann, C.; Vogel, U.; Richter, B.; Herold, R.; Notni, G., Ultra small OLED pico projector. Optik & Photonik 2009, 4 (2), 34-36. [29] Liu, Z. J.; Chong, W. C.; Wong, K. M.; Tam, K. H.; Lau, K. M., A novel BLU-free full-color LED projector using LED on silicon micro-displays. IEEE Photonics Technology Letters 2013, 25 (23), 2267-2270. [30] Liu, Z. J.; Chong, W. C.; Wong, K. M.; Lau, K. M., 360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays. Journal of Display Technology 2013, 9 (8), 678-682. [31] Liu, Z. J.; Chong, W. C.; Wong, K. M.; Keung, C. W.; Lau, K. M., Investigation of forward voltage uniformity in monolithic light-emitting diode arrays. IEEE Photonics Technology Letters 2013, 25 (13), 1290-1293. [32] Gong, Z.; Gu, E.; Jin, S.; Massoubre, D.; Guilhabert, B.; Zhang, H.; Dawson, M.; Poher, V.; Kennedy, G.; French, P., Efficient flip-chip InGaN micro-pixellated light-emitting diode arrays: promising candidates for micro-displays and colour conversion. Journal of Physics D: Applied Physics 2008, 41 (9), 094002. [33] Chen, K.-J.; Chen, H.-C.; Lin, C.-C.; Wang, C.-H.; Yeh, C.-C.; Tsai, H.-H.; Chien, S.-H.; Shih, M.-H.; Kuo, H.-C., An investigation of the optical analysis in white light-emitting diodes with conformal and remote phosphor structure. Journal of Display Technology 2013, 9 (11), 915-920. [34] Kuo, H.-C.; Hung, C.-W.; Chen, H.-C.; Chen, K.-J.; Wang, C.-H.; Sher, C.-W.; Yeh, C.-C.; Lin, C.-C.; Chen, C.-H.; Cheng, Y.-J., Patterned structure of remote phosphor for phosphor-converted white LEDs. Optics express 2011, 19 (104), A930-A936. [35] Han, H.-V.; Lin, H.-Y.; Lin, C.-C.; Chong, W.-C.; Li, J.-R.; Chen, K.-J.; Yu, P.; Chen, T.-M.; Chen, H.-M.; Lau, K.-M., Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Optics express 2015, 23 (25), 32504-32515. [36] Woods, A. J., Crosstalk in stereoscopic displays: a review. Journal of Electronic Imaging 2012, 21 (4), 040902-040902. [37] Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G., Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389 (6653), 827. [38] Jiang, C.; Zhong, Z.; Liu, B.; He, Z.; Zou, J.; Wang, L.; Wang, J.; Peng, J.; Cao, Y., Coffee-Ring-Free Quantum Dot Thin Film Using Inkjet Printing from a Mixed-Solvent System on Modified ZnO Transport Layer for Light-Emitting Devices. ACS Applied Materials & Interfaces 2016, 8 (39), 26162-26168. [39] Wang, S.-W.; Lin, H.-Y.; Lin, C.-C.; Kao, T. S.; Chen, K.-J.; Han, H.-V.; Li, J.-R.; Lee, P.-T.; Chen, H.-M.; Hong, M.-H., Pulsed-laser micropatterned quantum-dot array for white light source. Scientific reports 2016, 6, 23563. [40] Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishi, S.; Tobita, S., Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Physical Chemistry Chemical Physics 2009, 11 (42), 9850-9860. [41] Hsu, S.-C.; Chen, Y.-H.; Tu, Z.-Y.; Han, H.-V.; Lin, S.-L.; Chen, T.-M.; Kuo, H.-C.; Lin, C.-C., Highly stable and efficient hybrid quantum dot light-emitting diodes. IEEE Photonics Journal 2015, 7 (5), 1-10. [42] Lin, H.-Y.; Sher, C.-W.; Hsieh, D.-H.; Chen, X.-Y.; Chen, H.-M. P.; Chen, T.-M.; Lau, K.-M.; Chen, C.-H.; Lin, C.-C.; Kuo, H.-C., Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photonics Research 2017, 5 (5), 411-416. [43] Chiu, H. T.; Chang, C. Y.; Chen, C. L.; Chiang, T. Y.; Guo, M. T., Preparation and characterization of UV‐curable organic/inorganic hybrid composites for NIR cutoff and antistatic coatings. Journal of Applied Polymer Science 2011, 120 (1), 202-211. [44] Lin, C.-C.; Liu, W.-L.; Hsieh, C.-Y., Scalar scattering model of highly textured transparent conducting oxide. Journal of Applied Physics 2011, 109 (1), 014508. [45] Shepard, R. N., Attention and the metric structure of the stimulus space. Journal of mathematical psychology 1964, 1 (1), 54-87. [46] Moreno, I.; Molinar, L. M. In Color uniformity of the light distribution from several cluster configurations of multicolor LEDs, Proc. SPIE, 2005; p 59411S. [47] Joo, B.-Y.; Ko, J.-H., Analysis of color uniformity of white LED lens packages for direct-lit LCD backlight applications. Journal of the Optical Society of Korea 2013, 17 (6), 506-512. [48] Krauss, T. F., Slow light in photonic crystal waveguides. Journal of Physics D: Applied Physics 2007, 40 (9), 2666.. [49] Chiu, H. T.; Chang, C. Y.; Chen, C. L.; Chiang, T. Y.; Guo, M. T., Preparation and characterization of UV‐curable organic/inorganic hybrid composites for NIR cutoff and antistatic coatings. Journal of Applied Polymer Science 2011, 120 (1), 202-211. [50] Tsai, Y.-L.; Liu, C.-Y.; Krishnan, C.; Lin, D.-W.; Chu, Y.-C.; Chen, T.-P.; Shen, T.-L.; Kao, T.-S.; Charlton, M. D.; Yu, P., Bridging the “green gap” of LEDs: giant light output enhancement and directional control of LEDs via embedded nano-void photonic crystals. Nanoscale 2016, 8 (2), 1192-1199. [51] Chen, J.; Chang, W.-L.; Huang, C.; Sun, K., Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells. Optics express 2011, 19 (15), 14411-14419. [52] Huang, C.; Sun, K.; Chang, W.-L., Efficiency enhancement of silicon solar cells using a nano-scale honeycomb broadband anti-reflection structure. Optics express 2012, 20 (101), A85-A93. [53] Lin, H.-Y.; Wang, S.-W.; Lin, C.-C.; Tu, Z.-Y.; Lee, P.-T.; Chen, H.-M.; Kuo, H.-C., Effective optimization and analysis of white LED properties by using nano-honeycomb patterned phosphor film. Optics express 2016, 24 (17), 19032-19039. [54] Lin, H.-Y.; Pai, Y.-M.; Shi, J.-x.; Chen, X.-Y.; Lin, C.-H.; Weng, C.-M.; Chen, T.-Y.; Lin, C.-C.; Charlton, M. D. B.; Huang, Y.-P., Optimization of nano-honeycomb structures for flexible w-LEDs. Optics express 2017, 25 (17), 20466-20476.
Chapter 5 [1] Kuo, H.-C.; Hung, C.-W.; Chen, H.-C.; Chen, K.-J.; Wang, C.-H.; Sher, C.-W.; Yeh, C.-C.; Lin, C.-C.; Chen, C.-H.; Cheng, Y.-J., Patterned structure of remote phosphor for phosphor-converted white LEDs. Optics express 2011, 19 (104), A930-A936. [2] Lim, K.; Lee, J. C.; Panotopoulos, G.; Helbing, R. In Illumination and color management in solid state lighting, Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE, IEEE: 2006; pp 2616-2620. [3] Ying, S. P.; Tang, C.-W.; Huang, B.-J. In Charaterizing LEDs for Mixture of Colored LED light sources, Electronic Materials and Packaging, 2006. EMAP 2006. International Conference on, IEEE: 2006; pp 1-5. [4] He, G.; Zheng, L., Color temperature tunable white-light light-emitting diode clusters with high color rendering index. Applied optics 2010, 49 (24), 4670-4676. [5] Anikeeva, P. O.; Halpert, J. E.; Bawendi, M. G.; Bulović, V., Electroluminescence from a mixed red− green− blue colloidal quantum dot monolayer. Nano Lett 2007, 7 (8), 2196-2200. [6] Ziegler, J.; Xu, S.; Kucur, E.; Meister, F.; Batentschuk, M.; Gindele, F.; Nann, T., Silica‐Coated InP/ZnS Nanocrystals as Converter Material in White LEDs. Advanced Materials 2008, 20 (21), 4068-4073. [7] Ali, M.; Chattopadhyay, S.; Nag, A.; Kumar, A.; Sapra, S.; Chakraborty, S.; Sarma, D., White-light emission from a blend of CdSeS nanocrystals of different Se: S ratio. Nanotechnology 2007, 18 (7), 075401. [8] Nizamoglu, S.; Ozel, T.; Sari, E.; Demir, H., White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology 2007, 18 (6), 065709. [9] Jang, E.; Jun, S.; Jang, H.; Lim, J.; Kim, B.; Kim, Y., White‐light‐emitting diodes with quantum dot color converters for display backlights. Advanced Materials 2010, 22 (28), 3076-3080. [10] Sher, C. W.; Chen, K. J.; Lin, C. C.; Han, H. V.; Lin, H. Y.; Tu, Z. Y.; Tu, H.-H.; Honjo, K.; Jiang, H.-Y.; Ou, S.-L. Large-Area, Uniform White Light LED Source on a Flexible Substrate. Opt. Express 2015, 23 (19), A1167-A1178. [11] Tu, P. M.; Chang, C. Y.; Huang, S. C.; Chiu, C. H.; Chang, J. R.; Chang, W. T.; Wuu, D.-S.; Zan, H. W.; Lin, C. C.; Kuo, H. C., Investigation of Efficiency Droop for Ingan-Based UV Light-Emitting Diodes with Inalgan Barrier. Appl. Phys. Lett. 2011, 98 (21), 211107. [12] Akyol, F.; Nath, D.; Krishnamoorthy, S.; Park, P.; Rajan, S., Suppression of Electron Overflow and Efficiency Droop in N-Polar GaN Green Light Emitting Diodes. Appl. Phys. Lett. 2012, 100 (11), 111118. [13] Cho, J.; Schubert, E. F.; Kim, J. K., Efficiency Droop in Light‐Emitting Diodes: Challenges and Countermeasures. Laser Photonics Rev. 2013, 7 (3), 408-421. [14] Cho, K. S.; Lee, E. K.; Joo, W. J.; Jang, E.; Kim, T. H.; Lee, S. J.; Kwon, S. J.; Han, J. Y.; Kim, B. K.; Choi, B. L., High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat. Photonics 2009, 3 (6), 341-345. [15] Nizamoglu, S.; Ozel, T.; Sari, E.; Demir, H., White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology 2007, 18 (6), 065709. [16] Tu, C. C.; Tang, L.; Huang, J.; Voutsas, A.; Lin, L. Y., Visible Electroluminescence from Hybrid Colloidal Silicon Quantum Dot-Organic Light-Emitting Diodes. Appl. Phys. Lett. 2011, 98 (21), 213102. [17] Yeh, T. F.; Teng, C. Y.; Chen, L. C.; Chen, S. J.; Teng, H., Graphene Oxide-Based Nanomaterials for Efficient Photoenergy Conversion. J. Mater. Chem. A 2016, 4 (6), 2014-2048. [18] Tu, C. C.; Chou, Y. N.; Hung, H. C.; Wu, J.; Jiang, S.; Lin, L. Y., Fluorescent Porous Silicon Biological Probes with High Quantum Efficiency and Stability. Opt. Express 2014, 22 (24), 29996-30003. [19] Chen, K. J.; Lin, C. C.; Han, H. V.; Lee, C. Y.; Chien, S. H.; Wang, K. Y.; Chiu, S. H.; Tu, Z. Y.; Li, J. R.; Chen, T. M., Wide-Range Correlated Color Temperature Light Generation from Resonant Cavity Hybrid Quantum Dot Light-Emitting Diodes. IEEE J. Sel. Top. Quantum Electron. 2015, 21 (4), 23-29. [20] Sher, C. W.; Lin, C. H.; Lin, H. Y.; Lin, C. C.; Huang, C.-H.; Chen, K. J.; Li, J. R.; Wang, K. Y.; Tu, H. H.; Fu, C. C., A High Quality Liquid-Type Quantum Dot White Light-Emitting Diode. Nanoscale 2016, 8 (2), 1117-1122. [21] Hummers Jr, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339-1339. [22] Chen, L. C.; Yeh, T. F.; Lee, Y. L.; Teng, H., Incorporating Nitrogen-Doped Graphene Oxide Dots with Graphene Oxide Sheets for Stable and Effective Hydrogen Production Through Photocatalytic Water Decomposition. Appl. Catal., A 2016, 521, 118-124. [23] Tu, C. C.; Chen, K. P.; Yang, T. A.; Chou, M.-Y.; Lin, L. Y.; Li, Y. K., Silicon Quantum Dot Nanoparticles with Antifouling Coatings for Immunostaining on Live Cancer Cells. ACS Appl. Mater. Interfaces 2016. [24] Song, H.; Lee, S., Photoluminescent (Cdse) Zns Quantum Dot? Polymethylmethacrylate Polymer Composite Thin Films in The Visible Spectral Range. Nanotechnology 2007, 18 (5), 055402. [25] R. Hu, X. Luo, and S. Liu, "Study on the optical properties of conformal coating light-emitting diode by Monte Carlo simulation," Photonics Technology Letters, IEEE, 2011(23), 1673-1675. [26] C. F. Lai, J. Y. Chi, H. C. Kuo, H. H. Yen, C. E. Lee, C. H. Chao, W. Y. Yeh and T. C. Lu, “Far-field and near-field distribution of gan-based photonic crystal leds with guided mode extraction” IEEE J. Sel. Top. Quant., 2009 (15), 1234-1241,. [27] P. M. Tu, C. Y. Chang, S. C. Huang, C. H. Chiu, J. R. Chang, W. T. Chang, D. S. Wuu, H. W. Zan, C. C. Lin, H. C. Kuo and C. P. Hsu, ““Investigation of efficiency droop for InGaN-based UV light-emitting diodes with InAlGaN barrier,” Appl. Phys. Lett., 2011(98), 211107. [28] M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, et al., "Red-enhanced white-light-emitting diode using a new red phosphor," Japanese journal of applied physics, 2003 (42), L20,. [29] Y. Narukawa, J. Narita, T. Sakamoto, T. Yamada, H. Narimatsu, M. Sano, et al., "Recent progress of high efficiency white LEDs," physica status solidi (a), 2007 (204), 2087-2093. [30] http://www.eyelighting.com/resources/lighting-technology-education/general-lighting-basics/r9-color-rendering-value/ [31] Lin, H.-Y.; Wang, S.-W.; Lin, C.-C.; Chen, K.-J.; Han, H.-V.; Tu, Z.-Y.; Tu, H.-H.; Chen, T.-M.; Shih, M.-H.; Lee, P.-T., Excellent color quality of white-light-emitting diodes by embedding quantum dots in polymers material. IEEE Journal of Selected Topics in Quantum Electronics 2016, 22 (1), 35-41. [32] Kang, D.; Gai, B.; Thompson, B.; Lee, S. M.; Malmstadt, N.; Yoon, J. Flexible Opto-Fluidic Fluorescence Sensors Based on Heterogeneously Integrated Micro-VCSELs and Silicon Photodiodes. ACS Photonics 2016, 3 (6), 912–918. [33] Fan, D.; Lee, K.; Forrest, S. R. Flexible Thin-Film InGaAs Photodiode Focal Plane Array. ACS Photonics 2016, 3 (4), 670-676. [34] Su, S. J.; Gonmori, E.; Sasabe, H.; Kido, J., Highly Efficient Organic Blue‐and White‐Light‐Emitting Devices Having a Carrier‐And Exciton‐Confining Structure for Reduced Efficiency Roll‐off. Adv. Mater. 2008, 20 (21), 4189-4194. [35] Eom, S.-H.; Zheng, Y.; Wrzesniewski, E.; Lee, J.; Chopra, N.; So, F.; Xue, J., White Phosphorescent Organic Light-Emitting Devices with Dual Triple-Doped Emissive Layers. Appl. Phys. Lett. 2009, 94 (15), 153303. [36] Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R., Management of Singlet and Triplet Excitons for Efficient White Organic Light-Emitting Devices. Nature 2006, 440 (7086), 908-912. [37] Kalinowski, J.; Cocchi, M.; Virgili, D.; Fattori, V.; Williams, J. G., Mixing Of Excimer and Exciplex Emission: a New Way to Improve White Light Emitting Organic Electrophosphorescent Diodes. Adv. Mater. 2007, 19 (22), 4000-4005. [38] Yang, H.; Shi, Y.; Zhao, Y.; Meng, Y.; Hu, W.; Hou, J.; Liu, S., High Colour Rendering Index White Organic Light-Emitting Devices with Three Emitting Layers. Displays 2008, 29 (4), 327-332. [39] Chang, C. H.; Tien, K. C.; Chen, C. C.; Lin, M. S.; Cheng, H. C.; Liu, S. H.; Wu, C. C.; Hung, J. Y.; Chiu, Y. C.; Chi, Y., Efficient Phosphorescent White Oleds With High Color Rendering Capability. Org. Electron. 2010, 11 (3), 412-418. [40] Zhou, G.; Wang, Q.; Ho, C. L.; Wong, W.-Y.; Ma, D.; Wang, L., Duplicating “Sunlight” from Simple WOLEDs for Lighting Applications. Chem. Commun. 2009, (24), 3574-3576. [41] Jou, J. H.; Shen, S. M.; Lin, C. R.; Wang, Y. S.; Chou, Y. C.; Chen, S. Z.; Jou, Y. C., Efficient Very-High Color Rendering Index Organic Light-Emitting Diode. Org. Electron. 2011, 12 (5), 865-868. [42] Jou, J. H.; Chiu, Y. S.; Wang, C. P.; Wang, R. Y.; Hu, H. C., Efficient, Color-Stable Fluorescent White Organic Light-Emitting Diodes with Single Emission Layer by Vapor Deposition from Solvent Premixed Deposition Source. Appl. Phys. Lett. 2006, 88 (19), 193501. [43] Li, Y.; Xu, K.; Wen, X.; Zhang, L.; Yin, Y.; Liu, S.; Piao, X.; Xie, W., High General and Special Color Rendering Index White Organic Light-Emitting Device with Bipolar Homojunction Emitting Layers. Org. Electron. 2013, 14 (8), 1946-1951. [44] Li, Y.; Zhang, W.; Zhang, L.; Wen, X.; Yin, Y.; Liu, S.; Xie, W.; Zhao, H.; Tao, S., Ultra-High General and Special Color Rendering Index White Organic Light-Emitting Device Based on a Deep Red Phosphorescent Dye. Org. Electron. 2013, 14 (12), 3201-3205. [45] Wang, Q.; Zhao, Y.; Qiu, P.; Wu, C.; Chen, J.; Ma, D., Highly Efficient Homojunction Organic Light-Emitting Diodes. J. Mater. Chem. C 2015, 3 (26), 6862-6867. [46] Liu, X.; Wang, S.; Yao, B.; Zhang, B.; Ho, C. L.; Wong, W. Y.; Cheng, Y.; Xie, Z., New Deep-Red Heteroleptic Iridium Complex With 3-Hexylthiophene for Solution-Processed Organic Light-Emitting Diodes Emitting Saturated Red and High CRI White Colors. Org. Electron. 2015, 21, 1-8. [47] Su, S. J.; Gonmori, E.; Sasabe, H.; Kido, J. Highly Efficient Organic Blue‐and White‐Light‐Emitting Devices Having a Carrier‐And Exciton‐Confining Structure for Reduced Efficiency Roll‐Off. Adv. Mater. 2008, 20 (21), 4189-4194. [48] Eom, S.-H.; Zheng, Y.; Wrzesniewski, E.; Lee, J.; Chopra, N.; So, F.; Xue, J. White Phosphorescent Organic Light-Emitting Devices with Dual Triple-Doped Emissive Layers. Appl. Phys. Lett. 2009, 94 (15), 153303. [49] Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R., Management of Singlet and Triplet Excitons for Efficient White Organic Light-Emitting Devices. Nature 2006, 440 (7086), 908-912. [50] Kalinowski, J.; Cocchi, M.; Virgili, D.; Fattori, V.; Williams, J. G. Mixing of Excimer and Exciplex Emission: a New Way to Improve White Light Emitting Organic Electrophosphorescent Diodes. Adv. Mater. 2007, 19 (22), 4000-4005. [51] Zhou, G.; Wang, Q.; Ho, C. L.; Wong, W. Y.; Ma, D.; Wang, L. Duplicating “Sunlight” From Simple Woleds for Lighting Applications. Chem. Commun. 2009, (24), 3574-3576. [52] Müller-Buschbaum, P., Grazing Incidence Small-Angle X-Ray Scattering: an Advanced Scattering Technique for the Investigation of Nanostructured Polymer Films. Anal. Bioanal. Chem. 2003, 376 (1), 3-10. [53] Müller-Buschbaum, P., Dewetting and Pattern Formation in Thin Polymer Films as Investigated in Real and Reciprocal Space. J. Phys.: Condens. Matter 2003, 15 (36), R1549. [54] Gutmann, J. S.; Müller-Buschbaum, P.; Stamm, M., Complex Pattern Formation by Phase Separation of Polymer Blends in Thin Films. Faraday Discuss. 1999, 112, 285-297. [55] Lu, L. P.; Kabra, D.; Johnson, K.; Friend, R. H., Charge‐Carrier Balance and Color Purity in Polyfluorene Polymer Blends for Blue Light‐Emitting Diodes. Adv. Funct. Mater. 2012, 22 (1), 144-150. [56] Herguth, P.; Jiang, X.; Liu, M. S.; Jen, A. K.-Y., Highly Efficient Fluorene-and Benzothiadiazole-based Conjugated Copolymers for Polymer Light-emitting diodes. Macromolecules 2002, 35 (16), 6094-6100. [57] Hodgkiss, J. M.; Tu, G.; Albert-Seifried, S.; Huck, W. T.; Friend, R. H., Ion-induced Formation of Charge-transfer States in Conjugated Polyelectrolytes. J. Am. Chem. Soc. 2009, 131 (25), 8913-8921. [58] Chen, K. J.; Lai, Y. C.; Lin, B. C.; Lin, C. C.; Chiu, S. H.; Tu, Z. Y.; Shih, M. H.; Yu, P.; Lee, P. T.; Li, X. Efficient Hybrid White Light-Emitting Diodes by Organic-Inorganic Materials at Different CCT From 3000K To 9000K. Opt. Express 2015, 23 (7), A204-A210. [59] Lin, H. Y.; Wang, S. W.; Lin, C. C.; Chen, K. J.; Han, H. V.; Tu, Z. Y.; Tu, H. H.; Chen, T. M.; Shih, M.-H.; Lee, P. T. Excellent Color Quality of White-Light-Emitting Diodes by Embedding Quantum Dots in Polymers Material. IEEE J. Sel. Top. Quantum Electron. 2016, 22 (1), 1-7. [60] Sher, C. W.; Chen, K. J.; Lin, C. C.; Han, H. V.; Lin, H. Y.; Tu, Z. Y.; Tu, H.-H.; Honjo, K.; Jiang, H.-Y.; Ou, S.-L. Large-Area, Uniform White Light LED Source on a Flexible Substrate. Opt. Express 2015, 23 (19), A1167-A1178. [61] Tu, P. M.; Chang, C. Y.; Huang, S. C.; Chiu, C. H.; Chang, J. R.; Chang, W. T.; Wuu, D.-S.; Zan, H. W.; Lin, C. C.; Kuo, H. C., Investigation of Efficiency Droop for Ingan-Based UV Light-Emitting Diodes with Inalgan Barrier. Appl. Phys. Lett. 2011, 98 (21), 211107. [62] Akyol, F.; Nath, D.; Krishnamoorthy, S.; Park, P.; Rajan, S., Suppression of Electron Overflow and Efficiency Droop in N-Polar GaN Green Light Emitting Diodes. Appl. Phys. Lett. 2012, 100 (11), 111118. [63] Cho, J.; Schubert, E. F.; Kim, J. K., Efficiency Droop in Light‐Emitting Diodes: Challenges and Countermeasures. Laser Photonics Rev. 2013, 7 (3), 408-421. [64] Shukla, M.; Brahme, N.; Kher, R.; Khokhar, M., Elementary Approach to Calculate Quantum Efficiency of Polymer Light Emitting Diodes. Indian J. Pure Appl. Phys. 2011, 49 (2), 142-145. [65] Narukawa, Y.; Narita, J.; Sakamoto, T.; Yamada, T.; Narimatsu, H.; Sano, M.; Mukai, T. Recent Progress of High Efficiency White LEDs. Phys. Status Solidi A 2007, 204 (6), 2087-2093. [66] Sun, Q.; Wang, Y. A.; Li, L. S.; Wang, D.; Zhu, T.; Xu, J.; Yang, C.; Li, Y., Bright, Multicoloured Light-Emitting Diodes Based on Quantum Dots. Nat. Photonics 2007, 1 (12), 717-722. [67] Kim, T.-H.; Cho, K.-S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J.-Y.; Amaratunga, G.; Lee, S. Y., Full-Colour Quantum Dot Displays Fabricated by Transfer Printing. Nat. Photonics 2011, 5 (3), 176-182. [68] Wang, X.; Yan, X.; Li, W.; Sun, K., Doped Quantum Dots for White‐Light‐Emitting Diodes Without Reabsorption of Multiphase Phosphors. Adv. Mater. 2012, 24 (20), 2742-2747. [69] Xuan, T.-T.; Liu, J.-Q.; Xie, R.-J.; Li, H.-L.; Sun, Z., Microwave-Assisted Synthesis Of Cds/Zns: Cu Quantum Dots for White Light-Emitting Diodes with High Color Rendition. Chem. Mater. 2015, 27 (4), 1187-1193. [70] Michiel, K. Improving Thermal Analysis of LEDs; EE Times-Asia Technology Report, May, 2013 [71] Poppe, A.; Farkas, G.; Horváth, G. Electrical, Thermal and Optical Characterization of Power LED Assemblies. arXiv preprint arXiv:0709.1815 2007. [72] Incropera, F. P.; Dewitt, D. P.; Bergman, T. L.; Lavine, A. S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons, Inc. 2007, 1, 12. [73] Poppe, A.; Farkas, G.; Horváth, G., Electrical, Thermal and Optical Characterization of Power LED Assemblies. arXiv preprint arXiv:0709.1815 2007. [74] W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, "Highly Efficient Green‐Light‐Emitting Diodes Based on CdSe@ ZnS Quantum Dots with a Chemical‐Composition Gradient," Adv. Mater. 2009, 21, 1690-1694. [75] Tu, C. C.; Tang, L.; Huang, J.; Voutsas, A.; Lin, L. Y., Visible Electroluminescence from Hybrid Colloidal Silicon Quantum Dot-Organic Light-Emitting Diodes. Appl. Phys. Lett. 2011, 98 (21), 213102. [76] Yeh, T. F.; Teng, C. Y.; Chen, L. C.; Chen, S. J.; Teng, H., Graphene Oxide-Based Nanomaterials for Efficient Photoenergy Conversion. J. Mater. Chem. A 2016, 4 (6), 2014-2048. [77] Tu, C. C.; Chou, Y. N.; Hung, H. C.; Wu, J.; Jiang, S.; Lin, L. Y., Fluorescent Porous Silicon Biological Probes with High Quantum Efficiency and Stability. Opt. Express 2014, 22 (24), 29996-30003. [78] Hummers Jr, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339-1339. [79] Chen, L. C.; Yeh, T. F.; Lee, Y. L.; Teng, H., Incorporating Nitrogen-Doped Graphene Oxide Dots with Graphene Oxide Sheets for Stable and Effective Hydrogen Production Through Photocatalytic Water Decomposition. Appl. Catal., A 2016, 521, 118-124. [80] Tu, C. C.; Hoo, J. H.; Böhringer, K. F.; Lin, L. Y.; Cao, G., Red-Emitting Silicon Quantum Dot Phosphors in Warm White Leds with Excellent Color Rendering. Opt. Express 2014, 22 (102), A276-A281. [81] Tu, C. C.; Chen, K. P.; Yang, T. A.; Chou, M. Y.; Lin, L. Y.; Li, Y. K., Silicon quantum dot nanoparticles with antifouling coatings for immunostaining on live cancer cells. ACS Appl. Mater. & Interfaces 2016, 8 (22), 13714-13723. [82] Sieval, A.; Demirel, A.; Nissink, J.; Linford, M.; Van der Maas, J.; De Jeu, W.; Zuilhof, H.; Sudhölter, E., Highly Stable Si-C Linked Functionalized Monolayers on the Silicon (100) Surface. Langmuir 1998, 14 (7), 1759-1768. [83] Zhu, S., Tang, S., Zhang, J. & Yang, B. Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem. Commun. 48, 4527-4539 (2012). [84] Shen, J., Zhu, Y., Yang, X. & Li, C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686-3699 (2012). [85] Wilson, N. R.; Pandey, P. A.; Beanland, R.; Young, R. J.; Kinloch, I. A.; Gong, L.; Liu, Z.; Suenaga, K.; Rourke, J. P.; York, S. J., Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy. ACS nano 2009, 3 (9), 2547-2556. [86] Yuan, Y.; Zhang, J.; Liang, G.; Yang, X., Rapid Fluorescent Detection of Neurogenin by CdTe Quantum Dot Aggregation. Analyst 2012, 137 (8), 1775-1778. [87] Pai, Y.-H.; Lin, G.-R., Spatially Confined Synthesis of SiO X Nano-Rod with Size-Controlled Si Quantum Dots in Nano-Porous Anodic Aluminum Oxide Membrane. Opt. Express 2011, 19 (2), 896-905. [88] Tai, H.-Y.; Lin, Y.-Hf.; Lin, G.-R., Wavelength-Shifted Yellow Electroluminescence of Si Quantum-Dot Embedded 20-Pair SiNx/SiOx Superlattice by Ostwald Ripening Effect. IEEE Photonics J. 2013, 5 (1), 6600110-6600110. [89] Wu, M.; Mukherjee, P.; Lamont, D. N.; Waldeck, D. H., Electron Transfer and Fluorescence Quenching of Nanoparticle Assemblies. J. Phys. Chem. C 2010, 114 (13), 5751-5759. [90] Kagan, C.; Murray, C.; Nirmal, M.; Bawendi, M., Electronic Energy Transfer in CdSe Quantum Dot Solids. Phys. Rev. Lett. 1996, 76 (9), 1517. [91] Franzl, T.; Koktysh, D.; Klar, T.; Rogach, A.; Feldmann, J.; Gaponik, N., Fast Energy Transfer in Layer-by-Layer Assembled CdTe Nanocrystal Bilayers. Appl. Phys. Lett. 2004, 84 (15), 2904-2906. [92] Crooker, S.; Hollingsworth, J.; Tretiak, S.; Klimov, V., Spectrally Resolved Dynamics of Energy Transfer in Quantum-Dot Assemblies: Towards Engineered Energy Flows in Artificial Materials. Phys. Rev. Lett. 2002, 89 (18), 186802. [93] Narukawa, Y.; Narita, J.; Sakamoto, T.; Yamada, T.; Narimatsu, H.; Sano, M.; Mukai, T., Recent Progress of High Efficiency White Leds. Phys. Status Solidi A 2007, 204 (6), 2087-2093. [94] Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K. S.; Luk, C. M.; Zeng, S.; Hao, J., Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS nano 2012, 6 (6), 5102-5110. [95] Feng, X.; Zhang, F.; Wang, Y.; Zhang, Y.; Yang, Y.; Liu, X., Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes. Appl. Phys. Lett. 2015, 107 (21), 213102. [96] Wang, Y.; Yin, Z.; Xie, Z.; Zhao, X.; Zhou, C.; Zhou, S.; Chen, P., Polysiloxane Functionalized Carbon Dots and Their Cross-Linked Flexible Silicone Rubbers for Color Conversion and Encapsulation of White LEDs. ACS Appl. Mater. Interfaces 2016, 8 (15), 9961-9968. [97] Luk, C.; Tang, L.; Zhang, W.; Yu, S.; Teng, K.; Lau, S., An efficient and stable fluorescent graphene quantum dot–agar composite as a converting material in white light emitting diodes. J. Mater. Chem. 2012, 22 (42), 22378-22381. [98] Tetsuka, H.; Nagoya, A.; Asahi, R., Highly luminescent flexible amino-functionalized graphene quantum dots@ cellulose nanofiber–clay hybrids for white-light emitting diodes. J. Mater. Chem. C 2015, 3 (15), 3536-3541. [99] Wang, Y.; Zhao, Y.; Zhang, Y.; Zhang, F.; Feng, X.; Chen, L.; Yang, Y.; Liu, X., A single-phase heteroatom doped carbon dot phosphor toward white light-emitting diodes. RSC Adv. 2016, 6 (45), 38761-38768. [100] Poppe, A.; Farkas, G.; Horváth, G., Electrical Thermal and Optical Characterization of Power LED Assemblies. arXiv preprint arXiv:0709.1815 2007. [101] Michiel, K. Improving Thermal Analysis of LEDs; EE Times-Asia technology report, May, 2013 [102] Brodie, G.; Jacob, M. V.; Farrell, P., Microwave and Radio-Frequency Technologies in Agriculture: an introduction for agriculturalists and engineers. Walter de Gruyter GmbH & Co KG: 2016, 156. [103] Blaine, R., Interlaboratory precision and bias for thermal conductivity and specific heat capacity by modulated differential scanning calorimetry. Therm Cond 2005, 26, 309-18.
Chapter 6 [1] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051. [2] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338 (6107), 643-647. [3] Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grätzel, M., Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345 (6204), 1593-1596. [4] Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-g.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y., Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS nano 2015, 9 (4), 4533-4542. [5] Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 2015, 15 (6), 3692-3696. [6] Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V., Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I). Nano letters 2015, 15 (8), 5635-5640. [7] Bi, K.; Wang, D.; Wang, P.; Duan, B.; Zhang, T.; Wang, Y.; Zhang, H.; Zhang, Y., Cesium lead halide perovskite quantum dot-based warm white light-emitting diodes with high color rendering index. Journal of Nanoparticle Research 2017, 19 (5), 174. [8] Singh, B. P.; Lin, S.-Y.; Wang, H.-C.; Tang, A.-C.; Tong, H.-C.; Chen, C.-Y.; Lee, Y.-C.; Tsai, T.-L.; Liu, R.-S., Inorganic red perovskite quantum dot integrated blue chip: a promising candidate for high color-rendering in w-LEDs. RSC Advances 2016, 6 (83), 79410-79414.
|